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A B S T R A C T   

COVID-19 is a contagious disease; so, predicting its future infections in a provincial region requires the 
consideration of the related data (i.e., rates of infection, mortality and recovery, etc.) over a period of time. 
Clearly, the COVID-19 data of a particular provincial region can be easily modelled as a time-series. However, 
predicting the future COVID-19 infections in a particular region is quite challenging when the availability of 
COVID-19 dataset of the province is of little quantity. Accordingly, ML models when deployed for such tasks 
usually results in low infection prediction accuracy. To overcome such issues of low variance and high bias in a 
model due to data scarcity, multi-source transfer learning (MSTL) along with deep learning may be quite useful 
and effective. Therefore, this paper proposes a novel technique based on multi-source deep transfer learning 
(MSDTL) to efficiently forecast the future COVID-19 infections in the provinces with insufficient COVID-19 data. 
The proposed approach is a novel contribution as it considers the fact that future COVID-19 transmission in a 
region also depends on its population density and economic conditions (GDP) for accurate forecasting of the 
infections to tackle the pandemic efficiently. The importance of this feature selection is experimentally proved in 
this paper. Our proposed approach employs the well-known recurrent neural network architecture, the Long- 
short term memory (LSTM), a popular deep-learning model for history-dependent tasks. A comparative anal-
ysis has been performed with existing state-of-art algorithms to portray the efficiency of LSTM. Thus, formation 
of MSDTL approach enhances the predictive precision capability of the LSTM. We evaluate the proposed 
methodology over the COVID-19 dataset from sixty-two provinces belonging to different nations. We then 
empirically evaluate the performance of the proposed approach using two different evaluation metrics, viz. The 
mean absolute percentage error and the coefficient of determination. We show that our proposed MSDTL based 
approach is better in terms of the accuracy of the future infection prediction, and produces improvements up to 
96% over its without-TL counterpart.   

1. Introduction 

COVID-19 is a contagious disease effected from a novel form of 
coronavirus related with the severe acute respiratory syndrome (SARS) 
[1]. Later in the year 2019 in Wuhan, a city in Hubei, China, the fore-
most international outbreak of COVID-19, a coronavirus pathogen, was 
reported. In March 2020, the World Health Organization (WHO) 
declared the Coronavirus epidemic as a global pandemic. On March 12, 
2020 the outbreak of COVID-19 has spread to 118 countries around the 
globe with a total of 125,260 confirmed cases and 4613 deaths as re-
ported by WHO [2].However, the infection count of COVID-19 has 

reached 200 million with deaths of 4 million worldwide until August 12, 
2021. The human-to-human transmission is through inhalation of 
micro-droplets exhaled by infected persons. Hand sanitization, main-
taining social distance, and similar other regulatory health guidelines 
are the only preventions. Therefore, finding suitable approaches for the 
accurate prediction of future transmissions of COVID-19 has become a 
fertile research ground. This is because, any such authentic predictions 
of future COVID-19 infections can help the governments, healthcare 
administrators, and related policymakers to prepare for better handling 
of the COVID-19-related challenges [3]. This may help governments to 
visualize the overwhelming scenario to look around the future 
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happenings which will result in efficient planning for vaccination drives. 
Thus, it may be beneficial for administrators to prepare and deployment 
of resources proficiently. Hence, future awareness among the commu-
nity needs to be generated. 

To forecast future transmission of the infection, data for the current 
scenario is needed along with past observations for precise predictions. 
Hence, there is a need to consider time-series data of a province for 
suitable prediction modelling to obtain future transmission of 
expected cases in its upcoming days. It is well-known that bigger is 
the dataset, better is the performance of a prediction model [4]. How-
ever, there are many provinces for which available datasets are insuf-
ficient for training to generate authentic forecasts. To overcome this 
limitation of data scarcity, the concept of Transfer Learning (TL) may be 
quite useful. The name transfer learning implies improvement of the 
traditional machine learning problem by learning a task and gaining 
knowledge in a certain domain, which is then transferred to improve 
learning in some related tasks. This method of transferring knowledge 
signifies improvement in developing machine learning as effective as 
human learning [5]. Each domain in TL architecture is composed of a 
feature space F along with P(X), marginal probability distribution. 
Mathematically, it can be expressed as follows:  

{F, P(X)} where X = {x1, …. xn} ∈ F                                                (1) 

Generally, if some domains are dissimilar, then they may have 
diverse feature spaces (F) or diverse marginal probability distributions 
P(X). For a definite domain, a task (expressed by T = {Y, f (⋅)}) comprises 
two parameters: a label space (Y) along with an objective prediction 
function f (⋅) that can be learned from training dataset comprising of 
{xi, yi } pairs i.e., xi ∈ X and yi ∈ Y. Therefore, the function f (⋅) is useful 
for prediction of the equivalent label f(z), for a new instance. z.

For TL architecture, we have source domain Ds, source learning task 
Ts, along with target domain Dt and target learning task Tt. A function ft 
(⋅) is calculated to progress the learning of target prediction in Dt using 
information from source domain and task, with Ds ∕= Dt, or Ts ∕= Tt . Thus, 
the source domain data is useful for enhancing the performance by 
transferral of knowledge during training for target task. However, the 
case where source and target domains are identical (i.e., = Dt) and their 
learned tasks are similar (i.e., Ts = Tt), then it becomes a classical ma-
chine learning problem. 

Rosenstein et al. anticipated that when dissimilarity is observed 
between two tasks, the performance of the approach destroys even 
though knowledge transfer has been utilized with the help of brute force 
techniques [51]. If two tasks are highly dissimilar, then transfer learning 
results in inefficient performance. Thus, the proposed approach utilizes 
multi-source domain dataset from wide range of countries possessing 
similar data-distributions in terms of demographic and economic con-
ditions. Apart from the COVID-19 data, population, geographical area 
and GDP of numerous provinces from such countries are considered in 
the proposed approach. 

Several studies have been proposed to show the correlation between 
community and infectious spread of a disease (like coronavirus) in a 
locality [6,7]. It has been observed that the greater the population, more 
is the chance of infectious spread of a contagious disease. Similar rela-
tion is also observed between geographical area of a densely populated 
locality and infectious transmission [8]. GDP is also a deciding factor in 
prediction of the disease transmission [9]. GDP is composed of several 
sectors such as agriculture, industries, education, healthcare, available 
resources etc. A country with deprived GDP is an indication of poor 
facilities. Hence, we consider a collection of COVID data along with 
population, area and GDP belonging to a set of related provinces which 
follow different data distributions. 

Therefore, this paper proposes a novel LSTM-based approach in the 
architecture of multi-source deep-TL to forecast COVID-19 transmission. 
LSTM model is a well-known deep-learning model used in time-series 
problems that require an abundant amount of data for training. When 

LSTM is trained initially, it is initialized with random weights, which 
may cause low variance and high bias i.e., it may underfit the data, and 
overfitting can be contained by splitting the data into training and 
validation sets. Similarly, in the COVID-19 scenario, the availability of 
data of a specific region (province) in the world is very little in quantity. 
However, forecasting by LSTM using random weights with a little 
amount of data may result in very poor accuracy. So, to tide over these 
limitations, this paper proposes multi-source domain transfer learning. 
This results in a more generalized model which maximizes the accuracy 
of prediction. 

