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Abstract

Protein sequence-based predictors of nucleic acid (NA)-binding include

methods that predict NA-binding proteins and NA-binding residues. The

residue-level tools produce more details but suffer high computational cost

since they must predict every amino acid in the input sequence and rely on

multiple sequence alignments. We propose an alternative approach that pre-

dicts content (fraction) of the NA-binding residues, offering more information

than the protein-level prediction and much shorter runtime than the residue-

level tools. Our first-of-its-kind content predictor, qNABpredict, relies on a

small, rationally designed and fast-to-compute feature set that represents rele-

vant characteristics extracted from the input sequence and a well-

parametrized support vector regression model. We provide two versions of

qNABpredict, a taxonomy-agnostic model that can be used for proteins of

unknown taxonomic origin and more accurate taxonomy-aware models that

are tailored to specific taxonomic kingdoms: archaea, bacteria, eukaryota,

and viruses. Empirical tests on a low-similarity test dataset show that qNAB-

predict is 100 times faster and generates statistically more accurate content

predictions when compared to the content extracted from results produced

by the residue-level predictors. We also show that qNABpredict's content pre-

dictions can be used to improve results generated by the residue-level predic-

tors. We release qNABpredict as a convenient webserver and source code at

http://biomine.cs.vcu.edu/servers/qNABpredict/. This new tool should be

particularly useful to predict details of protein–NA interactions for large pro-

tein families and proteomes.
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1 | INTRODUCTION

Interactions between proteins and nucleic acids are
instrumental for a broad range of cellular functions that
include transcription, translation, gene expression and
regulation, DNA repair, RNA splicing and regulation,
and chromatin packing and remodeling, to name just a
few (Charoensawan et al., 2010; Glisovic et al., 2008;
Kelaini et al., 2021; Malhotra & Sowdhamini, 2013; Wang
et al., 2015). Molecular-level details of these interactions
are studied using the X-ray crystallography, electron
microscopy, and nuclear magnetic resonance, with over
11,000 structures of protein–DNA and protein–RNA com-
plexes in the Protein Data Bank (PDB) (Berman
et al., 2000; Burley et al., 2021). However, these investiga-
tions are unable to keep up with the rapid accumulation
of protein and nucleic acid (NA) sequence data (O'Leary
et al., 2016). Consequently, faster and more cost-effective
computational tools that predict protein–NA interactions
from protein sequences are being developed to support
efforts related to the functional characterization of pro-
teins (Emamjomeh et al., 2019; Gromiha &
Nagarajan, 2013; Miao & Westhof, 2015; Puton
et al., 2012; Si et al., 2015a, 2015b; Walia et al., 2012;
Wang et al., 2020; Yan et al., 2016; Zhang et al., 2019b;
Zhao et al., 2013). They are trained using the limited
amount of experimental molecular-level data and are
applied to identify putative protein–NA interactions in a
high-throughput manner for the uncharacterized
sequences. These methods are divided into two distinct
groups: protein-level tools that predict whether a target
protein sequence interacts with DNA and RNA
vs. residue-level tools that predict DNA and RNA binding
residues in a given protein sequence. A few recently
released tools that predict DNA/RNA-binding proteins
include iDRBP-ECHF (Feng et al., 2022), iDRBP_MMC
(Zhang et al., 2020), iDRBP-EL (Wang et al., 2021), and a
method by Du and Hu (2022). The residue-level tools pro-
duce more detailed information when compared to the
protein-level approaches. Representative methods that
belong to this category include BindN (Wang &
Brown, 2006), BindN+ (Wang et al., 2010), DRNApred
(Yan & Kurgan, 2017), ProNA2020 (Qiu et al., 2020), and
HybridNAP (Zhang et al., 2019b). While we focus on the
predictions from the protein sequences, we also acknowl-
edge efforts to identify protein binding regions in the NA
sequences (Laverty et al., 2022; Ma et al., 2022; Park
et al., 2014; Su et al., 2019; Zhang et al., 2022).

While residue-level tools provide useful putative data
concerning presence and positions of NA-binding resi-
dues in the protein chains, they suffer a relatively high
computational cost since they must make predictions for
each amino acid in the input sequence and they utilize

