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Saranya Sridhar*

Jenner Institute, University of Oxford, Oxford, UK

Influenza A virus (IAV) remains a significant global health issue causing annual epidem-
ics, pandemics, and sporadic human infections with highly pathogenic avian or swine 
influenza viruses. Current inactivated and live vaccines are the mainstay of the public 
health response to influenza, although vaccine efficacy is lower against antigenically 
distinct viral strains. The first pandemic of the twenty-first century underlined the urgent 
need to develop new vaccines capable of protecting against a broad range of influenza 
strains. Such “universal” influenza vaccines are based on the idea of heterosubtypic 
immunity, wherein immune responses to epitopes conserved across IAV strains can con-
fer protection against subsequent infection and disease. T-cells recognizing conserved 
antigens are a key contributor in reducing viral load and limiting disease severity during 
heterosubtypic infection in animal models. Recent studies undertaken during the 2009 
H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating 
heterosubtypic protection in humans. This review focuses on human influenza to discuss 
the epidemiological observations that underpin cross-protective immunity, the role of 
T-cells as key players in mediating heterosubtypic immunity including recent data from 
natural history cohort studies and the ongoing clinical development of T-cell-inducing 
universal influenza vaccines. The challenges and knowledge gaps for developing vac-
cines to generate long-lived protective T-cell responses is discussed.

Keywords: influenza, T-cells, universal vaccine, pandemic influenza, heterosubtypic immunity, correlates of 
protection

iNTRODUCTiON

Influenza is a major public health problem with annual influenza epidemics which affect an 
estimated 15% of the global population (1) that are punctuated by pandemics capable of causing 
more severe morbidity and mortality (2). Host protection against influenza infection is primarily 
mediated by neutralizing antibodies against the viral surface glycoproteins, hemagglutinin (HA) 
and neuraminidase (NA). These annual epidemics and periodic pandemics are a result of constant 
antigenic variation in an evolving influenza virus attempting to evade host protective immunity. New 
strains arise through the gradual accumulation of point mutations in the viral surface glycoproteins 
(antigenic drift) or genetic reassortments between different viral subtypes (antigenic shift) with the 
potential to cause influenza epidemics and pandemics, respectively.

Vaccination remains the most cost-effective strategy against influenza and has been in use since 
the 1940s. However, a major limitation of current vaccines, both inactivated and live attenuated 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00195&domain=pdf&date_stamp=2016-05-19
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00195
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:saranya.sridhar@ndm.ox.ac.uk
http://dx.doi.org/10.3389/fimmu.2016.00195
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00195/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00195/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00195/abstract
http://loop.frontiersin.org/people/65126/overview


2

Sridhar T-Cell Heterosubtypic Immunity in Humans

Frontiers in Immunology | www.frontiersin.org May 2016 | Volume 7 | Article 195

vaccines, is the inability to provide high levels of protective 
efficacy in the face of this antigenic variation. Current vaccines 
that offer high levels of strain-specific protection are less effective 
against the unpredictable emergence of new antigenically variant 
strains, not represented in the vaccine (3, 4). This lack of efficacy 
against mismatched strains has two key consequences: one, it 
necessitates yearly reformulation, production, and deployment 
of influenza vaccines based on the prediction of strains that may 
circulate in the subsequent influenza season; two, in the event 
of the emergence of a completely novel reassortant virus, there 
is little or no efficacy leaving individuals at high risk of infec-
tion with potential for pandemic spread. The first pandemic of 
the twenty-first century in 2009, zoonotic human infections 
with highly pathogenic avian and swine influenza viruses and 
the difficulty in predicting antigenic variation, underscores the 
need to develop new influenza vaccines capable of mediating 
protection against a broad range of influenza strains. The basis 
of such broadly protective “universal influenza vaccines” is the 
phenomenon of heterosubtypic immunity, wherein host immune 
responses targeted toward viral epitopes highly conserved across 
all influenza subtypes confers protection against infection and 
disease. Heterosubtypic immunity in animal models has histori-
cally been shown to be predominantly mediated by CD8+ T-cells, 
although evidence in humans was limited. This review focuses on 
the recent studies undertaken during the 2009 H1N1 pandemic 
that provided the evidence in humans for T-cell-mediated hetero-
subtypic immunity (5, 6). The distinctive roles of the four broad 
subsets of memory T-cells  –  effector memory (TEM), central-
memory (TCM), effector memory RA (TEMRA), and more recently, 
tissue-resident memory (TRM)  –  with different phenotypes, 
transcriptional signatures, anatomical location, and migration 
patterns (7, 8) in heterosubtypic immunity is discussed. I argue 
that a major barrier to develop T-cell-inducing vaccines for influ-
enza remains in our understanding of the key determinants in 
positioning protective T-cells in the respiratory tract to limit viral 
replication and deliberate on some of the immunological chal-
lenges faced in developing T-cell-inducing influenza vaccines.