The main contributions of this paper are summarized as follows:  

1. Any contagious disease transmission is dependent on economic 
conditions, geographical parameters, population density, and several 
other demographical factors of an area. So, for the first time, this 
paper considers the population, area, and GDP of a province along 
with coronavirus infection data of confirmed cases, mortality, and 
recovery rate for forecasting future infectious spread. We gather a 
collection of datasets belonging to a set of related provinces to ach-
ieve better performance in forecasting.  

2. Initially, we train each province-specific dataset on a simple LSTM 
model for future infection forecasting in that province. However, due 
to the unavailability of huge province-specific data, it faces a data 
scarcity problem which results in poor predictions. Therefore, this 
paper proposes a multi-source deep-transfer learning model to pre-
cisely forecast the infectious transmission of the disease.  

3. Thus, multi-source deep-TL provides a warmth start for the sub- 
optimal weights which are obtained in initial training for 
enhancing the performance. Therefore, we perform fine-tuning of the 
initially trained model to obtain accurate forecasting.  

4. From the empirical results, we show that the proposed methodology 
accurately forecasts the infectious spread of the disease in the up-
coming days, and hence builds a robust predictive model.  

5. This is the first such effort that exploits multi-source TL along with 
deep learning to forecast COVID-19 transmission. 

The remaining paper is organized in the following manner. Thorough 
discussions on the background and the research related to our work are 
provided in Section II. After that, the dataset and comprehensive step- 
by-step description of our proposed approach are given in Section III. 
Section IV elaborately explains the experimental results in a compara-
tive fashion. In Section 5, we provide a detailed discussion on the 
outcome of the work. Finally, Section VI discourses the conclusion of the 
work and mentions future directions. 

2. Background and related works 

This section presents the recent studies in the field of our proposed 
approach. It discusses works on novel coronavirus and significant ap-
proaches to TL. Much research was not done for the detection and pre-
diction of COVID-19 infection and recovery.Recently, certain studies 
were published for the prediction of COVID-19 infection using statistical 
and mathematical aspects. One of the widely used models for observing 
the dynamics of various diseases was the Susceptible Infectious Recov-
ered (SIR) model. It provides epidemic growth with the help of time- 
series differential equations [54]. Berger et al. [18] studied Suscepti-
ble Exposed Infectious Recovered (SEIR) epidemiology model to analyze 
the importance of testing and a conditional quarantine period. In the 
case of asymptomatic infection, if testing is not performed and strict 
quarantine policies are not observed then it may lead to the contagious 
spread of infection. Therefore, to control the epidemic, testing at a 
higher rate and strict quarantine are crucial measures. Godio et al. [19] 
studied SEIR epidemiological model for forecasting infection in Italian 
regions. They used a stochastic technique for training the model pa-
rameters using a Particle Swarm Optimization (PSO). They compared 
their results with the official data and forecasted infections for other 
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countries such as South Korea and Spain. Ghanbari et al. [20] discussed 
the Shannon entropy-based thermodynamics model for the prediction 
and propagation of COVID-19. Li et al. [21] anticipated Gaussian dis-
tribution theory using forward and backward propagation analysis for 
forecasting the COVID-19 infection. They used the current situation 
report of the Hubei for the predictions of the epidemic trends in Italy, 
Iran, and South Korea. Zhao et al. [22] used linear, a non-temporal 
mathematical model for infection transmission of coronavirus. Abir 
et al. [23] propose PCovNet, an LSTM, and variational 
autoencoder-based anomaly detection model to diagnose COVID-19 
infections in the pre-symptomatic stage from resting heart rate with 
the help of wearable devices such as fitness trackers or smartwatches. 
Their findings suggest the usage of wearable devices along with a 
deep-learning framework as a secondary tool for the diagnosis of 
COVID-19 infection. 

Shen et al. [55] applied the Logistic Growth model to predict the 
evolution of infected patients of COVID-19 in China, South Korea, and 
Iran using the rate of growth and population as the parameters. This 
model is time-independent, thus resulting in poor performance since 
time-dependent characteristics of COVID-19 are very crucial and 
shouldn’t be ignored. Zhang et al. [56] studied the Poisson model which 
is based on power-law and exponential law to estimate the COVID-19 
spread in Canada, France, Germany, Italy, the UK, and the USA. How-
ever, this model can only be used for short-term predictions; thus, an 
enhanced model is required for predicting infectious rates. Wang [57] 
discussed the applications, limitations, and potentials of mathematical 
models for COVID-19. He assumed and constrained the transmission 
rates as a constant to simplify the mathematical analysis and data fitting 
of the models. Such limitations may not allow a model to capture 
real-life fluctuations in transmission rates thereby affecting model 
generalization. Above discussed models also didn’t consider the eco-
nomic and population impact on infection rates of the pandemic. Thus, 
he insisted to use machine learning along with mathematical modelling 
to achieve better performance. Kumar et al. [58] performed a compar-
ative analysis between statistical and deep learning models to predict 
COVID-19 infections, and the comparison was conducted based on mse 
and rmse values. Upon analysis, they found that, for most of the 
time-series data of the countries, deep learning-based models LSTM and 
GRU outperformed statistical ARIMA and SARIMA models. Sah et al. 
[59] conducted a comparative analysis using prophet, statistical ARIMA, 
and stacked LSTM-GRU model for efficient forecasting of COVID-19 
infections. They found that stacked LSTM-GRU models outperformed 
the other existing models in terms of R square and RMSE values, thus 
they are proposed for future use. Jakka et al. [60] employed different 
learning models such as sigmoid modelling, SEIR, ARIMA, and LSTM for 
estimating the number of confirmed COVID-19 cases so that preventive 
measures can be performed, and the epidemic can be handled effi-
ciently. They found that LSTM models resulted in more promising out-
comes, and it can help decision-makers to take necessary actions for the 
effect of interventions. All the mathematical models that were studied 
above show limitations in capturing temporal components of the data, 
which is very crucial for forecasting COVID-19 infections, as upcoming 
infections in the next few days depend on past observations. Later, the 
techniques of artificial intelligence were studied. 

Artificial intelligence and data mining are vital components for 
successful technology in the medical sector [24]. Dianbo et al. [25] used 
a clustering approach for forecasting of COVID-19 outbreak with the 
help of news alerts from GLEAM, an agent-based mechanistic model 
[25]. Yao et al. [26] used lung ultrasound images instead of chest CT for 
the detection of infection. They found that this method would be used to 
reflect both the infection duration and disease severity in a person. 
Esther et al. [27] found that oral rinses and posterior oropharyngeal 
saliva could be used as an alternative swab collection method for the 
detection of SARS-CoV-2 RNA by RT-PCR. Narin et al. [28] used chest 
X-ray images and applied several convolutional neural network models 
such as InceptionV3 and ResNet 50 for the diagnosis of infection. Qin 