computationally costly multiple sequence alignment. An
alternative approach is to predict the content of the NA-
binding residues, that is, the fraction of the residues in
the input sequence that bind DNA or RNA, which ranges
between 0 and 1. This type of prediction should be faster
since it is done at the protein-level and potentially could
be realized without utilizing sequence alignment, while
providing substantially more information than the
protein-level prediction, that is, it identifies which pro-
teins interact with NAs and what is the relative size of
the binding interface. The advantage of the short runtime
is particularly useful for large-scale applications that ana-
lyze protein families and even entire proteomes. While to
the best of our knowledge there are no content predictors
for the NA-binding, these predictors are available in
related areas including prediction of the secondary struc-
tures content (Chen et al., 2011; Homaeian et al., 2007;
Horne, 1988; Krigbaum & Knutton, 1973; Lee et al., 2006;
Lin & Pan, 2001; Liu & Chou, 1999; Mizianty et al., 2011;
Ruan et al., 2005; Yu et al., 2022) and the intrinsic disor-
der content (Yan et al., 2013). The first secondary struc-
ture content predictor was developed in 1973
(Krigbaum & Knutton, 1973), while the latest was
released in 2022 (Yu et al., 2022). They are applied in the
large-scale studies with several illustrative example for
the recent disorder content predictor, RAPID (Yan
et al., 2013), which was recently used to perform analysis
in several protein families (Gawron et al., 2016; Skupien-
Rabian et al., 2016; Warren & Shechter, 2017) and whole
proteomes (Boone et al., 2021; Choura et al., 2020).

To this end, we propose first-of-its-kind, fast and
accurate predictor of the content of NA-binding residues
in protein sequences, qNABpredict (quick Nucleic Acids
Binding content predictor). We conceptualize, design, test
and release two versions of this tool, one that is
taxonomy-aware and relies on models that are tailored
for proteins from the four taxonomic kingdoms: eukar-
yota, archaea, bacteria, and viruses; and the second that
provides taxonomy-agnostic predictions. The first model
provides more accurate results but requires the knowl-
edge of the underlying organism(s), while the latter can
be used for any protein sequence.

2 | RESULTS AND DISCUSSION

2.1 | Comparative assessment of NA-
binding residues content predictions

We compare the NA-binding residues content predictions
generated by qNABpredict, in both the taxonomy-aware
and taxonomy-agnostic modes, with the results produced
by the predictors of the residue-level NA-binding residues
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using the low-similarity test dataset. Given the relatively
large size of the test dataset (600 proteins), we select
methods that are relatively runtime efficient (<5 min to
predict an average size protein) and available to the end
users as either webserver or source code, which include
BindN+ (Wang et al., 2010), DRNApred (Yan &
Kurgan, 2017), and HybridNAP (Zhang et al., 2019b). We
convert their residue-level predictions into the content of
NA-binding residues by dividing the number of predicted
DNA and RNA binding residues by the length of the cor-
responding protein sequence. We also include three base-
lines. The first, which we name “random_correct_range”,
predicts a random value in the [0, 1] range, which is the
actual range of the possible content values. The second,
which we call “random_resampled_content”, uses a ran-
domly selected content value from the design dataset.
The latter baseline produces the same distribution of the
content values as the distribution in the design dataset.
The third baseline relies on domain annotations from
InterPro (Paysan-Lafosse et al., 2022), which incorporates
data from multiple sources including Pfam (El-Gebali
et al., 2019). We collected 4324 domains for the test pro-
teins and used a subset of 436 domains that are annotated
as DNA, RNA, nucleotide and dinucleotide-binding
(including by mapping to these domain annotations as
ancestors) to make predictions. We use residues from the
regions that correspond to these 436 domains to compute
the content values. Moreover, we compute predictions
based on sequence similarity. Using the popular BLAST
program (Altschul et al., 1997), we identify the most simi-
lar protein from the design dataset (based on the lowest
e-value) and use its content as the prediction. We quan-
tify the predictive performance by computing the mean

absolute error (MAE) and Spearman's rank correlation
coefficient (SCC) values; Section 4.2 defines these error-
and correlation-based metrics. We also compute MAE
value for the non-NA-binding proteins in the test dataset,
to evaluate the extend of the over-prediction of the con-
tent values for the proteins that do not interact with the
nucleic acids. Table 1 reports average values over 100 ran-
dom samplings of 50% of proteins from the test dataset.
This allows us to evaluate robustness of the differences
between predictions of various methods that are mea-
sured over substantially different protein sets.

The qNABpredict models specific to the taxonomic
kingdoms obtain MAE = 0.074 and SCC = 0.60, which
implies that these predictions are accurate and highly
correlated with the native content. Moreover, these
models only modestly overpredict the NA-binding con-
tent for the proteins that do not bind NAs, with the corre-
sponding MAE = 0.032. We find that these taxonomy-
aware qNABpredict models statistically outperform the
taxonomy-agnostic qNABpredict model (p-value < 0.01),
which produces higher MAE = 0.077 and lower
SCC = 0.58. This agrees with the observations on the
design dataset (Figure 1). However, the latter model can
be used for any input protein sequence, even if its taxo-
nomic classification is unknown.

