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Sixteen significant physicochemical predictor variables for thirty
PAHs and transformed PAH products (TPPs) were retrieved indi-
vidually prior to collation from ChemSpider.com [1] whilst their
corresponding toxicity equivalency factor (TEF) end-point was
obtained from published articles by Bortey-Sam, Ikenaka [2] and
Wei, Bandowe [3]. In order to achieve a 5:1 ratio of the number of
observations to predictors which is vital for an effective quanti-
tative structure-activity relationship (QSAR) modelling, factor
analysis was used to reduce the data. Four fundamental predictors
were obtained whilst the observations were found to cluster into
two main groups of nitro-PAHs and other analytes. It is anticipated
that the data presented here is highly relevant for future studies on
the toxicity and health effects of the analytes in the environment.
Secondly, the fate and distribution patterns of PAHs and TPPs are
influenced by the parameters in the dataset. In this regard, studies
on the behaviour patterns of these environmental pollutants
require this information for a comprehensive evaluation and
interpretation of results. Researchers across varied fields of envi-
ronmental science and toxicology will find this dataset very useful.
This data currently serves as supplementary information for the
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Specifications Table

Subject Environment
Specific subject area TEFs of PAHs

carcinogenic
Type of data Table

Graph
Figure

How data were acquired The data was
published art
ChemSpider,
using ACD/La

Data format Raw and anal
Parameters for data collection As noted by K

weight, entha
octanol water
information in
others were s

Description of data collection A list of thirty
available info
Secondly, the
analytes were
Sixteen predi
analytes and
The thirty TEF

Data source location Royal Society
Data accessibility With the artic
Related research article Gustav Gbedd

Application o
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hydroxyl-PAH
doi.org/10.10

Value of the Data
� This data is useful in evaluating TEFs via QSAR th
The data will therefore, help examine the ecotox
including the transformation, degradation and di
using this data set.
� Environmentalists, chemists, toxicologists, polic
data.
� This data can be employed in various modules
biodegradation and photodegradation experimen
these experiments can help formulate remediatio
� Hitherto, the individual parameters in this data
one-stop point for these vital parameters and the
research article in the Journal of Hazardous Materials by Gbeddy,
Egodawatta [4].
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1. Data

The dataset entails the toxicity equivalency factors (TEFs), physical and chemical (physicochemical)
properties of polycyclic aromatic hydrocarbons (PAHs) and their associated transformed products
(TPPs) such as carbonyl-, nitro-, and hydroxyl- PAHs as shown in Table S1. Table 1 describes the per-
centage variance and eigenvalues for the first three factors obtained from the factors analysis (FA).
Table 2 describes the VARIMAX rotated factor loadings for the two significant factors. Table 3 indicates
the correlationmatrix for the variables used in the FA. Fig. 1 shows the pattern recognition via FA biplot
among the PAHs and TPPs based on their physicochemical properties and log transformed TEF values.

2. Experimental design, materials, and methods

QSAR model is a mathematical model development for relating biological activities of compounds
to their molecular structures. The development of an effective QSARmodel entails varied steps but can
be classified into four (4) including data preparation, data processing, statistical evaluation of devel-
oped model and data interpretation [5].
2.1. Data preparation

The choice of appropriate dataset is a critical step in the development of any QSAR model. Kunal,
Supratik [5] noted that any physical or chemical feature having significant informationwith reference
to the response parameter can be employed as predictor variables in a QSAR model. The predictor and
response variables can be experimental and theoretically determined parameters. The generic dataset
here involves 30 desirable observations (PAHs and TPPs), 16 predictor physicochemical parameters
and one response (logTEF) variable as shown in Table S1. The predictor data was obtained from
ChemSpider.com [1] whilst the response parameter was retrieved from Bortey-Sam, Ikenaka [6] and
Wei, Bandowe [3].
Table 1
Explained variance (Eigenvalues).

Value Factor 1 Factor 2 Factor 3

Eigenvalue 11.079 3.289 0.850
% of Var. 65.169 19.344 5.001
Cum. % 65.169 84.513 89.514

Table 2
VARIMAX rotated factor loadings.