ANTiBODY-MeDiATeD iMMUNiTY

The role of antibodies in protective immunity has traditionally 
been limited to homosubtypic rather than heterosubtypic immu-
nity. However, theoretically, antibodies recognizing conserved 
epitopes could confer heterosubtypic immunity. There has been 
renewed interest in antibody-mediated heterosubtypic immunity 
through broadly reactive monoclonal antibodies (9), antibodies 
directed toward the highly conserved HA stalk domain (10), and 
non-neutralizing antibodies. Cross-reactive non-neutralizing 
antibodies that mediate antibody-dependent cellular cytotoxicity 
have been shown to confer heterosubtypic protection in mice 
(11) and non-human primates (NHPs) (12), and are detectable 
in humans in the absence of neutralizing antibodies (13, 14). New 
promising vaccine strategies targeting antibodies to the conserved 
stalk region of HA using “headless” HA (15) can confer heterosub-
typic protection in mice (16) and ferrets (17) and are detectable in 
young and older adults (18). Another conserved antigenic target 
is the Matrix 2 ectodomain, with antibodies to this region capable 

of providing heterosubtypic protection in animal models (19). 
However, the role of these antibodies in protecting individuals in 
the context of a pandemic remains to be understood, and there is 
some evidence for a disease-enhancing role for these antibodies 
(20). Therefore, while broadly cross-reactive antibodies are an 
exciting prospect for vaccine development, further development 
and cautious evaluation may be necessary.

HeTeROSUBTYPiC iMMUNiTY iN 
ANiMAL MODeLS

The phenomenon of heterosubtypic immunity was elegantly 
demonstrated by Schulman and Kilbourne in a murine model of 
influenza infection. In mice infected with a H1N1 strain and sub-
sequently challenged with a lethal H2N2 virus, they observed a 
reduction in viral titers in the lung, lung pathology, and mortality 
(21). They remarked on the early reduction in viral titers despite 
an absence of antibodies, suggesting that protection may not have 
been mediated by neutralizing antibodies. Since then, studies in 
multiple animal models including NHPs have reproduced this 
observation (22–25) noting reduction in viral load, lung pathol-
ogy, weight loss, and mortality, but not infection. Investigation of 
the immunological mechanisms in animal models revealed the 
role of CD8+ T-cells and CD4+ T-cells in mediating this cross-
protective immunity (26, 27).

Cytotoxic CD8+ T-cells are thought to be the primary media-
tors of heterosubtypic immunity in animal models. Early work 
demonstrated that CD8+ T-cells, both polyclonal and those 
grown from cloned cell lines, were cross-reactive for different 
type A influenza viruses recognizing conserved peptides pre-
dominantly from the internal viral proteins (28–31). The neces-
sity for CD8+ T-cells in mediating protection against a primary 
infection was demonstrated in adoptive transfer experiments 
and by observing delayed viral clearance and increased mortality 
in CD8+ T-cell deficient transgenic mice (32, 33). In mice primed 
by infection, preexisting memory CD8+ T-cells established fol-
lowing the first infection mediated enhanced viral clearance and 
reduced pathology against subsequent heterosubtypic challenge 
(34–36). However, more recent work suggests that CD8+ T-cells 
may work in concert with non-neutralizing antibodies and 
alveolar macrophages in mediating protection against a lethal 
virus challenge (11, 37).

The effector mechanisms used by CD8+ T-cells to mediate 
the killing of virus-infected cells occur mainly through contact-
dependent release of cytotoxic perforin or granzyme granules, 
apoptosis triggered by Fas/FasL interaction (38), and antiviral 
suppressor function of secreted IFN-γ and other cytokines and 
chemokines (39–41). Recently, a subset of non-cytolytic CD8+ 
T-cell-secreting IL-17 (Tc17) generated in vitro has been shown 
to mediate protection against lethal influenza through an IFN-γ-
dependent mechanism (42).

The role of CD4+ T-cells in mediating heterosubtypic immunity 
is less clear but is an increasing focus of attention and is reviewed 
elsewhere (43). Although adoptive transfer of influenza-specific 
CD4+ T-cells demonstrate the ability of CD4+ T-cells to mediate 
protection, recent work transferring physiological frequencies 
of CD4+ T-cells specific for a single influenza epitope resulted 
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in little protection against subsequent influenza challenge (44). 
Nevertheless, there is mounting evidence of CD4+ T-cells facili-
tating heterosubtypic immunity through different mechanisms 
including direct cytolytic activity and interactions with B cells, or 
CD8+ T-cells (45–47).