Both versions of the qNABpredict are statistically
more accurate than the other considered alternatives
including the three residue-level predictors of the NA-
binding residues, the BLAST-based prediction and the
random baselines (p-value < 0.01). The InterPro-based
baseline generates statistically worse MAE = 0.136 and
SCC = 0.09 (p-value < 0.01) while producing statistically
better MAE for the non-NA-binding-proteins (p-

TABLE 1 Results of the comparative analysis on the low-similarity test dataset

Predictor MAE MAE for the non-NA-binding proteins SCC

Baseline (random_correct_range) 0.421+/+ 0.489+/+ 0.000+/+

Baseline (random_resampled_content) 0.160+/+ 0.109+/+ 0.053+/+

BindN+ 0.152+/+ 0.170+/+ 0.529+/+

DRNApred 0.147+/+ 0.112+/+ 0.295+/+

Baseline (Pfam domains) 0.136+/+ 0.022�/� 0.088+/+

BLAST (sequence similarity) 0.101+/+ 0.051+/+ 0.372+/+

HybridNAP 0.098+/+ 0.076+/+ 0.477+/+

qNABpredict (taxonomy-agnostic) 0.077+/ 0.033+/ 0.577+/

qNABpredict (taxonomy-aware) 0.074 0.032 0.602

Note: We report average values over 100 random samplings of 50% of proteins from the test dataset. The sampling evaluates robustness of the differences

between predictions of various methods that are measured over substantially different protein sets. Predictors are sorted by their overall MAE values. We
quantify statistical significance of the differences over the sampled tests, which is shown next to the values using the x/y format where x = {+, �, =} denotes
that the taxonomy-aware qNABpredict is statistically better (+), worse (�) and not different (=) than the result produced by a given predictor, respectively, at
p-value = 0.01; y uses the same nomenclature while comparing against the taxonomy-agnostic version of qNABpredict.
Abbreviations: MAE, mean absolute error; NA, nucleic acid; SCC, Spearman's rank correlation coefficient.
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value < 0.01), suggesting that sequence-based prediction
provides a more accurate option to identify NA-binding
interfaces. The best alternative, HybridNAP (Zhang
et al., 2019b), secures MAE = 0.098 and SCC = 0.48. As
expected, predictions of the random baselines lack corre-
lation with the native content values (SCC < 0.06) and
their MAEs estimate an expected ceiling of the error
values, which is at around 0.160. This means that qNAB-
predict's results reduce the baseline error by (0.160–
0.074)/0.160 = 54%. Furthermore, qNABpredict signifi-
cantly outperforms BLAST alignment that produces only
modestly accurate results, with MAE = 0.101 and
SCC = 0.37 (p-value < 0.01). This is due to the low simi-
larity between the design and test proteins and indicates
that qNABpredict can be used to make accurate predic-
tions for protein sequences irrespective of their similarity
to the known NA-binding proteins.

2.2 | Comparative assessment of
predictions of NA-binding proteins

The NA-binding content predictions can be used to iden-
tify NA-binding proteins. We classify a given sequence as
NA-binding if the putative content predicted by qNAB-
predict is higher than a threshold. We identify a suitable
threshold using predictions on the design dataset, as the
average of the median content values predicted for the
NA-binding and the non-NA-binding proteins, excluding
extreme/outlier predictions (i.e., top 5% of the highest
and bottom 5% of the lowest predictions). The medians

for the NA-binding and the non-NA-binding proteins are
0.14 and 0.02, respectively, which results in the thresh-
old = 0.08. We test performance of this prediction and
compare it to the InterPro-based baseline and results pro-
duced by the newest predictor of the NA-binding pro-
teins, iDRBP-ECHF (Feng et al., 2022). This method
utilizes a sophisticated ensemble model that combines
two deep neural networks, random forest and extremely
randomized trees, and was shown to outperform a com-
prehensive collection of earlier methods (Feng
et al., 2022), such as iDRBP-EL (Wang et al., 2021),
iDRBP_MMC (Zhang et al., 2020), AIRBP (Mishra
et al., 2021), TriPepSVM (Bressin et al., 2019),
DeepRBPPred (Zheng et al., 2018), RBPPred (Zhang &
Liu, 2017), RNAPred (Kumar et al., 2011), StackDPPred
(Mishra et al., 2019) and DNAbinder (Kumar
et al., 2007). We ensure that the test proteins that we use
for this assessment share low, <25% similarity to the
design/training datasets of both qNABpredict and
iDRBP-ECHF. The test dataset is already dissimilar to the
design dataset of qNABpredict and so we apply procedure
explained in Section 4.1 to remove sequences similar with
the training dataset of iDRBP-ECHF. More specifically,
we combine the test proteins with the training dataset of
iDRBP-ECHF, cluster the combined dataset using BLAS-
TCLUST (default parameters except for �S 25) and
remove all proteins that are in clusters with the training
proteins. The resulting dataset includes 413 proteins. The
baseline utilizes domain annotations from InterPro
(Paysan-Lafosse et al., 2022) described in Section 2.1,
where a given sequence is predicted as NA-binding if it