et al. [29] incorporated social media platforms for daily case prediction. 
Social media search indexes (SMSI) were collected for dry cough, fever, 
pneumonia, coronavirus, and chest distress from December 31, 2019 to 
February 9, 2020. The lagged series of SMSI were used to forecast new 
suspects using several techniques such as subset selection, lasso 
regression elastic net, ridge regression, and forward selection. The 
subset selection was the optimal method obtained during validation. 
Huang et al. [30] propose the LightEfficientNetV2 CNN model for 
COVID-19 classification with the help of CT scans and X-ray images. 
Their findings resulted in an accuracy of up to 98.3% using the proposed 
approach. Ahmad et al. [31] make use of deep-CNN models for 
extracting significant features and classifying infected patients using 
X-ray images. They employed ImageDataGenerator to overcome the 
small dataset size problem, and their findings resulted in an accuracy of 
up to 97.68% as compared to the baseline models. Li et al. [61] propose 
MultiR-Net, a 3D deep learning model for combined COVID-19 classi-
fication and lesion segmentation, with the help of U-Net to achieve 
real-time and interpretable COVID-19 chest CT diagnosis. Their pro-
posed approach resulted in an accuracy of up to 93.23% making it 
suitable for future uses. Jin et al. [62] propose an ensemble hybrid 
model based on CNN, GRU, deep belief networks, Q-learning, and SVM 
to achieve forecasting of COVID-19 infections. Their analysis ensures the 
accuracy, robustness, and generalization of their approach. However, 
the efficient forecasting of infections is interdependent on several factors 
such as population density and economic conditions of a region which 
were not considered by them. Altan et al. [46] proposed a hybrid model 
consisting of 2D curvelet transformation, chaotic salp swarm algorithm, 
and deep learning for the detection of COVID-19 infections using X-ray 
images. Thus, deep-learning techniques were efficiently used for the 
detection and transmission of the disease. However, these models were 
not suitable for real-time based dataset and specifically for coronavirus, 
because it is time series-based dataset. 

Therefore, it becomes crucial to introduce a sequential network 
model for real-time forecasting of infection. Karasu et al. [47] antici-
pated a technique for forecasting crude oil prices as it possesses 
non-linear dynamics in a time-series environment. They studied efficient 
techniques for extracting relevant features and then applied the 
time-series model. Altan et al. [48] proposed a hybrid model consisting 
of LSTM and grey wolf optimizer for forecasting wind speed required for 
the generation of wind power. They provided an efficient forecasting 
algorithm using LSTM. Wang et al. [50] proposed an LSTM model along 
with a rolling update mechanism to accurately forecast COVID-19 in-
fections for long-term projections. But their study focused only on the 
data of confirmed cases for training, which is not alone sufficient to 
provide the optimal results. 

Certain mathematical and statistical models [10,11] were proposed 
to predict the evolution of COVID-19. Statistical algorithms, for 
example, ARIMA (Autoregressive Integrated Moving Average) depends 
immensely on assumptions. Many of the data-driven techniques work 
linearly [12] neglecting the temporal attributes of the data. In many 
cases, these models resulted in low accuracy and were not able to fit the 
data properly. Thus, to overcome the constraints of statistical models, 
this paper employs a deep-learning-based Recurrent Neural Network 
(RNN) to forecast real-time infection cases. RNN is an integral deep 
learning method useful for temporal components in the time-series 
analysis [13]. It is a sequential neural network that remembers things 
learned from prior inputs while generating outputs [14,15] but they 
were not capable of learning historical dependencies [16]. So, to over-
come this shortcoming, Hochreiter et al. have designed a long-term 
dependency LSTM model to regulate information flow in memory cells 
using hidden layer units and multiplicative gates [17]. 

Kirbas et al. [49] performed a comparative analysis using ARIMA, 
NARNN, and LSTM models to forecast COVID-19 infections in European 
countries. Upon analysis, LSTM performed better which could be used 
further in the future [49]. Kumar et al. [32] studied the SARIMA tech-
nique for forecasting cumulative COVID-19 cases in the top 16 affected 
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countries. However, they assumed the parameters using the auto-ARIMA 
methodology, making it difficult to fit the data in every situation. Mat-
amoras et al. [33] used the ARIMA model for forecasting per region 
future infections. They proposed the correlation between countries of 
similar geographical areas and COVID-19 infections. They inferred that, 
if the geographical area of the two regions was similar, then the future 
infections advancements in such regions would also be similar. But 
future infectious spread not only depends on the geographical area of 
the region but also on population density, education, health care facil-
ities, and the economy of a region. These parameters were not consid-
ered by them. So, further works were necessary to precisely predict 
future infections. Huang et al. [34] proposed a CNN-LSTM model for 
COVID-19 forecasting in China. But their analysis proposed forecasting’s 
for a specific area, which might not perform well in some other regions. 
Arora et al. [35] used daily confirmed cases time-series data for the 
forecast of disease in all states and union territories of India. They 
analyzed certain variants of the LSTM model such as Stacked LSTM, 
Convolutional LSTM, and Bi-directional LSTM. The optimal method was 
used further for one-day and then one week of forecasting. Their study 
covered only the data of confirmed cases as a parameter, and it was 
specific to a particular region. However, a more generalized model with 
a wide range of features was required for accurate forecasting of 
COVID-19 infections. Chimmula and Zhang [36] anticipated LSTM 
networks for forecasting in Canada. All the studies proposed above were 
either utilized for forecasting in a specific geographical region or 
considered very few parameters. Consequently, these models have 
restricted the scope of forecast in a certain country and were not able to 
preserve spacio-temporal components of the data. Thus, to forecast 
infection in province-specific region, the above proposed models face 
data shortage issue as historical data taken from a specific -province is 
insufficient for precise forecast. 

On the other hand, TL approaches performed better in many such 
scenarios. Kumar et al. [37] studied transfer learning approach for GDP 
prediction using carbon emission dataset. Loey et al. [38] studied hybrid 
technique of transfer learning and machine learning algorithms for 
detection of face mask in this pandemic. Gautam [39] predicted coro-
navirus cases and deaths of several countries using TL technique. The 
model was trained on countries like Italy and US and tested on different 
set of countries. But the epidemic spread of COVID-19 depends also on 
other parameters such as population, geographical area, and economic 
status of a region, which are not studied by the authors. Su et al. [40] 
presented a multilevel thresholding image segmentation method based 
on an enhanced multiverse optimizer, to improve the efficient process-
ing of COVID-19 chest films, with the addition of vertical and horizontal 
search mechanisms. Their findings provided an effective approach that 
can be used in a medical organization with the diagnosis of infection. 

However, the evolution of COVID-19 infection not only depends on 
daily confirmed cases and fatality rate but also on other parameters of 
geographical area, population, and GDP [6–9]. Armando et al. [41] 
discussed the relationship between positive coronavirus cases and 
transport accessibility in an area. The higher the accessible any certain 
geographical area, the easier the virus reaches its population. Wu et al. 
[42] focused on meteorological parameters and experimented that 
relative humidity and temperature had a positive effect on the spread of 
COVID-19. 

The related studies reviewed until now indicate that mathematical 
modeling and some artificial intelligence approaches played a crucial 
role in forecasting, detecting, and propagation of the COVID-19 
pandemic, which could help governments to manage the situation effi-
ciently. To the best of our knowledge, no work has been reported so far 
using population, geographical parameters, and economic conditions 
along with mortality and recovery rate for the prediction of transmission 
of COVID-19 infection using the multi-source deep-TL model. Therefore, 
the current study proposes to bridge this gap. 

3. Proposed approach 

This section presents our proposed multi-source deep transfer 
learning-based novel approach to robustly forecast the COVID-19 
transmission in a province within a country. Initially, in the first sub- 
section, the dataset used in this paper is described. In the next sub- 
section, the proposed multi-source deep-TL approach is explained.  

a) Datasets 

This paper proposes a multi-source deep-TL-based approach for 
multi-step forecasting of future infectious transmission of COVID-19 in a 
province. The multivariate dataset includes confirmed cases of COVID- 
19, number of fatalities, and number of patients recovered along with 
geographical parameters i.e., Population, Area, and GDP per capita of a 
province. The dataset utilized in this paper for experimentation is 
extracted from the John Hopkins University repository, from the first 
case of COVID-19 recorded till December 23, 2020 [43]. The multivar-
iate dataset generated is in the time-series format with month, date, and 
year; therefore, preserving temporal components of data. The input 
parameters useful for training purposes are given in Table 1, and the 
output parameter is given in Table 2. 