ePiDeMiOLOGiCAL CLUeS OF 
HeTeROSUBTYPiC PROTeCTiON iN 
HUMANS

Is there any evidence in human populations that natural hetero-
subtypic immunity can limit disease severity? To demonstrate 
heterosubtypic immunity in humans requires the recording of 
the clinical outcomes of individuals previously infected with 
influenza as they encounter a new antigenically distinct strain. 
A few opportunistic studies undertaken when new pandemic 
strains had emerged provide epidemiological evidence for 
natural heterosubtypic immunity. The first report by Slepushkin 
followed adults as the new H2N2 pandemic strain emerged in 
1957 (48). Over three influenza waves in 1957 – a spring seasonal 
H1N1 influenza wave, a summer pandemic H2N2 wave, and a 
second pandemic H2N2 wave in the fall – the rates of influenza-
like-illness (ILI), but not laboratory-confirmed influenza, were 
recorded in adults. Two key observations were made. First, 
individuals who reported an ILI during the spring seasonal 
H1N1 influenza wave were less likely to have ILI through the 
H2N2 summer pandemic wave ~2 months later and during the 
fall wave ~5 months later. Second, the level of cross-protection 
to pandemic H2N2 was short-lived, declining but not abrogated, 
within 3–5  months after seasonal H1N1 influenza infection. 
Although laboratory-confirmed influenza was not recorded, this 
seems to be the first evidence that previous seasonal influenza 
infection conferred protection against an antigenically distinct 
pandemic influenza strain.

Epstein extended these observations using historical data 
of laboratory-confirmed influenza among participants in the 
Cleveland family study during the 1957 H2N2 pandemic (49). 
Adults with laboratory-confirmed H1N1 influenza between 1950 
and 1957 were ~3 times less likely to have symptomatic laboratory-
confirmed pandemic H2N2 influenza compared to those who 
were not previously infected. A particularly interesting finding 
was the absence of any neutralizing antibodies to the pandemic 
H2N2 virus in these participants prior to onset of the pandemic, 
suggesting alternatives to neutralizing anti-HA antibodies as 
immune correlates of heterosubtypic protection. However, 
the duration between the last seasonal influenza infection and 
exposure to the new H2N2 strain was not known, which would 
have enabled determination of durability of this cross-protection. 
Similar observations of a lowered risk of influenza illness in those 
with previous infections was observed in Japanese school children 
during the re-emergence of H1N1 in 1977–1978 (50) and, more 
recently, during the 2009 H1N1 pandemic in children in Hong 
Kong (51). These studies show that infection generates immune 
responses, most likely not neutralizing antibodies, which confer 
cross-protective immunity against development of symptomatic 
influenza in humans.

However, there remain a number of unanswered questions. 
How long does this natural cross-protective immunity last in 
the population? Data from the 2009 pandemic suggest that 
protection lasts at least 1 year after previous seasonal influenza 
infection (51), although an optimistic reading of the data col-
lected by Epstein during the 1957 pandemic may suggest more 
durable cross-protective immunity. How does age, number of 
previous infections and severity of infections, viral load, and 
ethnicity impact this cross-protective immunity? None of the 
studies, to date, have demonstrated whether this cross-protection 
reduces the risk of severe disease and death and if so, in what 
proportion of the population? This is particularly important in 
order to define clinical end-points that can be measured when 
evaluating efficacy of candidate universal influenza vaccines. The 
epidemiological evidence that natural cross-protective immunity 
can reduce the risk of severe disease, hospitalizations, death, or 
decrease ongoing transmission remains to be found. Regardless, 
this partial and potentially short-lived protection offers a template 
for the development of broadly protective influenza vaccines. The 
key lies in elucidating the immunological mechanisms of natural 
heterosubtypic immunity in humans and developing vaccines 
that improve on nature.

T-CeLLS AND HeTeROSUBTYPiC 
iMMUNiTY iN HUMANS

T-Cells Do Not Distinguish between 
influenza Subtypes
Peripheral blood mononuclear cells (PBMCs) from human 
donors stimulated in vitro with influenza A virus (IAV) do not 
lyse influenza B virus-infected target cells but are capable of lys-
ing target cells infected with a different IAV subtype by targeting 
cross-reactive antigens (52–54). More recently, similar polyclonal 
CD8+ and CD4+ T cell cross-reactivity to IAV strains to which 
individuals were not previously exposed has been demonstrated 
with human H1N1 (55–59), H3N2 (60), H3N2v (61), H2N2 (60), 
and avian H5N1 (62, 63) and H7N9 (64, 65) viruses. Fundamental 
to the development of vaccines exploiting the ability of T-cells 
to recognize variant influenza viruses is the identification of 
antigenic targets of these cross-reactive T-cells and evidence that 
cross-reactive T-cells mediate protection in humans.