FIGURE 1 Comparison of the average MAE values computed over the 10 sampled validation sets for the four models and the three

regressor types on the data from bacteria, viruses, combined archaea and eukaryota, and all kingdoms together. The four models include the

taxonomy-agnostic model and the taxonomy-aware models optimized for bacteria, viruses and combined archaea and eukaryota. The three

regressor types are linear regression (LR), gradient boosted regression trees (GBT), and support vector regression (SVR).
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includes at least one domain that is DNA, RNA, nucleo-
tide, and dinucleotide-binding. Figure 2 summarizes the
results. The iDRBP-ECHF method is slightly more accu-
rate (Matthews correlation coefficient (MCC) = 0.455)
than the taxonomy-agnostic version of qNABpredict
(MCC = 0.442), while being slightly worse than the tax-
onomy aware qNABpredict (MCC = 0.474). These results
are substantially better than a baseline, suggesting that
sequence-based predictions provide useful clues to iden-
tify NA-binding proteins. They also confirm that
taxonomy-aware predictions from qNABpredict are more
accurate than the taxonomy-agnostic results. Altogether,
we find that qNABpredict offers similar levels of predic-
tive quality in identifying NA-binding proteins when
compared to modern protein-level predictors, while it
provides additional information in the form of the con-
tent of NA-binding residues.

2.3 | Application to improve predictions
of NA-binding residues

We assess possibility of using qNABpredict's predictions
to improve quality of predictions of the NA-binding resi-
dues. We consider the three runtime-efficient and avail-
able to the end users predictors of the NA-binding
residues: BindN+ (Wang et al., 2010), DRNApred (Yan &
Kurgan, 2017), and HybridNAP (Zhang et al., 2019b). We
compare quality of their original binary predictions ver-
sus binary predictions that are adjusted to match the dis-
order content predicted by qNABpredict. In other words,
we use the real-valued propensities that are output by
these methods to predict the number of residues with the

highest scores that matches the putative disorder content
output by qNABpredict for the same test protein.
Figure 3 compares results on the test dataset. We find
that the original predictions are relatively accurate, with
MCC values ranging between 0.151 (for HybridNAP) and
0.260 (for BindN+); orange bars in Figure 3. These values
are in agreement with previously published assessments
(Yan & Kurgan, 2017; Zhang et al., 2019b). Interestingly,
using the taxonomy-agnostic version of qNABpredict to
adjust these predictions results in a substantial increase
in accuracy, with MCC = 0.219 for predictions from
HybridNAP and MCC = 0.289 for BindN+; blue bars in
Figure 3. Moreover, the taxonomy-aware qNABpredict
provides content values that generate further and more
modest levels of improvements, MCC = 0.226 for Hybrid-
NAP and MCC = 0.293 for BindN+; green bars in
Figure 3. In short, this experiment demonstrates that
qNABpredict can be used to adjust results produced by
predictors of the NA-binding residues, providing a more
accurate identification of the location of binding
interfaces.

2.4 | Evaluation of runtime

We measure and compare runtime of the qNABpredict
with the three other predictors, DRNApred, hybridNAP
and BindN+ using the 600 test proteins and the same
computer system, Linux OS (Ubuntu v14.04.5) with
48 64-bit Intel processors and 128 GM RAM. To accom-
modate for potentially variability of the background
workload, we measure the runtime three times for each
predictor and record average of the three replicates,

FIGURE 2 Comparison of quality of protein-level predictions of the NA-binding proteins on the subset of 413 proteins from the test

dataset that have low, below 25% sequence similarity to the training datasets of qNABpredict and iDRBP-ECHF. iDRBP-ECHF is the newest

sequence-based predictor of the NA-binding proteins. qNABpredict predicts a given sequence as NA-binding when its content prediction

>0.081, which corresponds to the average of the median content values predicted for NA-binding and non-NA-binding proteins in the design

dataset. The baseline is based on inclusion of NA-binding domains collected from InterPro.
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allowing for a break between each experiment. We also
study effect of the sequence length on the runtime. We
sort the test sequences by their length and divide them
into 10 equally-sized sets of 60 proteins, resulting in sets
of progressively larger proteins. Figure 4 plots the rela-
tion between the median execution time for each protein
set measured in milliseconds (y-axis in base 10 logarith-
mic scale) against the median sequence length (x-axis).

We observe that the runtime of qNABpredict is sub-
stantially lower than the runtime of the other tools,
approximately by two orders of magnitude. This can be
explained by the fact that the other methods perform pre-
dictions for each residue in the input sequence and they
utilize computationally costly multiple-sequence align-
ments while qNABpredict generates a single content
value and uses an alignment-free (single-sequence)

FIGURE 3 Comparison of quality

of prediction of NA-binding residues on

the low-similarity test dataset. The

original results produced by the three

predictors are compared to their

predictions that are adjusted to match

the content predicted by qNABpredict.