Fig. 1 depicts a visual representation of total COVID-19 tests per 
1000 individuals vs GDP per capita for all countries around the globe 
[44]. It represents the correlation between appropriate testing of 
COVID-19 being done and the GDP of a nation. Thus, if the GDP of any 
country is higher, which is an indication of a sustainable economy with 
enough resource availability, then higher is the testing rate for the 
detection of infections nationwide. Thus, this would impact the 
authentication of the statistical report of infected cases. Countries with 
deprived GDP provide inappropriate testing reports due to a lack of 
resources and economic-social hardships. Thus, it can be visualized from 
Fig. 1 that countries with higher GDP are providing a high amount of 
testing. Therefore, these developed nations are providing accurate sta-
tistics that can be utilized for forecasting future infections. Therefore, we 
have utilized several provinces of seven developed nations such as: 
Australia, Canada, Denmark, France, Netherlands, the United Kingdom, 
and the United States for efficient forecasting of COVID-19 infectious 
spread.  

b) Proposed multi-step deep TL methodology 

A recurrent Neural Network (RNN) is certainly the most promising 
deep learning approach to handle temporal components as it provides 
the capability to learn sequentially [27–29]. However, due to the 
problems of vanishing and exploding gradients, an enhanced model of 
LSTM is preferred. It provides the solution by presenting a new memory 
state in RNN which learns parameters for a long duration [16]. Thus, it is 
suitable for time-series modeling. 

In a deep neural network framework, the initial layer is focused on 
capturing basic patterns and features of the data. Then deeper layers are 
aimed to extract more complex patterns and advanced features. The 
success of LSTM neural networks lies with the usage of multiplicative 
gates, named: input gate, forget gate, and output gate. The architecture 
of LSTM is depicted diagrammatically in Fig. 2. We employ this LSTM 

Table 1 
Input parameters description.  

INPUTS DESCRIPTION 

1 Observation Date 
2 No. of confirmed cases 
3 No. of Deaths 
4 Recovery rate 
5 Population 
6 Area (sq. km) 
7 GDP per capita (US $)  
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neural network regression technique for deep-transfer learning for 
multistep forecasting of COVID-19 infectious transmission in a province. 

Algorithm 1. Multi-source deep-TL for COVID-19 infection fore-
casting using LSTM.    

The flow diagram in Fig. 3 (a) describes COVID-19 infection fore-
casting using individual province specific dataset. Single province 
multivariate dataset is taken at a time which is trained on LSTM model 
and multistep forecast of future coronavirus infection in that province 
for next few days are observed. This resulted in imprecise prediction. 
Since, LSTM is a deep-learning model, it requires enormous amount of 
trainable data. The availability of COVID-19 dataset for a specific 
province is very little in quantity. When LSTM is trained using random 
weights initialization, it exhibits low variance and high bias. That is, it 
may underfit2 the data due to insufficient data availability. Therefore, to 
overcome this limitation of under fitting due to data scarcity, we have 
utilized the multi-source deep-TL technique as visualized in Algorithm 
1. The flow diagram of this Algorithm 1 is also demonstrated diagram-
matically in Fig. 3 (b). 

The stepwise description of the Algorithm 1 as follows:  

Step 1 Multi-source domain dataset creation: 

Multi-source domain COVID-19 datasets are collected for several 
provinces of the world with features represented in Table 1. An indi-
vidual province data represents a single source domain, as it is exclusive. 
We have gathered source domain data from several provinces, which 
possess huge data distribution differences from each other, with respect 

to variances in their geographical locations and their economic condi-
tions. Thus, it is termed as a multi-source dataset.  

Step 2 Deep-Transfer Learning: 

At this step, the supervised deep-learning regression model LSTM is 
utilized. It is a type of RNN model, that has the characteristic of learning 
long-term dependencies in the historical-dependent sequential dataset. 
The collective time-series dataset representing sixty-two provinces is 
gathered providing multivariate parameters (generated in Table 1) for 
training the model to forecast future regression of infectious spread. The 

LSTM network consists of three layers with 128, 64, and 32 neurons 
respectively, and an output layer with 6 neurons making 6-days ahead 
predictions. The rectified linear (ReLU) activation function is used for 
the LSTM blocks. ReLU is a piecewise linear function that will output the 
input directly if it is positive, otherwise, it will output zero. The network 
is trained for 256 epochs and a batch size of 64 is deployed. Further-
more, during the compilation period, the ‘Adam’ optimizer is considered 
which captures the desired properties of AdaGrad and RMSprop tech-
niques to generate an optimization algorithm that is best suited to 
handle gradients. 

To enhance the performance of the model, several callback functions 
are also utilized in the proposed network which is: ‘Early Stopping’, 
‘Model Checkpoint’, and ‘Reduce LR On plateau’. The Early Stopping 
callback monitors the performance of the training data in terms of the 
‘validation loss’ metric and, it gets triggered when the performance stops 
improving thus, the last training epoch gets recorded i.e. when no 
improvement is observed for ‘10’ continuous epochs, then the training of 
the model is stopped. While ReduceLROnPlateau is employed to reduce 
the learning rate by a factor of 0.1 if no improvement is observed for the 
‘3’ epochs. Further, these callbacks will terminate the training process 
once triggered, but the resulted model at the end of the training process 
may not be the best-performing model on the validation dataset. Thus, to 
achieve this an additional callback known as ‘Model Checkpoint’ is 
required. The best performing model while training gets saved and later 
used in validation process by this technique.  

Step 3 Prediction precision evaluation: 

The multivariate dataset comprises historical dependent data with 

Table 2 
Output parameter description.  

OUTPUT DESCRIPTION 

1 Future Coronavirus Infection  

2 High variance and low bias (i.e., overfitting) maybe checked by splitting the 
data into train data and validation data. 
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COVID-19 cases starting from January 26, 2020 to December 23, 2020 
for all the provinces. Therefore, 80% of the dataset ranging from 26/1/ 
2020–18/10/2020 for every province is used for training the model. 
Then it is validated on the remaining 20% dataset i.e.- from October 19, 
2020 to December 23, 2020 for their prediction preciseness in esti-
mating future infection transmission. The statistical performance has 
been evaluated using two different statistical measures, which are: 
mean-absolute percentage error (MAPE) and coefficient of determina-
tion. They are well-known evaluation metrics for regression approaches. 
MAPE is computed using the Eq. (2) as follows: 

M =
1
N

∑n

t=1

⃒
⃒
⃒
⃒
Ot − Ft

Ot

⃒
⃒
⃒
⃒ (2)  

Here, Ft is the forecasted output value, Ot is the observed value, and N is 
the total number of observations. It measures accuracy as a percentage. 
However, an inverse proportion relation is observed between MAPE and 
the forecasted accuracy. Thus, the lesser the MAPE outcome, the better 

the designed model.  

Step 4 Knowledge Extraction: 

The best model obtained in initial training is saved and loaded 
consisting of sub-optimal weights. These sub-optimal weights are thus 
feasible, which can further be optimised during retraining. Therefore, 
instead of using random weights, sub-optimal weights are being used 
with lower learning rate for training the prediction model. Hence, 
transfer learning has been successfully utilized.  