Specificity of Cross-reactive T-Cells in 
Humans
The major antigenic targets of these cross-reactive T-cells are 
epitopes in the highly conserved internal proteins of influenza, 
particularly polymerase-binding protein (PB) 1, matrix 1 (M1), 
and nucleoprotein (NP). In early experiments, Gotch and col-
leagues used recombinant vaccinia virus to express each viral 
protein and infected autologous target cells to determine the 
main antigenic targets of cytotoxic T-cells (CTLs) from human 
donors. In a small sample of six donors they found M1, NP, and 
PB2 to be the most commonly recognized proteins with recog-
nition restricted by HLA-type (66). These findings have been 
replicated by more recent studies. Assarsson et al. identified a set 
of 54 epitopes conserved across human and avian influenza virus 
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A subtypes and strains, the majority from the internal PB1, M1, 
and NP proteins,  recognized by PBMCs from human donors (67). 
These class I- and class II-restricted epitopes covered six HLA class 
I supertypes (A1, A2, A3, A24, B7, and B44) and a single HLA class 
II supertype (DR) to estimate >90% coverage across populations. 
Interestingly, among 20 random HLA untyped human donors, 
75% responded to the pool of the class I-restricted epitopes 
while 80% responded to the pool of class II-restricted epitopes. 
Immunoinformatic analysis of the literature of all the published 
CD8+ and CD4+ conserved T cell epitopes presented by a variety 
of HLA class I and class II molecules (www.iedb.org) revealed that 
these epitopes were most commonly found in the internal viral 
proteins (68). This immunodominance of M1, NP, and PB1 was 
also observed while mapping responses of CD4+ and CD8+ T-cells 
to the entire genome of an H5N1 virus in unexposed individuals 
(62). Notably, in addition to the high proportion of responders, 
frequencies of T-cell responses are also highest to these antigens 
(62). Not all these conserved epitopes are necessarily protective 
and no studies identifying protective epitopes in humans have 
been conducted. One experimental challenge study mapped 
responses to the overlapping peptides pools covering the entire 
length of NP and M1 proteins. In this study, reduced disease sever-
ity was associated with higher frequencies of CD4 T-cells specific 
for entire length of NP and M1 proteins rather than responses to 
individual epitope(s) (69).

evidence for T-Cell-Mediated  
Cross-Protective immunity in Humans
Despite the wealth of evidence for both CD4+ and CD8+ T-cell-
mediated cross-protection in animals, human studies integrating 
immunological analysis with well-defined clinical outcomes 
are scarce. The first experimental evidence was presented by 
McMichael and colleagues who used a human experimental 
challenge model which involved nasal inoculation of individuals 
with high doses of a lab-adapted attenuated H1N1 virus strain. 
In individuals born after 1968 who had never been exposed to 
the H1N1 subtype, the frequency of MHC class I-restricted CTLs 
prior to infection was associated with decreased viral shedding, 
but not lower symptom severity (70). This was the first evidence 
in humans for the potential of cross-reactive CD8+ T-cells to 
mediate protection when antibodies failed to prevent infection 
by a new virus strain. More recently, this study was repeated using 
a seasonal H3N2 or H1N1 viruses to infect individuals lacking 
neutralizing antibodies to the infecting virus strain. In contrast to 
the challenge study by McMichael et al., this study found higher 
frequencies of peripherally circulating IFN-γ-secreting CD4+, 
rather than CD8+ T-cells, recognizing peptides from NP and M1 
correlated with less viral shedding and reduced symptom sever-
ity (69). Despite these two studies, the question remained as to 
whether in the context of natural community-acquired influenza 
infection, rather than experimental challenge, cross-reactive 
T-cells were associated with protection.

Two separate studies undertaken as the 2009 pandemic H1N1 
(pH1N1) virus strain emerged have shed light on this hitherto 
unresolved question. In a large cohort of pH1N1 seronegative 
adults recruited and followed during the evolving pandemic, 

individuals with higher frequencies of preexisting cross-reactive 
CD8+IFN-γ+IL-2− T-cells recognizing highly conserved epitopes 
in the PB1, M1, and NP internal core proteins of influenza A had 
milder symptoms and lower risk of viral shedding following pan-
demic influenza infection (6). Further characterization of these 
cross-protective CD8+T-cells identified the CD45RA+CCR7− 
late-effector subset of memory T-cells that correlated with protec-
tion against symptomatic illness. Although this study did not find 
an association of protection with CD4+ T-cells, the role of CD4+ 
T-cells could not be ruled out. These CD8+ T-cells were not gener-
ated by inactivated vaccines, and therefore, it was apparent that 
previous seasonal influenza infection induced and maintained 
this protective T-cell pool (57). This was the first evidence for 
CD8+ T-cell-mediated cross-protection against community-
acquired natural influenza infection in humans.

These findings were subsequently corroborated by a second 
study, which found NP-specific T-cell-secreting IFN-γ (not sepa-
rated into CD4+ and CD8+) were associated with a decreased risk 
of viral shedding but not symptom severity, following pandemic 
influenza infection (5). Both studies found CD8+ T-cells did not 
reduce risk of infection while severe disease, hospitalizations, or 
death were not among the clinical outcomes recorded in these 
studies. Thus, the role of cross-reactive T-cells in protecting 
against severe disease is less clear. One study found hospitalized 
patients with severe H7N9 influenza who recovered earlier had 
a more rapid induction of CD8+IFN-γ+ responses compared to 
those with a longer stay (71), but it is not clear how this finding 
might be confounded by viral determinants of severe disease. 
The opportunistic natural history cohort studies show that cross-
reactive CD8+ T-cells can reduce viral shedding and ameliorate 
mild illness albeit whether they mediate protection against severe 
disease, hospitalization, death, and household transmission 
remains to be determined (Table 1).