FIGURE 4 Comparison of runtime of qNABpredict (in green) with the three residue-level predictors of NA-binding residues

(DRNApred in red; HybridNAP in black; BindN+ in blue) measured on proteins from the test dataset. We perform the measurements in

triplicate using the same computer system. We sort the test sequences by their length and divide them into 10 equally-sized sets of

60 proteins, resulting in sets of progressively larger proteins. The y-axis reports median execution time for each protein set in milliseconds

using base 10 logarithmic scale. The x-axis shows the corresponding median sequence length (x-axis). The error bars along both axes denote

the 5th and 95th percentiles of the values in a given protein set. The dotted lines show quadratic functions that we fit into the experimental

values.
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ASAquick predictor. We also find that the increase in the
runtime for longer protein sequence is relatively small for
qNABpredict, that is, the median runtime is 1.6 times
larger when comparing the longest against the shortest
proteins while their length is 8.7 time larger. To compare,
the runtimes of BindN+, DRNApred, and HybridNAP
grow by a factor of 3.9, 4.7, and 5.1, respectively.

The relation between the measured runtime values
and the sequence length can be accurately approximated

with a quadratic function; we illustrate this fit with the
dotted and color-coded lines in Figure 4. We use these
functions to approximate and compare the runtime
needed to make predictions for the complete set of 79,740
proteins from the reference human proteome from Uni-
Prot (proteome UP000005640) (UniProt, 2021). We esti-
mate that qNABpredict would take approximately 10.3 h
to complete these predictions compared to 799 h
(33 days) for BindN+, 1315 h for DRNApred (55 days)

FIGURE 5 Screenshot of the user interface of the qNABpredict webserver
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and 2452 h (102 days) for HybridNAP. This demonstrates
a clear advantage of using fast content predictors, such as
qNABpredict, in the context of large, proteome-scale
studies.

2.5 | Webserver and standalone code

Motivated by the relatively high levels of predictive per-
formance and low computational cost of qNABpredict,
we implemented its taxonomy-aware and taxonomy-
agnostic versions as a convenient and free for academic
use webserver at http://biomine.cs.vcu.edu/servers/
qNABpredict/. Users need to follow a simple four-step
process to setup and run the prediction, see Figure 5.
First, users should select the taxonomic kingdoms of the
protein set they want to predict or leave it as unknown.
The former selection leads to using the corresponding
taxonomy-aware model while the latter applies the
taxonomy-agnostic prediction. Second, users should copy
their FASTA-formatted proteins into the input field or
upload them as a text file. We allow for batch jobs, with
up to 2000 proteins in a single run, to facilitate large-scale
analyses. We limit the dataset size to ensure that access
to the underlying server infrastructure, which hosts a
variety of other predictive server, is balanced between
users. Third, users can optionally provide email address
where we send a notification and link to the results, once
they become available. The results are also produced in
the browser window. Lastly, users need to click “Run
qNABpredict” to start the prediction. The entire predic-
tion process is automated and executed on the server
side. Users do not need to install any software. The web-
server outputs the putative content values in an easily
parsable text file. We store results on the server for at
least 3 months. The files with results are accessible via a
direct link that we provide in the return email and on the
web page, upon completion of the prediction.

We also offer standalone code for users who would
like to run qNABpredict on their local hardware and
potentially incorporate our tool into broader bioinformat-
ics platforms. This option also facilitates large-scale pre-
dictions, beyond the 2000 proteins submission limit of
the webserver. We distribute code as a convenient con-
tainer that includes all necessary applications, scripts and
data. The code and the installation instructions are avail-
able via the webserver website at http://biomine.cs.vcu.
edu/servers/qNABpredict/.

3 | SUMMARY

The current protein sequence-based predictors of NA-
binding include protein-level methods (Du & Hu, 2022;

Wang et al., 2021; Zhang et al., 2019a, 2020) and residue-
level methods (Miao & Westhof, 2015; Qiu et al., 2020;
Wang & Brown, 2006; Wang et al., 2010; Yan &
Kurgan, 2017; Yan et al., 2016; Zhang et al., 2019b). The
residue-level tools produce more details but suffer much
higher computational cost since they rely on computation-
ally expensive sequence alignment. We consider an alter-
native prediction that produces content of the NA-binding
residues, offering more information than the protein-level
prediction and substantially shorter runtime compared to
the residue-level tools. We note that there are many con-
tent predictors for secondary structure (Chen et al., 2011;
Homaeian et al., 2007; Horne, 1988; Krigbaum &
Knutton, 1973; Lee et al., 2006; Lin & Pan, 2001; Liu &
Chou, 1999; Mizianty et al., 2011; Ruan et al., 2005; Yu
et al., 2022) and intrinsic disorder (Yan et al., 2013).