Step 5 Fine-tuning of the trained model for each province: 

Now, the sub-optimal weights (trainable parameters weights) ob-
tained from initial training are considered for parameter-tuning. 
Consequently, one province dataset containing input parameter 
(Table 1) is considered and retrained on LSTM network model using sub- 
optimal weights which are already attained from initial training. How-
ever, this process is repeated for all sixty-two-provinces’ dataset and 
infectious spread is forecasted for each province. The approach of using 
multi-source deep-TL have shown robustness and resulted in enhanced 
forecasting, and thus, representing minor forecast error.  

Step 6 COVID-19 Infection Forecasting 

Finally, the trained multi-source deep-TL model is used to forecast 
the future coronavirus cases. The source domain dataset consists of 
sixty-two provinces which are: 

{ ‘Alabama’, ‘Arizona’, ‘French Guiana’, ‘Ohio’,‘Aruba’, ‘Alaska’, 
‘Bermuda’, ‘Bonaire, ‘Alberta’, Sint Eustatius and Saba’, ‘British 
Columbia’, ‘Arkansas’, ‘California’, ‘French Polynesia’, ‘Gibraltar’,‘-
Cayman Islands’, ‘Channel Islands’, ‘Australian Capital Territory’, 
‘Kentucky’, ‘Greenland’, ‘Idaho’,‘Colorado’, ‘Victoria’, ‘Ontario’,‘South 
Carolina’,‘Western Australia’,‘Curacao’, ‘Wyoming’, ‘Virginia’,‘Pennsy 

Fig. 1. Representation of COVID-19 Testing vs GDP.  

Fig. 2. LSTM architecture [45].  
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lvania’,‘Indiana’, ‘South Dakota’,‘Faroe Islands’, ‘Florida’, ‘Georgia’, 
‘Guadeloupe’, ‘Hawaii’, ‘Washington’, ‘Isle of Man’, ‘Kansas’, ‘Man-
itoba’, ‘Illinois’,‘Martinique’, ‘Reunion’,‘Mayotte’, ‘New Brunswick’, 
‘New found land and Labrador’, ‘New South Wales’, ‘New York’, ‘Nova 
Scotia’, ‘Oregon’, ‘Puerto Rico’, ‘Quebec’, ‘Queensland’, ‘Iowa’, ‘Sas-
katchewan’, ‘Sint Martin’, ‘South Australia’,‘St. Martin’, ‘Texas’, ‘Turks 
and Caicos Islands, ‘West Virginia’, ‘Wisconsin’ }. 

The selection of these provinces is totally arbitrary. One can choose 
any set of provinces’ datasets. There are no specific inclusion-exclusion 
criteria that are considered for the selection of these provinces, they are 
just randomly chosen. Now, it comprises seven developed countries. 
However, the major emphasis is on the selection of developed countries 
datasets for the experimentation. Developed countries have certainly 
higher GDP i.e., significantly available resources for COVID-19 testing to 
generate definite statistics report, which is beneficial for precise evalu-
ation of the model. Their statistics are more reliable as compared to 
developing nations statistics, since developing countries lack with 
enough resources to precisely perform COVID-19 testing. Thus, the 
motivation is to perform experimentation with considering datasets of 
developed nations, and in future works this trained model can be uti-
lized for efficient forecasting of COVID-19 infections in developing 
nations. 

4. Experimental results and analysis 

In this section, the human transmission of COVID-19 infection in the 

future is experimentally forecasted using the multi-source deep-TL 
model. It consists of two sections: the first one is on experimental results 
evaluation, and another sub-section graphically depicts the COVID-19 
Infection estimation of the next few days using the proposed 
methodology.  

A. Experimental results evaluation 

This section describes the outcomes obtained using the multi-source 
deep-TL model for the prediction of COVID-19 infectious spread. Here, 
we have employed two different types of techniques for forecasting: the 
first one is termed as a without-TL approach. In this approach, a 
province-specific dataset is considered which is trained on the LSTM 
model with randomly initialized weights, and thus, the forecasted ac-
curacy is observed. This procedure is followed for all the provinces 
individually. Since data available in each province is not in large 
quantity, it may result in poor performance. The second type of tech-
nique is termed as with-TL which can overcome the limitations of data 
shortage. In the second approach, a collective dataset comprising of all 
sixty-two provinces is gathered. Considering it as a borne start, the sub- 
optimal weights are initialized using LSTM model and collective training 
is performed. Subsequently, the individual province-specific data is 
considered at a time, which is retrained on the initially trained model 
using the already obtained sub-optimal weights and lower learning rate. 
Thus, fine-tuning using multi-source deep TL is performed. This 
approach is termed as TL approach. One of the common performance 
indicators used to measure forecast accuracy is the root mean square 
error (RMSE). But they are sensitive to outliers. Therefore, the perfor-
mance of the proposed model is measured using two different statistical 
measures, which are mean absolute percentage error (MAPE) and co-
efficient of determination (R-squared test). Both are commonly used to 
measure prediction accuracy. This sub-section is now further divided 
into two parts, where the initial part describes the performance of the 
proposed approach of COVID-19 infections forecasting using the mean 
absolute percentage error evaluation metric and the second part pre-
sents the performance of the proposed methodology using the coefficient 
of determination evaluation metric.  

i. Performance evaluation using MAPE 

Table 3 
Mean absolute percentage error.  

Province Name Mean absolute 
percentage error 

% 
Improvement 

% 
Deterioration 

Without- 
TL 

TL 

Alabama 5.9 1.4 76.2 – 
Alaska 32.7 7.3 77.6 – 
Arizona 35.8 2.5 93.01 – 
Bermuda 5.9 1.1 81.35 – 
California 3.66 1.0 72.67 – 
Faroe Islands 2.25 0.57 74.66 – 
Florida 99.31 3.58 96.39 – 
Georgia 36.25 1.65 95.44 – 
Illinois 10.5 8.37 20.28 – 
Indiana 66.1 1.50 97.73 – 
Manitoba 5.37 4.21 21.60 – 
New South Wales 1.53 1.20 21.56 – 
Pennsylvania 3.7 1.72 53.51 – 
Quebec 4.11 0.62 84.91 – 
South Carolina 22.49 1.38 93.86 – 
Texas 13.8 1.07 92.24 – 
Virginia 22.9 3.68 83.93 – 
Wyoming 13.77 4.17 69.71 – 
Greenland 4.86 8.37 – − 72.22 
Martinique 48.58 50.86 – − 4.69 
Queensland 4.03 10.16 – − 152 
Turks and Caicos 

Islands 
10.22 22.06 – − 115  

Fig. 3. Training deep learning model: (a) without TL (b) with TL.  
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The performance of the proposed methodology in forecasting 
COVID-19 transmission has been initially evaluated using mean absolute 
percentage error. We have shown the results of some provinces after 
performing training using the proposed approach. We have represented 
provinces’ outcomes in terms of MAPE using without-TL as well as TL 
technique as depicted in Table 3. Further, it describes the percentage of 
improvement in terms of the prediction error from the classical 
(without-TL) approach to a multi-source deep-TL technique for the 
provinces, where our proposed algorithm performs better as visualized 
in column 3 of Table 3. However, a progressive decline can be observed 
for a few provinces where the classical approach is more suitable. Thus, 
they are depicted as deterioration percentages in column 4 of Table 3. 