MUCOSAL iMMUNe ReSPONSeS ARe 
eSSeNTiAL iN iNFLUeNZA PROTeCTiON

There is now increasing consensus on the importance of T-cells 
being present locally in the airway or parenchyma of the respira-
tory tract to protect against influenza. The presence of protec-
tive immune responses in the lung is particularly important as 
severe influenza is due to lung infection, and highly pathogenic 
avian influenza viruses (e.g., H5N1) have tropism for the lower 
respiratory tract. In animal models, cross-protection is associ-
ated with capacity of CD8+ T-cells to home to the lung (72, 73), 
expression of the integrin VLA-1, which regulates homing to 
respiratory mucosa (74) and CD8+ T-cells in the airways (74). 
Pulmonary TRM cells, which are located in the airways, have 
greater protective capacity than circulating memory CD8 T cells 
(75). The protective CTL populations that develop during IAV 
infection include TRM cells, which are embedded in the walls of 
the airways, as well as cells shed into the lumen, which can be 
collected by bronchoalveolar lavage. Recent studies have shown 
that deposition of CTLs into the lumen of airways is sufficient 
to provide protection in a transfer model (76). Influenza-
specific memory CD8+ and CD4+ T-cells are abundantly found 
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following bronchoalveolar lavage of infected patients and 
healthy adults, although they have a much higher activation 
threshold compared to peripherally circulating antigen-specific 
memory T-cells (77–79).

A subset of memory T-cells, TRM that do not circulate and are 
restricted to peripheral tissues have been described (80). Lung 
TRM cells are induced following antigen exposure in the lung, 
require CD4+ T-cell help for functional development (81), and 
persistent antigen exposure for long-term maintenance (82). 
They are characterized by the surface expression of CD69 and 
CD103 surface molecules (83), can rapidly trigger an antiviral 
state (84, 85), and have been shown to be essential and sufficient 
in mediating heterosubtypic protection against lethal influenza 
in murine models (75, 86). In rhesus monkeys infected with IAV, 
NP-specific TRM cells were found in the lung in the absence of 
a robust peripheral memory T-cell response (87). Human lung 
CD69+CD103+ TRM cells differ in many respects from those pre-
sent in peripheral blood and are enriched for memory cells able 
to respond to common respiratory pathogens, such as influenza 
virus (80, 88). These cells have been shown to recognize and kill 
influenza-infected epithelial cells, suggesting that they could be 
providing rapid antigen-specific response to influenza infection 
before the influx of circulating memory T-cells (89). However, 
direct proof that TRM cells are associated with reduced disease 
severity in humans is very difficult to demonstrate as lung tissue, 
obtained from lung resections or autopsy samples, is needed to 
measure TRM cells.

T-CeLL-BASeD UNiveRSAL vACCiNe 
DeveLOPMeNT

Efforts to develop influenza vaccines capable of conferring 
protection against a broad spectrum of virus strains is founded 
on this immunological evidence base for T-cell-mediated 
heterosubtypic immunity in humans and animal models. It is 
worthwhile to note that such vaccines are designed to reduce 
illness severity rather than prevent infection. In contrast to 
current influenza vaccines targeted to prevent infection, the 
evaluation, licensure, and deployment of a vaccine not designed 
to prevent infection but to limit symptoms will be challenging. 
A number of candidate vaccines, the majority expressing NP and 
M1 antigens through different vaccine delivery platforms, are in 
different stages of clinical development. The leading candidate 
is a modified vaccinia Ankara (MVA) viral vector encoding NP 
and M1 proteins, MVA-NP +  M1, which has shown safety in 
phase I trials and induces NP- and M1-specific CD8+IFN-γ+ 
T cells (90). In a small phase IIa experimental challenge study, 
this vaccine showed reduction in the duration of viral shedding 
(91). Another approach using highly conserved multi-epitope 
small peptides has shown induction of CD8+ T-cells in a phase 
I trial (92), but this vaccine has failed to reduce viral load or 
symptom score in a phase IIa challenge study (93). Another 
such candidate is Multimeric-001, a recombinant protein that 
contains conserved linear epitopes from the NP, M1, and HA 
proteins of IAVs that can induce T-cells when given to elderly 
adults in phase I and II trials (94). The licensed live attenuated 
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TABLe 2 | Universal T-cell vaccine candidates in clinical trials.