Our first-of-its-kind NA-binding content predictor,
qNABpredict, relies on two innovations: (1) small, ratio-
nally designed and fast-to-compute feature set that repre-
sents relevant characteristics extracted from the input
sequence; and (2) two versions that include the
taxonomy-agnostic model that can be used for proteins of
unknown taxonomic origin and the more accurate
taxonomy-aware models that are tailored for proteins
from specific taxonomic kingdoms: bacteria, viruses, and
combined eukaryota and archaea. Using low-similarity
dataset of test proteins, we demonstrate that qNABpre-
dict generates statistically more accurate content predic-
tions than the content computed from the residue-level
predictors at a small fraction of the computational cost.
More specifically, qNABpredict is about 100 times faster
and capable of generating predictions for full proteomes
in a matter of hours. Moreover, we find that qNABpre-
dict's predictions can be used to improve binary predic-
tions produced by residue-level predictors of NA-binding
proteins, and match predictive quality of modern protein-
level predictors of NA-binding proteins. We make both
versions of qNABpredict available as a convenient web-
server and standalone code at http://biomine.cs.vcu.edu/
servers/qNABpredict/. The taxonomy-aware version
requires the user to specify the taxonomic kingdom of the
submitted sequences and on average produces more
accurate results when compared to the taxonomy-
agnostic version. This new tool should be particularly
useful when analyzing protein–NA binding for large pro-
tein families and proteomes.

4 | MATERIALS AND METHODS

4.1 | Datasets

We follow the data collection protocols from a recent
study that investigates DNA, RNA, and protein binding
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residues in protein sequences (Zhang et al., 2019b). This
protocol ensures a more complete annotation of the bind-
ing residues by mapping data across multiple protein–NA
complexes that involve the same protein. We utilize the
BioLip resource (Yang et al., 2013) to collect annotations
of the NA-binding residues. BioLip provides high-quality
semi-manually curated annotations of amino acids that
bind a wide variety of ligands and which are extracted
from the PDB structures. We map the chains collected
from PDB using BioLip into full protein sequences from
UniProt (2021) using SIFTS (Dana et al., 2019). Next, we
delete UniProt IDs that correspond to protein fragments
and combine annotations of binding residues from all
PDB structures that are mapped to the same protein
(UniProt ID). Consequently, we obtain 23,458 proteins
that are annotated with binding residues, which include
817 DNA-binding and 1040 RNA-binding proteins. Next,
we remove proteins for which the coverage by the PDB
structures is below 80% to ensure that the experimental
data is sufficiently complete to accurately compute the
native content of the NA-binding residues. This results in
1066 well-annotated NA-binding proteins that include
152 proteins from archaea, 482 from bacteria, 362 from
eukaryota and 70 viral proteins. Next, we randomly sam-
ple the same number of proteins from each of the four
taxonomic kingdoms that are annotated to bind ligands
that exclude NAs. This protein set constitutes our “nega-
tive” data where the content of NA-binding residues is
set to 0.

We use the corresponding collection of 2132 proteins
to establish design and test datasets. We cluster the 2132
proteins using BLASTCLUST (default parameters except
for �S 25) and place entire clusters into either design or
test datasets. We include 1532 proteins into the design
dataset and the remaining 600 proteins into the test data-
set. We use the design dataset to train and optimize the
predictive model. We set aside the test dataset during the
model design process and use it exclusively to compara-
tively evaluate the already optimized model. The cluster-
ing ensures that the proteins in the design and test
dataset share low, <25% sequence similarity, which
means that sequence alignment should not be able to
perform accurate predictions on the test proteins. The
two datasets, including the annotations of the NA-
binding residues, are available at http://biomine.cs.vcu.
edu/servers/qNABpredict/.

4.2 | Assessment setup

Our predictor takes the amino acid sequence as a sole
input and generates a real value in the [0, 1] interval that
quantifies the putative content of the NA-binding

residues in that sequence. We evaluate the content pre-
dictions by comparing the putative content values against
the corresponding native values using the MAE and SCC.
Given a set of n proteins with the native content values
a1,a2,…,an and the predicted content values x1,x2,…,xn
and the difference in ranks of the ith value di, the MAE
and SCC are defined as:

MAE¼ 1
n

Xn

i¼1

jxi�aijandSCC¼ 1� 6
P

idi
2

n n2�1ð Þ :

We also evaluate whether qNABpredict's results can
be used to make accurate predictions of NA-binding pro-
teins and to improve residue-level predictions generated
by predictors of NA-binding residues. For both scenarios,
we evaluate binary predictions (NA-binding vs. non-NA-
binding proteins/residues) using two popular metrics:

F1ðharmonic mean of precision and sensitivityÞ
¼ 2�TP
2�TPþFPþFN

,

MCC¼ TP �TN�FP �FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ � TPþFNð Þ � TNþFPð Þ� TNþFNð Þ2

p ,

where TP and TN denote numbers of correctly predicted
NA-binding proteins/residues and non-NA-binding pro-
teins/residues, respectively; FP is the number of the non-
NA-binding proteins/residues incorrectly predicted as the
NA-binding proteins/residues; and FN is the number of
the NA-binding proteins/residues incorrectly predicted as
the non-NA-binding proteins/residues.

Given the limited number of the NA-binding proteins
in our dataset, we perform sampling to evaluate whether
the predictive models are robust and produce accurate
results across a diverse collection of protein sets. More
specifically, we sample proteins in the design dataset at
random and without replacement 10 times, each time
selecting two disjoint sets of 600 proteins, trainj and
validj, where j = 1, 2, …, 10. We use trainj to train the pre-
dictive model and validj to estimate predictive perfor-
mance of this model.