Variable Factor 1 Factor 2

Mw 0.90 �0.425
NOR 0.68 �0.680
NOAR 0.62 �0.725
r 0.87 �0.057
Hv 0.86 �0.439
Rf 0.76 �0.641
logPl 0.79 �0.602
St 0.84 �0.235
mvol 0.75 �0.581
logKow 0.08 �0.975
MP 0.85 0.064
BP 0.94 0.166
logVp �0.91 �0.302
Sw 0.18 0.641
logKoc 0.78 �0.520
logBCF 0.07 �0.966
logTEF 0.63 �0.169

http://ChemSpider.com


Table 3
Factor analysis correlation matrix.

Mw NOR NOAR ~n Hv Rf logPl St mvol logKow MP BP logVp Sw logKoc logBCF logTEF

Mw 1.00
NOR 0.90 1.00
NOAR 0.86 0.92 1.00
r 0.81 0.74 0.58 1.00
Hv 0.97 0.88 0.83 0.81 1.00
Rf 0.96 0.96 0.95 0.70 0.93 1.00
logPl 0.97 0.94 0.93 0.72 0.95 0.99 1.00
St 0.84 0.85 0.71 0.96 0.83 0.79 0.79 1.00
mvol 0.93 0.83 0.87 0.56 0.91 0.94 0.95 0.61 1.00
logKow 0.49 0.73 0.73 0.14 0.52 0.68 0.65 0.29 0.64 1.00
MP 0.71 0.48 0.49 0.62 0.68 0.59 0.63 0.58 0.64 0.03 1.00
BP 0.77 0.48 0.45 0.72 0.73 0.61 0.65 0.67 0.64 �0.10 0.83 1.00
logVp �0.69 �0.37 �0.36 �0.71 �0.63 �0.51 �0.55 �0.63 �0.54 0.24 ¡0.84 ¡0.94 1.00
Sw �0.09 �0.24 �0.34 0.16 �0.13 �0.25 �0.23 �0.01 �0.20 �0.51 0.14 0.18 �0.26 1.00
logKoc 0.91 0.85 0.88 0.61 0.83 0.94 0.94 0.69 0.92 0.55 0.68 0.69 �0.62 �0.19 1.00
logBCF 0.47 0.70 0.73 0.08 0.46 0.68 0.64 0.24 0.64 0.98 0.04 �0.09 0.23 �0.48 0.60 1.00
logTEF 0.65 0.48 0.45 0.45 0.67 0.58 0.59 0.47 0.64 0.21 0.41 0.58 ¡0.49 �0.01 0.54 0.19 1.00

Bold numbers represent (i) correlation among predictors contributing� 0.7 to Factor 1 in Table 1, and (ii) correlation between predictors in (i) and logTEFwith a coefficient> 0.50 or� -0.49.
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3. Data processing

A dataset consisting of 30 observations and 16 predictors implies the potential availability of
redundant and inter-correlated data. It is reported that for satisfactory robustness and reliability of the
developed QSAR model, the ratio of observations to descriptors should be 5:1 [5]. In this regard, the
generic QSAR data (Table S1) was subjected to factor analysis (FA) pre-treatment procedure using
Microsoft Office Professional Plus Excel 2010 StatistiXL plug-in version 1.8 software. FA simplifies the
dimensionality of the data by reducing the number and multicollinearity of variables with minimum
loss of information thereby serving as a data reduction and variable selection method. As a result of the
differences in the units of the variables, the data matrix was auto-scaled (standardized) and a reduced
correlation matrix formed. The initial variables are transformed into new sets of variables called fac-
tors. Factors are derived from the calculation of eigenvalues and the corresponding eigenvectors.
Further information on the explanation of eigenvalues and eigenvectors can be found in Kunal,
Supratik [5]). The factors are composed of factor loadings and orthogonal combinations of the initial
variables. Factor loading depicts how much a variable contributes to the factor. Thus a high factor
loading signifies that the dimensions of the factor are highly accounted for by the variable. The factors
are extracted using the principal component (PC) method and VARIMAX rotation in order to prevent
collinearity in the new data. The first, second, third etc. Factors exhibit decreasing trend of residual
variance in the data [5,7,8].