Type of vaccine Name Description influenza antigens Adjuvant Clinical phase Reference

Fusion protein Multimer-001 Fusion protein of multiple 
linear epitopes

HA, NP, and M1 (IAV and 
IBV)

Montanide ISA 
51VG

Phase I (94)

Peptide-based FLU-v Polypeptide mixture M1, M2, and NP ISA-51 Phase IIa (92, 93)

Peptide-based FP01 Nanoparticle vaccine of six 
peptides

Internal conserved proteins None Phase I

Viral vector MVA-NP + M1 Modified vaccinia Ankara 
vector

NP + M1 from strain A/
Panama/2007/99

None Phase IIa (91)

Viral vector ChAdOX1-NP + M1 Chimpanzee adenovirus NP + M1 from strain A/
Panama/2007/99

None Phase I (97)

Virus-like particles VLP using recombinant 
baculovirus

HA, NA, and M1 ISCOMATRIX Phase I (98)
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influenza vaccine has been shown to induce cross-reactive cel-
lular immune responses (95) and studies have demonstrated a 
moderate level of protection against mismatched antigenically 
distinct strains (96). However, there are less data available on 
whether the vaccine is protective against a pandemic strain and 
can reduce symptom severity in infected individuals. Other 
experimental approaches including virus-like particles, RNA 
replicons, DNA vaccines, and adjuvants continue to be devel-
oped and are in phase I clinical trials (Table 2).

CHALLeNGeS iN DeveLOPiNG A T-CeLL 
vACCiNe FOR iNFLUeNZA

Generating Durable Memory in the 
Respiratory Tract
Successful vaccination requires the generation of durable 
antigen-specific memory responses, which, for acute respiratory 
infections like influenza, must be capable of rapid recall to the 
respiratory tract. Different subsets of memory CD8+ T-cells, 
with different phenotypes, transcriptional signatures, anatomical 
location, migration patterns, and effector functions (7, 8) develop 
following the survival of a small proportion of CD8+ T-cells 
generated during the primary effector response. Animal models 
have informed our understanding of the three signals, namely, 
antigen (signal 1), costimulation (signal 2), and proinflammatory 
environment (signal 3) during primary infection that determines 
subsequent development of effector and memory T-cell responses 
(99). Antigen persistence was shown to maintain memory T-cells 
in the lung and draining lymph nodes (100) but was not necessary 
to maintain peripheral memory T-cells capable of airway hom-
ing (101). The critical role of respiratory dendritic cells (RDCs), 
which sample and present antigen in directing the differential 
development of effector and memory CD8+ T-cells in local and 
peripheral sites, is becoming evident. CD103+-migratory RDCs 
support the development of lung homing effector CD8+ T-cells 
while CD103− dendritic cells support generation of CD8+ TCM 
that remain in the local lymph nodes (102, 103). Chemokine 
production, particularly CCR5 and CXCR3, are important in 
regulating contraction and generation of memory T-cells fol-
lowing influenza infection (104, 105). As our understanding of 
these mechanisms grows, rational design of vaccination strategies 

to target specific cells or pathways may become more feasible. 
For example, vaccination using antigen coupled to antibodies 
targeted exclusively to respiratory DCs can induce TRM cells in 
the lung and confer protection against influenza challenge (106). 
The use of adjuvants that limit IL-12-enhanced CXCR3 expres-
sion results in better protection and increased CD8+ memory 
T-cells to the airways (107). Another strategy that exploits this 
migrational imprinting of memory T-cells to mucosal sites is 
called “prime and pull,” where chemokines to mucosal sites pulled 
effector CD8 T-cells to differentiate into TRM (108). This may be 
particularly relevant for vaccination of adults and elders who are 
already primed and have existing memory T-cells from previous 
exposures but may not be applicable in infants or young children 
in whom a significant memory pool may not yet be established.

The route of delivery is crucial in generating local and 
systemic immune responses. Mucosal vaccination deliver-
ing antigen to the respiratory tract generates both local 
and systemic immune responses comparable to parenteral 
administration (109). The licensed intranasal live influenza 
vaccine induces systemic and mucosal cross-reactive CD8+ 
and CD4+ T-cells (95, 110). However, what remains unclear is 
whether intranasal delivery generates memory T-cells in the 
lung. Deliberate upper or lower respiratory tract vaccination 
in mouse and macaques suggests that localized nasal infec-
tion does not stimulate protective lung immunity (111, 112), 
although whether the upper and lower respiratory tract are 
similarly disconnected in humans is a contentious issue. 
Aerosol delivery of measles vaccine (113), BCG (114), and 
an MVA viral-vectored vaccine have shown the feasibility of 
this approach and found preferential induction of lung over 
peripheral T-cell responses (115). However, the most optimal 
strategy would be to harness both local and systemic immunity, 
and data from tuberculosis vaccination seem to suggest that 
simultaneous mucosal and parenteral administration may be 
a promising avenue to explore (116). A recent study has shown 
that combining systemic and mucosal vaccination using an 
adenoviral vector expressing NP conferred heterosubtypic 
protection in mice 8 months after vaccination (117).

In addition to the persistence of antigen, repetitive antigen 
exposure also influences memory T-cell development. Murine 
models of multiple antigen exposure reveal changing expression 
levels of transcription factors in memory CD8+ T-cells, decreased 
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proliferation capacity, preferential diminution of antigen-specific 
memory CD8+ T-cell-secreting IL-2 without a concomitant 
decrease in IFN-γ secretion, and a movement of memory cells to 
non-lymphoid compartments including the blood and peripheral 
organs (118). This would suggest that recurrent acute infections 
skew the development of antigen-experienced memory T-cells 
toward an activated IFN-γ-only-secreting, circulating or mucosal, 
T-cell phenotype that is primed to protect against inevitable 
subsequent infections. It is tempting to speculate that the higher 
frequencies of CD8+CD45RA+CCR7− late-effector T-cells associ-
ated with protection against natural infection in humans (6) may 
be a result of multiple natural influenza infections. If multiple 
antigen exposures do skew memory T-cells to a more protective 
phenotype, prime-boost vaccination may be a more promising 
strategy.