4.3 | Distributions of the NA-binding
content values across taxonomic kingdoms

We investigate a hypothesis that taxonomical kingdoms
have different distributions of the NA-binding content.
If true then this would motivate the development of
kingdom-specific predictors. We plot the cumulative
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distributions functions of the content for the archaea,
bacteria, eukaryota and viruses in the design and the
test datasets in Figure 6. We find that the distributions
for a given kingdom are consistent across the two data-
sets while being substantially different between some of
the kingdoms. The fact that proteins in the two datasets
share low <25% similarity suggests that these trends are
robust. The viral and bacterial proteins are character-
ized by the lowest and the highest content values,
respectively, while eukaryotic and archaeal proteins are
in the middle. We analyze statistical significance of the
differences in the distributions of the NA-binding con-
tent values for each of the six pairs of kingdoms using
the Kolmogorov–Smirnov test. The difference between
eukaryota and archaea is not statistically significant (p-
value = 0.33), whereas the differences for all other
pairs are statistically significant (p-values <0.05). Conse-
quently, we identify three distinct types of distributions,
for the viruses, the bacteria, and the combined set of
the archaeal and eukaryotic proteins. Correspondingly,
we examine two types of designs, a single taxonomy-
agnostic model and a combination of three models that
target predictions for the viral proteins, the bacterial
proteins and the archaeal and eukaryotic proteins. The
latter option should generate better predictive perfor-
mance since these models can be better optimized into
the underlying distributions. However, this option
requires knowledge of the taxonomic kingdom of the
predicted proteins, while the former option allows pre-
dicting protein sequence without knowing their taxo-
nomic classification.

4.4 | Architecture of the predictor

Prediction of the content of the NA-binding residues is a
two-step process. First, an input protein sequence must
be converted into a fixed-size vector of numerical fea-
tures. Second, these features are processed by a predictive
model that generates the putative content values. We fol-
low two key design principles: (1) the model should pro-
duce accurate estimates of the content; and (2) it must be
very fast. The former requires a careful selection and
empirical parametrization of the predictive models while
the latter can be accomplished by designing and using a
small and fast-to-compute feature space. Moreover, we
consider two version of the predictor, the taxonomy-
agnostic model versus the combination of the three
kingdom-specific models. The design process relies exclu-
sively on the design dataset and follows the robust statis-
tical sampling approach explained in Section 4.2.

4.5 | Formulation and selection of
features

We craft a small collection of features that quantify two
key characteristics of the NA-binding residues. These res-
idues are located on the protein surface and they are
enriched in amino acid types that facilitate the interac-
tion. For instance, the NA-binding residues typically
include His, Arg, and Lys, given the presence of the ionic
interactions between these positively charged amino
acids and the phosphate group of DNA and RNA (Ellis
et al., 2007; Lejeune et al., 2005; Li et al., 2014). More-
over, they are also typically enriched in the aromatics,
such as Phe, Trp, and Tyr, which is due to the π–π stack-
ing interactions in complexes with NAs (Duh et al., 2015;
Wilson et al., 2014). Consequently, we utilize two indices
that quantify the propensities of amino acids for the
interactions with DNA and RNA that were developed in
a recent study (Zhang et al., 2019b). These indices can be
used to quantify statistically significant enrichment of
positively charged and aromatic amino acids (Arg, His,
Lys, Phe, Trp, and Tyr) and statistically significant deple-
tion of negatively charged amino acids (Asp and Glu) in
the NA-binding interface (Table 2). We set the propensi-
ties for the remaining residues to zero. We identify puta-
tive surface residues using a very fast ASAquick method
that makes accurate predictions of the relative solvent
accessible surface area (rASA) from protein sequences
without using multiple sequence alignment (Faraggi
et al., 2014, 2017).

We multiply the propensity values by the correspond-
ing putative rASA values to produce scores that quantify
likelihood for binding NAs for the amino acid on the

FIGURE 6 Cumulative distribution functions of the content of

NA-binding residues for the proteins in the four taxonomic

kingdoms: archaea, eukaryota, bacteria, and viruses
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putative protein surface, that is, higher predicted rASA
suggests higher chance for being on the protein surface.
We separately apply the DNA-binding and the RNA-
binding propensities for enrichment (i.e., positive values)
and depletion (i.e., negative values that quantify propen-
sity for exclusion of NA-binding), which results in four
sets of the product-based scores. Moreover, we apply a
commonly used sliding window-based averaging to
smooth out these scores and convert the amino-acid level
values into the protein-level aggregates. We enumerate,
describe and name the resulting 10 features in
Appendix S1. Given the high similarity between the
DNA-binding and the RNA-binding propensities
(Table 2), we perform feature selection that eliminates
highly correlated/redundant features. This is crucial in
order to effectively optimize regression-based models that
we describe in the next sub-section. We compute Pearson
correlation coefficient (PCC) between all pairs of features
using the design dataset. Next, we eliminate one feature
from each pair for which PCC > 0.9, which suggests that
they are highly correlated. As a result, we eliminate three
redundant features, resulting in a final feature set that
includes rASAmed, rASAmax, medianDNApositive, maxD-
NApositive, maxDNAnegative, medianDNAnegative, and med-
ianRNAnegative features.