The results of analysis as indicated in Table 1 show that two factors are significant (i.e. eigenvalue
>1) accounting for 84.5% variance in the data. The factor loadings in Table 2 indicate that eleven (11)
variables including Mw, r, Hv, Rf, logPl, St, mvol, MP, BP, logVp and logKoc have high factor loadings.
From Table 3 and Fig. 1, BP, MP and r predictors are highly correlated with each other. However,
amongst these three variables, BP has the highest correlation with the response variable logTEF. Sec-
ondly, Mw, St, Hv, logKoc, Rf, mvol, logPl, NOR and NOAR predictor variables are significantly corre-
lated. However, amongst these parameters Mw exhibited the greatest correlation with other
predictors. Mw, Hv andmvol have the highest correlationwith logTEF. The only predictor variable with
appreciable negative correlation with logTEF is logVp as shown in Table 3 and Fig. 1. The 16 predictors
can therefore be reduced to four (4) relevant parameters. The outcomes of this pre-treatment process
was used in formulating the QSAR table for predicting the TEF values of untested PAH and TPPs as
stipulated in the associated research article by Gbeddy, Egodawatta [4].

The PAH and TPPs clustered into two major groups indicated in Fig. 1. All the nitro-PAHs (N-PAHs)
entailing 1NPY, 2NFLR, 3NFL, 5NAC, 6NCHR and 9NAN form one cluster whilst all the other species form
another large cluster. This may be an indication of similar distribution and behaviour patterns, and
potential sources of these classes of analytes in the environment. PAHs and oxygenated PAHs (O-PAHs)
potentially emanate from combustion sources while N-PAHs originate from photochemical processes
[3,9].
3.1. Statistical evaluation of developed QSAR model

In order to promote the robustness, reliability and predictability of developed QSAR model, the
model output must be subjected to detailed statistical tests. These tests can be categorized as statistical
quality test and validation tests. The validation test results points to the predictive potential of the
developed model [5].

1) Statistical quality tests involves the following:

a. Mean average error (MAE)

MAE can be estimated using Equation (1). A low MAE value implies that the developed model is
good.

MAE¼
PjYobs � Ycalcj

n
(1)
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where Yobs, Ycalc and n refer to individual original response, calculated response and number of ob-
servations respectively.

b. Determination coefficient (R2)

R2 ¼1�
PðYobs � YcalcÞ2PðYobs � YobsÞ2

(2)

where Yobs refers to the average of original response values. A deviation of R2 from 1 implies a
reduction in the fitting quality of the developed model. The square root of R2 (

ffiffiffiffiffiffi
R2

p
Þ is the regression

correlation coefficient (R). A good model will potentially have an R value closer to 1.

c. Adjusted determination coefficient (Ra
2)

In order to highlight the fraction of the data variance explained by the developed model, Ra
2 is used.

R2a ¼
�
ðn� 1Þ*R2

�
� p

n� p� 1
(3)

where p refers to the number of predictor variables.

d. Variance ratio (F)

The overall significance of the regression coefficients (R) can be estimated using F. F is related to R by
the equation as follows. A high F value indicates that R is significant.

F ¼ðn� p� 1Þ*R2�
1� R2

�
*p

(4)

e. Standard error of estimate (s)

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðYobs � YcalcÞ2

n� p� 1

s
(5)

A good model should have a low s value.

f. Root mean square error of calibration (RMSEC)

RMSEC¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�
YobsðtrainingÞ � YcalcðtrainingÞ

�2

n

vuut
(6)

where YobsðtrainingÞ and YcalcðtrainingÞ refer to the response values in the training set and the corre-
sponding calculated response. A low RMSEC denotes a good developed model.
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2) Validation tests; internal validation method was employed and this includes the following
metrics.

a. Predicted residual sum of squares (PRESS)

By employing leave-one-out (LOO) cross-validation approach, the predictivity of a developedmodel
can be ascertained via PRESS especially for small QSAR data matrix.

PRESS ¼
X�

Yobs � Ypred
�2

(7)

where Ypred refers to the corresponding predicted response value for an observed response Yobs during
the LOO process. A good model should have a very low PRESS value [10].

b. Cross-validated determination coefficient (Q2)

Q2 ¼1� PRESSP�
YobsðtrainingÞ � Ytraining

�2 (8)

where Ytraining represents the mean of the observed response of the training set. An acceptable model
should have a Q2 value great than a predetermined value of 0.5 (i.e. Q2 > 0.5).

c. Standard deviation of error of prediction (SDEP)

SDEP¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
(9)

A very small SDEP suggests a good developed model.
These statistical metrics were employed by Gbeddy, Egodawatta [4] in verifying the quality,

robustness and reliability of the developed QSAR model.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104821.
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