One significant challenge is to maintain durable memory 
T-cell responses following vaccination. In humans, long-lived 
memory T-cells are detectable decades after a single smallpox 
(119) vaccination or pulmonary hantavirus infection (120). 
However, influenza-specific memory T-cells in the blood seem 
to be less durable declining rapidly within a few months after 
a single infection (121, 122) with a suggested half-life of up to 
2–3  years (123). T-cell responses, strain-specific but not cross-
reactive, have been observed in children lasting up to 1 year after 
live vaccination (124). The detection of influenza-specific lung 
TRM cells in older adults (80) and antigen-specific memory T-cells 
in the blood up to 15 years after infection (125), most likely due 
to multiple infections, offers some optimism for generating long-
lived cellular immunity to influenza.

Covering Diverse Populations and Limiting 
T-Cell escape
A significant challenge to developing a T-cell inducing vaccine 
for widespread use would be to provide sufficient coverage to 
individuals of diverse HLA haplotypes. Recent work suggests that 
some ethnicities with particular HLA alleles may have limited 
CD8+ T-cell responses even to conserved epitopes in NP and 
M1 (64) and have different clinical outcomes of influenza infec-
tion (126). These studies highlight the need to examine T-cell 
responses in the context of ethnicity. Indeed, there are limited data 
on the magnitude, quality, or breadth of influenza-specific T-cell 
responses in African, Latin American, or Asian populations.

The identification of naturally occurring CD8+ T-cell-mediated 
mutations in viral NP that resulted in immune escape and replace-
ment of the wild-type sequence raises the theoretical concern for 
vaccine-mediated T-cell escape (127, 128). This selection pressure 
is likely to be maximally targeted toward the very same immu-
nodominant epitopes that are critical in conferring protective 
T-cell immunity. One strategy to circumvent this problem is to 
vaccinate using a range of mutants of immunodominant epitopes 
that seems to generate memory T-cells against the wild-type 
dominant sequence (129). However, the likelihood of such T-cell 
escape as observed with HIV and HCV is less likely for influenza 
given the presence of numerous epitopes that remain unchanged 
through viral evolution. Indeed, modeling population-level 
deployment of an effective cross-protective vaccine revealed the 

high likelihood of such a strategy slowing down the emergence of 
antigenically distinct influenza strains (130).

Rebalancing Protection over Pathology
A significant challenge in developing T-cell vaccines is the need 
to balance the induction of sufficient quality and quantity of CTLs 
against the possibility of T-cells contributing to immunopathol-
ogy. In humans, it is likely that virus-induced inflammation 
plays a major role in lung pathology, and therefore, rapid viral 
clearance would be critical in limiting lung pathology. However, 
the increasing evidence that effective killing of virus-infected cells 
by CD8+ T-cells in the lung is accompanied by non-specific tis-
sue destruction warrants greater understanding, particularly for 
vaccines seeking to induce large numbers of effector T-cells in the 
lung. The role of T-cells in causing lung pathology during infec-
tion is reviewed in detail elsewhere (131). Briefly, the role of T-cell 
immunopathology in influenza has been best demonstrated in 
animal models delinking viral replication-induced inflammation 
from T-cell induced inflammation. In these models, it has been 
demonstrated that lung pathology is caused by pro-inflammatory 
T-cell secreted IFN-γ/TNF-α and T-cell cytolysed virus-infected 
cells releasing pro-inflammatory chemokines and cytokines prior 
to cell death. In humans, delineating the role of T-cells in lung 
injury during viral infection is difficult. One study did report 
higher frequencies of peripheral and respiratory virus-specific 
CD4+ T-cells post-infection in severe influenza (132), although, 
whether T-cells caused severe disease or if this was a result of 
uncontrolled viral replication is difficult to distinguish. Some case 
reports of lung injury following influenza vaccination have been 
reported, but whether vaccination caused lung pathology or the 
mechanisms of injury is not clear (133, 134). Vaccine delivery 
by aerosol is gaining traction, but theoretical concerns about 
T-cell induced lung pathology, particularly in older age groups 
with preexisting influenza-specific T-cells in the respiratory tract, 
would need to be assuaged. Multiple immunomodulatory mecha-
nisms have been identified to dampen the effector T-cell response 
including anti-inflammatory cytokines/chemokines, regula-
tory T-cells, and costimulatory/inhibitory surface molecules. 
Strategies exploiting such immunomodulatory mechanisms to 
shift the balance toward protection rather than pathology include 
use of costimulatory molecules as adjuvants, peptide-tolerization, 
and targeting the vaccine to particular cell types (135, 136).