4.6 | Selection and optimization of
predictive models

Given that the predictive output is a real-valued
content, we consider a broad range of regressors
including a simple linear regression (LR) and more
sophisticated gradient boosted regression trees (GBT)
(Friedman, 2001) and support vector regression (SVR)
(Smola & Scholkopf, 2004); deep neural networks are
not suitable given the relatively limited size of the
design dataset. These models are widely used in related
predictions problems. LR was used to predict secondary
structure content (Chen et al., 2011; Homaeian
et al., 2007; Lin & Pan, 2001; Liu & Chou, 1999), rela-
tive solvent accessibility (Qin et al., 2005; Wagner
et al., 2005; Wang et al., 2005), B-factor (Zhang
et al., 2009), and folding rates (Gao et al., 2010; Jiang
et al., 2009). SVR was applied to produce putative
intrinsic disorder content (Yan et al., 2013), secondary
structure content (Lee et al., 2006), relative solvent
accessibility (Chang et al., 2008), isoelectric point and
pKa dissociation constants (Kozlowski, 2021), and fold-
ing rates (Cheng et al., 2013). GBT was recently
applied to predict relative solvent accessibility (Fan
et al., 2016) and protein–RNA binding affinity (Deng
et al., 2019).T
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We parametrize the SVR and GBT models by per-
forming a grid search that minimizes average MAE over
the 10 training/validation results that are based on statis-
tical sampling approach explained in Section 4.2. LR does
not require parametrization. For GBT we consider a wide
range of depth values = {1,2,3,4} (i.e., we did not consider
deeper tree since we utilize seven features) and numbers
of trees = {1,2,3,4,5,6,7,8}. For SVR, we use the popular
and robust Radial Basis Function (RBF) kernel and
parametrize values of gamma (spread of the RFB func-
tion) and C by using 10x values where x � [�2, 2] for
C and [�4, 0] for gamma; gamma values are small since
values of the features are also relatively small. We repeat
this parametrization for the four considered models: the
taxonomy-agnostic model and the taxonomy-aware
models for the viruses, the bacteria, and the combined set
of the archaeal and eukaryotic proteins.

Figure 1 compares predictive performance quantified
with the average MAE over the 10 sampled validation
sets for the four models on data from bacteria, viruses,
combined archaea and eukaryota, and all proteins
together. This facilitates investigating whether the
taxonomy-aware models in fact surpass the taxonomy-
agnostic model and to assess differences between regres-
sors. The results reveal that the taxonomy-aware models
(bars without borders) outperform the taxonomy-agnostic
model (bars with black borders), across all of the color-
coded regressor types. This validates our hypothesis that
the development of the taxonomy-aware models should
result in improvements. Moreover, the SVR model per-
forms the best for the three taxonomy-aware models,
while for the taxonomy-agnostic model SVR produces
similar results to LR for viruses while generating the low-
est errors for bacteria, archaea, eukaryota and the collec-
tion of all proteins. Consequently, our predictor,
qNABpredict, relies exclusively on the SVR algorithm
that uses the RBF kernel with gamma = 0.0162 and
C = 1.528 for the bacteria model; with gamma = 0.0001
and C = 4.548 for the virus model; with gamma = 0.0695
and C = 0.083 for the eukaryota and archaea model; and
with gamma = 0.0428 and C = 0.739 for the taxonomy-
agnostic model. SVR produces the lowest errors likely
because it uses a non-linear optimization algorithm (due
to the use of the RBF kernel), compared to a linear opti-
mization and a heuristic search that are utilized by LR
and GBT, respectively. We also observe that MAEs are
smaller for the viral proteins when compared to the other
kingdoms, which stems from the fact that these proteins
have on average lowest native content values and more
narrow range of native content values (Figure 6).

Finally, we assess whether developing four taxonomy-
aware models (i.e., creating separate models for archaea
and eukaryota instead of combining these taxonomic

kingdoms together) would lead to further improvements.
Figure S1 reveals that the combined archaea and eukar-
yota model produces virtually the same quality of predic-
tions as when using an archaea-specific model for
archaea proteins and a eukaryota-specific model for
eukaryotic proteins. This is true across the three types of
the regressors. In particular, for the selected/best SVR,
the results are MAE = 0.086 (archaea-specific model)
vs. 0.087 (for archaea and eukaryota model) for the
archaea proteins, and MAE = 0.069 (eukaryota-specific
model) vs. 0.069 (for archaea and eukaryota model) for
the eukaryotic proteins. This experiment justifies our
approach to combine these two taxonomic kingdoms
together.
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