The provinces which are used for result visualizations are: 
‘Alabama’, ‘Alaska’, ‘Arizona’, ‘Bermuda’, ‘California’, ‘Faroe 

Islands’, ‘Florida’, ‘Georgia’, ‘Illinois’, ‘Indiana’, ‘Manitoba’, ‘New South 
Wales’, ‘Pennsylvania’, ‘Quebec’, ‘South Carolina’, ‘Texas’, ‘Virginia’, 
‘Wyoming’, ‘Greenland’, ‘Martinique’, ‘Queensland’, ‘Turks and Caicos 
Islands’. 

In Table 3, the best results of forecasting accuracy depicting mini-
mum error in terms of MAPE between the two approaches are marked in 
bold. There are certain provinces in which the proposed technique of 
multi-source deep-TL model has performed outstandingly as compared 
to without-TL approach. For the provinces such as Arizona, Bermuda, 
Florida, Georgia, Indiana, Quebec, South Carolina, Texas, and Virginia, 
the percentage of improvement in terms of prediction accuracy, from 
simple model using without-TL to deep-TL model is significantly higher 
than 80% as visualized in Table 3. Arizona has resulted 93.1% 
improvement, thus provided better forecast accuracy when performed 
using multi-source deep-TL approach. Similar behavior is observed for 
other provinces such as Florida with 96.39% improvement, and Quebec 
with 84.91% improvement. 

Consequently, for certain province such as Alabama, Alaska, Cali-
fornia, Faroe Islands and Wyoming, the improvement percentage varies 
from 65 to 80%. For Alabama, classical model results 5.9% error 
whereas our proposed multi-source deep-TL-based model obtained 1.4% 
of error. Thus, improving the performance by 76%. Provinces like Illi-
nois, Manitoba, New South Wales, and Pennsylvania have attained 
improvement up to 65%. Illinois has obtained 20.28% improvement 
whereas New South Wales has resulted in 21.6% of improvement. These 
results have proved that the forecasting precision of the multi-source 
deep-TL approach is better than without-TL.  

ii. Performance evaluation using the coefficient of determination 

Now, the performance of the proposed approach in forecasting 
COVID-19 infectious spread is again evaluated using the coefficient of 
determination, which is another statistical evaluation metric. The co-
efficient of determination is a statistical measure to examine the rela-
tionship between two variables. It describes the amount of variability of 
one parameter caused due to its relationship with another parameter. 
This coefficient is commonly termed R-squared (or R2), and is usually 
referred to as the “goodness of fit.” A value close to 1 indicates a perfect 
fit model, and thus, a highly reliable model for future forecasts. It can be 
computed using the mathematical formula given as Eq. (3). 

R2 = 1 −

∑N
i=1(Ŷ i − Yi)

2

∑N
i=1

(

Yi −

∑N

k=1
Yk

N

)2 (3)  

where Yi presents the actual value of a variable for i = 1, 2 …. N and 
represent the forecasted value of a variable. 

We have presented the performance of the proposed approach using 
an R-squared statistical measure in Table 4. It comprises four columns: 
the first column gives the province name, the second column represents 
the R-squared value using the classical training model (without-TL 
approach), and the third column presents the performance using the 

proposed with-TL approach (for each province, the best R2 values are 
marked with bold in Table 4), and the last column presents the im-
provements in the coefficient of determination using the with-TL 
approach over the without-TL approach. It is computed by subtracting 
the R2 values given by the without-TL from the same proposed approach. 
The higher the magnitude of the values in the fourth column of Table 4, 
the better the performance of the with-TL model over the without-TL 
model. That is, the goodness of fit (R2) is best in the former (the with- 
TL model). 

There are numerous provinces in which the proposed approach of 
forecasting COVID-19 infectious spread using the multi-source deep-TL 
model has performed outstandingly when compared to classical training 
(without-TL model). A few such provinces are: ‘Alaska’, ‘Arizona’, 
‘California’, ‘Florida’, ‘Georgia’, ‘Illinois’, ‘Indiana’, Manitoba’, 
‘Quebec’, ‘South Carolina’, ‘Virginia’, ‘and Wyoming’. A maximum of 
0.84 similarity has resulted in actual and forecasted infections for the 
province of Georgia. The value is very close to 1, which means precise 
forecasting is obtained using the proposed approach. For the province of 
Arizona, an improvement of 1378.42 in R2 has been observed using the 
TL model over the without-TL approach. The province of Florida is also 
able to provide a precise prediction model using TL model by resulting in 
an improvement of 12023.36 in terms of R2 value. More generalized 
‘goodness of fit’ (R2 values closer to 1) model’s is observed in ‘Man-
itoba’, ‘Alaska’, ‘Florida’, ‘Georgia’, ‘Indiana’, ‘South Carolina’, ‘Vir-
ginia’, ‘Wyoming’ with an improvement of 28.08, 77.12, 12023.36, 
2177.84, 468.78, 1326.19, 309.21, 65.54, respectively (as shown in 4th 
column of Table 4). Similar results are obtained for other provinces 
where the proposed approach has increased the efficacy of the model 
over classical training model. 

However, there are 4 provinces out of the total 62 provinces in total, 
where the proposed approach resulted in poor performance in R2 metric. 
Similar trends of performance degradation of the proposed approach for 
these 4 provinces were also observed during their MAPE result analysis. 
These provinces are: ‘Greenland’, ‘Martinique’, ‘Queensland’ and ‘Turks 
and Caicos Island’. The province of Greenland has resulted in − 0.86 
degradation (negative improvement) with respect to the proposed with- 
TL approach. Similarly, for the province of Queensland, a decline of 
− 108.7 in R2 is resulted.  

B. COVID-19 Infection estimation of the next few days 

Table 4 
Coefficient of determination.  

Province Name Coefficient of determination Improvement in R2 

Without-TL With-TL 

Alabama − 18.94 ¡0.64 18.3 
Alaska − 81.21 ¡4.09 77.12 
Arizona − 1378 0.42 1378.42 
Bermuda − 11.66 0.34 12 
California − 19.78 0.48 20.26 
Faroe Islands − 49.2 ¡29.3 19.9 
Florida − 12026 ¡2.64 12023.36 
Georgia − 2177 0.84 2177.84 
Illinois − 17.44 0.5 17.94 
Indiana − 474 ¡5.22 468.78 
Manitoba − 27.41 0.67 28.08 
New South Wales − 93.1 ¡33.1 60 
Pennsylvania − 21.08 ¡0.03 21.05 
Quebec − 12.89 0.71 13.6 
South Carolina − 1328 ¡1.81 1326.19 
Texas − 42.9 0.41 43.31 
Virginia − 316.4 ¡7.19 309.21 
Wyoming − 74.01 ¡8.47 65.54 
Greenland 0.2 − 0.66 − 0.86 
Martinique ¡7.53 − 9.31 − 1.78 
Queensland ¡125.8 − 234.5 − 108.7 
Turks and Caicos Islands ¡19.16 − 53.17 − 34.01  
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The COVID-19 Infections forecasting using the proposed approach of 
multi-source deep transfer learning is depicted graphically in Figs. 4–6. 
Fig. 4 depicts COVID-19 infection using the without-TL approach. These 
figures have 3 lines for visualization. A solid blue line depicts historical 
Infection in the past 30 days, red-dotted lines demonstrate infection 
forecasting using without-TL approach in the upcoming 6 days, whereas 

actual observed infection in the next 6 days is represented by blue- 
dotted lines. 