identifying a Correlate of Protection
Vaccine development is immeasurably advanced if a correlate of 
protection can be identified and validated for use in humans. The 
identification of CD8+ IFN-γ+IL-2− T-cells to conserved epitopes 
of NP, M1, and PB1 (6), and CD3+IFN-γ+ T-cells to peptides 
covering NP and M1 (5) associated with protection against 
natural infection provides the first step toward the validation 
of such a T-cell correlate of protection. However, in both these 
studies a quantitative relationship between the magnitude of the 
T-cell response and risk of symptomatic disease was not reported. 
Granzyme B expression and the ratio of IFN-γ:IL-10 are also sug-
gested as candidates for a correlate of protection, particularly in 
the elders (137, 138). A T-cell correlate of protection, particularly 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Sridhar T-Cell Heterosubtypic Immunity in Humans

Frontiers in Immunology | www.frontiersin.org May 2016 | Volume 7 | Article 195

a quantitative correlate remains elusive. One study correlated 
an IFN-γ-secreting response on ELISpot with vaccine efficacy 
suggesting a threshold frequency of 100  SFCs/million PBMCs 
induced by LAIV to be associated with 50% reduction in risk 
of seasonal influenza (139). However, this observation has not 
been repeated. Irrespective of whether a correlate is identified, a 
significant challenge is the development of a standardized assay 
that combines enumeration of virus-specific T-cells with the 
multitude of markers for T-cell function and cytotoxicity.

Although an immune correlate of protection may be an 
immune marker related to protection against disease or infec-
tion but not necessarily the immune mechanism conferring 
protection (140), the inability to measure airway and lung TRM 
cells in large cohorts of individuals to correlate with protection 
is a major limitation in identifying T-cell correlates of protection. 
Experimental influenza challenge studies to identify surrogate 
markers in peripheral blood of influenza-specific T-cells collected 
by bronchoalveolar lavage might be one approach to measure 
mucosal T-cells, although they still do not account for lung TRM 
cells. Gene-expression analysis of the development of lung TRM 
cells may identify unique signatures in peripheral blood that 
could be used as surrogates of these populations. Equally, the 
multifactorial nature of cross-protective immunity to influenza 
including non-neutralizing antibodies and different functional 
subsets of T-cells may be an inherent limitation to identifying a 
single quantitative T-cell correlate of protection. Multi-parameter 
flow cytometry and time-of-flight cytometry in combination 
with integrative biomodeling of immunological readouts may be 
a more robust tool to map the multifactorial nature of human 
T-cell responses (141).

It is revealing to track the development and use of the hemag-
glutination-inhibition (HI) titer of antibodies, the traditional cor-
relate of protection against infection used for vaccine licensure. 
An HI titer of >1:40 was associated with a 50% reduction in influ-
enza infection following experimental challenge (142). Although 
in use for over 40 years, there is emerging evidence questioning 
the use of an absolute titer as a marker of protection, its validity in 
children and elders, and its specificity in household transmission 
settings (143–145). Thus, it is not unreasonable to predict that a 
T-cell correlate will need to be modified for different age groups, 
vaccine types, and clinical outcomes. It is also noteworthy that 

mechanisms and magnitude of responses protective in human 
experimental challenges may not translate to natural community-
based transmission settings because of differences in viral load, 
use of lab-adapted strains, and route of infection.

CONCLUSiON

Influenza vaccination is the most cost-effective public health 
strategy to combat influenza, since its introduction over 50 years 
ago. Current influenza vaccines are less effective against the 
inevitable emergence of new influenza strains. Harnessing het-
erosubtypic immunity is necessary to develop future influenza 
vaccines protective against a broad range of antigenically variant 
influenza strains for both seasonal and pandemic influenza. The 
evidence from animal models for memory T-cells in mediating 
heterosubtypic protection has underpinned the development of 
T-cell-inducing vaccines for influenza. Epidemiological evidence 
for natural heterosubtypic immunity in populations exposed to 
pandemic influenza aligned with recent studies, which provided 
the first direct evidence for a protective role for memory CD8+ 
T-cells in humans, has added new thrust to the search for a 
cross-protective influenza vaccine. Despite growing knowledge 
of the functional quality of T-cells, their antigenic targets, and 
development of sensitive T-cell assays, we do not have a T-cell 
correlate of protection. Memory T-cells resident in the lungs and 
circulating T-cells imprinted with lung homing signals are impor-
tant in mediating cross-protective immunity while at the same 
time they can help cause lung pathology. Yet, we do not quite 
understand how to deliver antigens to preferentially induce the 
right quality of cells in the respiratory tract to skew the balance 
toward protection over tissue destruction. There is a great need 
to translate mechanistic observations made in animal models to 
the more complex human immune system. Our growing under-
standing of immune mediators of heterosubtypic immunity and 
the technological advances in vaccine design provide a perfect 
opportunity to produce a new pipeline of T-cell-inducing cross-
protective influenza vaccines.
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