Fig. 4 (a) demonstrates a graphical representation of COVID-19 
infection in Alabama, a province of US using the without-TL approach. 
The x-axis represents the number of days and the y-axis represents in-
fectious spread. The days ranging from 0 to 30 describe a span of 30 days 

Fig. 4. COVID-19 Infection forecast using without-TL approach.  
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Fig. 5. COVID-19 Infection forecast using multi-source deep- TL approach.  
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demonstrating historical infection observed, whereas days from 31 on-
wards describe infection prediction in the upcoming 6 days as plotted 
with the red-dotted line, and actual infection observed is depicted in a 
blue-dotted line. However, the blue dotted line and red dotted line are 
far apart. Thus, significant variations can be visualized from the figure 
between actual cases and forecasted ones which resulted in 5.9% of 
error. Similar observations can be visualized for other provinces when 
trained using a simple-LSTM regression network without incorporating 
the TL approach as represented in Fig. 4 (b)–(r). These figures with 
infection prediction using simple LSTM networks without performing TL 
depicts large fluctuating outcomes resulting in huge prediction error. 

Fig. 5 describes COVID-19 infection using the multi-source deep-TL 
methodology. These figures have 3 different lines for visualization. The 
solid blue line depicts historical Infection in the past 30 days, solid red 
lines demonstrate infection forecasting using the multi-source deep-TL 
model in the upcoming 6 days, and actual suspects in the next 6 days is 
represented by blue-dotted lines. Fig. 5 (a) represents forecast modeling 
in Alabama with the use of the multi-source deep-TL model. The 
observed infection and predictions are overlapping with each other as it 
can be visualized from blue dotted points and solid red lines. Thus, these 
predictions demonstrate a good match of predicted infection against 
actual infection which resulted in a minimal error of 1.4%. Thus, we can 
say that the proposed model is more robust and precise for COVID-19 
infection forecasting. Similar forecasting can be visualized for other 
provinces using our proposed multi-source deep-TL approach as depic-
ted in Fig. 5(b)–(r). Hence, it is observed that the proposed multi-source 
deep-TL methodology has resulted precise forecasting in comparison to 
the without-TL approach. Also, the without-TL approach attained 
irregular predictions whereas the proposed approach obtained over-
lapping predictions with actual observed values. 

However, there are few cases where the proposed algorithm doesn’t 
perform better. In these cases, the without-TL approach has obtained 
better accuracy for predicting future forecasts of infectious spread. For 
certain provinces such as Greenland, Martinique, Queensland and Turks 
and Caicos Islands, the without-TL approach has resulted in better 
forecasting as depicted in Fig. 6 (a), (c), (e), and (g). The red-dotted lines 
are closer to blue-dotted points in comparison to other figures with 
captions of TL for the same provinces. In case of Greenland 4.86% error 
using without-TL approach is obtained, which got significantly 
increased with the deep-TL approach. Similar results are obtained using 
R2 statistical measure. The deterioration of − 0.86 in R2 is observed for 
Greenland province using the proposed TL model over classical 
(without-TL) model. The Queensland province attained 4.03% MAPE 

using without-TL approach whereas TL approach achieved 10.12% 
error. Similarly, a decline of − 108.7 in R2 evaluation is detected for the 
province Queensland. Thus, the proposed approach resulted in a steep 
decline in performance. For such cases, the LSTM approach (without-TL) 
has resulted in better forecasting accuracy than the multi-source deep- 
TL technique. 

5. Discussion 

In this section, the importance of feature selection and the prominent 
reason behind the formation of the proposed MSDTL approach is 
described. It consists of three sub-sections, the first sub-section discusses 
the significance of the feature-set that has been deployed in this paper; 
the second sub-section provides a comparative analysis with some 
existing state-of-art algorithms, whereas the last sub-section focuses on 
the performance evaluation of the proposed approach.  

A. Importance of Features 

This section discusses the significance of all the features i.e., {COVID- 
19 confirmed cases, mortality rate, number of recoveries, population, 
area, and GDP}, and emphasizes on the reason behind the selection of 
these parameters using a practical approach. An experimentation has 
been performed by considering features independently on the proposed 
MSDTL approach, then forecasting COVID-19 infections, and recording 
MAPE values. Therefore, four-different experiments were performed, 
and the results are recorded in Table 5. Initially, we started by consid-
ering COVID-19 statistics as a feature-set F1 i.e., the parameters of in-
terest are.  

F1 = {‘confirmed cases’, ‘deaths’, ‘recoveries’}                                          

Which are trained on the MSDTL model, future infections are forecasted 
and model’s performance is recorded in terms of MAPE values. Thus, 
these results are presented in column two of Table 5. Later, the feature 
‘GDP’ is added to the original feature set i.e.,  

F2 = {‘confirmed cases’, ‘deaths’, ‘recoveries’, ‘GDP’}                               

and training is performed. The column three depicts the MAPE score 
when executed using the feature set F2. Further, another experiment has 
been performed which consists of feature set F3 i.e.,  

F3 = {‘confirmed cases’, ‘deaths’, ‘recoveries’, ‘population’, ‘area’}             

Fig. 6. COVID-19 Infection forecast depicting weakness of the proposed approach.  
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and in the similar way, MAPE values are recorded which are depicted in 
column four of Table 5. Finally, the performance of all the three- 
different feature-set is compared with F4 which consists of all these 
features and that is used entirely in this paper.  

F4 = {‘confirmed cases’, ‘deaths’, ‘recoveries’, ‘population’, ‘area’, ‘GDP’}   

The column five of Table 5 presents the performance of MSDTL using 
feature-set F4. Thus, it can be clearly visualized from Table 5 that, when 
COVID-19 infections are forecasted using F4 i.e., consisting of all the 
features, then highly precise model is resulted. When forecasting is 
achieved using feature set F1, F2 or F3, then a biased model is trained and 
high magnitude of MAPE values are resulted. For every province, per-
formance of the model using the feature-set generating minimal error 
values is highlighted in bold. Therefore, we can conclude that the fea-
tures such as-population, area and GDP are alone not useful because 
they are unable to capture the non-linearity of the datasets’, but when all 
these features are combined, their impact is profound, resulting in 
magnanimous improvement in prediction precision.  

B. Comparison with other state-of-art algorithms 

A comparative analysis has been performed to analyze the perfor-
mance of the proposed MSDTL approach with some other existing state- 
of-art algorithms which are proficient in handling sequential data. The 
first one is the deep learning model i.e., Recurrent Neural Network 
(RNN), and another one is the VARMAX model, which is a statistical 
modeling technique. 

A recurrent Neural Network is a special type of Artificial Neural 
Network [52] designed to work for sequential data or time-series 
models. It works on the principle of memorization of historical infor-
mation, which helps in storing states of previous inputs while generating 
the next output of the sequence. RNN is trained with a same number of 
neurons, trainable weights, activation, optimization, and loss function 
as that of LSTM to conduct an unbiased comparison. The RNN model is 
trained in the similar behavior as it is done for LSTM i.e., by incorpo-
rating transfer-learning, and the performance is evaluated in terms of 
MAPE metric which is depicted mathematically in Table 6. 

Later, the performance of MSDTL approach has been compared with 
a statistical VARMAX model. Vector Autoregression Moving Average 
with Exogenous variable (VARMAX) model [53] is a generalized sta-
tistical time-series model. It is a multivariate version of classical uni-
variate ARIMA model. The mathematical representation is as follows: 

V: It denotes a Vector, which means that it is composed of two or 
more features (multivariate parameters). 

AR: It denotes Auto Regression term, which means that output of the 
model is based on linear combinations of inputs. It is characterized by ‘p’ 
parameter. 

Xt =C0 + C1Xt− 1 + C2Xt− 2 + …..+ CpXt− p (4) 

MA: It denotes Moving Average term, which is calculated as the 
difference between observed and the predicted values. In this case, the 
output of the model is based on linear combinations of residual errors 
which are being generated at each timestep. It is characterized by ‘q’ 
parameter. 

Xt =C0 + C1εt− 1 + C2εt− 2 + …..+ Cqεt− q (5) 

X: It denotes exogenous variable, which are used to model the pri-
mary variables which are of more interest. It is a type of variable whose 
value is determined outside the model and is imposed here. 

These variables are not directly modelled but used in terms of 
weighted input to the model. Whereas there is other type of variables 
known as endogenous variable, which is determined by the computation 
of the model. Thus, in this paper, the parameters: ‘Population’, ‘Area’ 
and ‘GDP’ are considered as exogenous variables, since their value is 
independent of time. Their value remains same for a particular province. 
However, the parameters: ‘Confirmed cases’, ‘Deaths’, and ‘Recoveries’ 
are considered as endogenous variables, since their values are changing 
constantly and are a prime source of interest. Thus, the multisource 
domain dataset has been collected and trained using transfer learning. 
The performance has been estimated using MAPE as an evaluation 

Table 5 
Significance of feature selection in proposed approach.  

Province Name COVID COVID- 
GDP 

COVID- 
Population- 
Area MAPE 

ALL 
PARAMETERS 
MAPE 

Alabama 37.66 97.62 62.04 1.40 
Alaska 84.92 88.19 78.39 7.42 
Alberta 60.32 87.85 73.67 30.26 
Arizona 32.49 98.05 49.65 2.58 
Arkansas 49.76 96.24 67.78 2.96 
Aruba 1819.15 72.86 59.87 8.62 
Australian Capital 

Territory 
19.68 1.79 15.90 0.43 

Bermuda 19.29 40.35 20.07 1.13 
Bonaire, Sint 

Eustatius and 
Saba 

63.63 10.75 20.10 14.70 

British Columbia 29.32 84.53 80.05 18.56 
California 51.70 99.46 99.99 0.58 
Cayman Islands 12.14 30.92 15.48 2.48 
Channel Islands 36.13 50.00 30.27 4.89 
Colorado 42.92 96.53 102.27 50.72 
Curacao 107.59 86.47 45.53 55.54 
Faroe islands 23.04 39.65 32.54 3.61 
Florida 65.05 99.36 48.34 1.71 
French Guiana 15.11 62.74 48.56 2.77 
French Polynesia 63.56 95.11 87.49 70.54 
Georgia 34.91 98.64 57.60 0.29 
Gibraltar 38.07 71.06 46.78 5.75 
Greenland 2551.63 17.34 23.17 10.56 
Guadeloupe 17.73 81.29 73.73 19.78 
Hawaii 14.57 18.77 7.35 28.60 
Idaho 55.14 94.31 74.60 13.09 
Illinois 65.29 98.88 67.75 1.51 
Indiana 57.56 97.75 72.00 7.57 
Iowa 72.64 96.91 72.69 3.24 
Isle of Man 122.60 5.46 7.31 5.11 
Kansas 54.11 95.77 74.98 42.12 
Kentucky 34.97 96.37 75.37 49.65 
Manitoba 135.59 91.75 90.69 53.97 
Martinique 40.64 82.70 70.52 50.86 
Mayotte 16.90 46.44 41.15 18.96 
New Brunswick 27.80 46.86 26.93 25.09 
New foundland 

and Labrador 
9.55 10.68 15.36 12.30 

New South Wales 5.56 31.35 26.02 23.28 
New York 41.16 98.76 30.06 0.71 
Nova Scotia 18.69 14.97 13.01 5.82 
Ohio 61.09 98.12 70.13 7.10 
Ontario 82.37 92.81 65.04 1.81 
Oregon 30.53 91.33 69.82 16.54 
Pennsylvania 58.28 97.73 56.78 1.73 
Puerto Rico 235.30 71.76 33.97 36.49 
Quebec 65.77 94.40 55.04 0.62 
Queensland 103.77 11.66 15.23 4.06 
Reunion 128.22 79.13 71.69 60.09 
Saskatchewan 95.79 79.52 77.20 22.98 
Sint Maartin 15.23 60.08 33.88 17.92 
South Australia 15.38 19.94 20.83 16.66 
South Carolina 35.01 97.02 58.15 1.38 
South Dakota 39.84 92.45 76.53 24.99 
St Martin 25.85 40.00 48.27 27.31 
Texas 57.25 99.46 58.15 1.08 
Turks and Caicos 

Islands 
17.35 42.21 36.09 22.06 

Victoria 199.56 76.72 53.79 21.57 
Virginia 25.93 96.94 56.05 3.68 
Washington 21.27 20.83 62.16 4.07 
West Virginia 37.39 30.23 78.57 17.86 
Western Australia 17.79 20.83 19.29 8.91 
Wisconsin 57.66 98.31 82.03 42.13 
Wyoming 184.58 88.52 85.37 44.17  
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metric which is represented in tabular format in Table 6. 
Table 6 presents a comparative analysis of the proposed MSDTL 

approach with other existing state-of-art algorithms in terms of MAPE 
evaluation metrics. It consists of four columns: column one presents the 
name of all provinces which are considered for this experiment, column 
two depicts the empirical results of the MAPE metric on the RNN 
approach, column three represents the evidence for VARMAX model, 
and finally, the last column describes the performance of the proposed 
MSDTL approach in terms of MAPE measure. 

For every province, the best resulting model i.e., the model 

generating minimum error value is highlighted in bold. Thus, it can be 
clearly visualized that the proposed MSDTL approach is providing very 
accurate infection forecasts and resulting in minimal error for 60 out of 
62 provinces. Conversely, it can be analyzed that the RNN model is 
resulting in very inaccurate forecasting of COVID-19 infection, and a 
high magnitude of MAPE values is obtained. However, RNN suffers from 
a vanishing gradient issue and the model is unable to learn relevant 
information of input states for a longer time, thus the proposed approach 
involves the usage of an enhanced version of this algorithm i.e., LSTM 
which provides the characteristics of learning long-term dependencies 
with the help of three different gates. Similar behavior is observed for a 
statistical model that, being a time-series model still VARMAX model is 
not able to perform well on the sequential dataset. Thus, it resulted in 
very poor predictions and generated large MAPE score values. There-
fore, based on the above study, the proposed MSDTL approach is utilized 
for efficient forecasting of COVID-19 infections, and it is further rec-
ommended for future use.  

C. Performance Evaluation of the proposed approach 

The proposed approach has been evaluated with the COVID-19 data 
sets from sixty-two provinces from a wide range of countries around the 
world. The empirical evidence shows that an improvement of up to 96% 
is attained using the proposed-TL approach. The maximum similarity up 
to 0.84 has been observed using the R2-test as discussed in detail in 
section 4 of this paper. However, degradation in the performance of the 
proposed approach is observed for very few provinces. Table 7 presents 
the rate of infectious spread and its relationship with the performance of 
the proposed methodology. It consists of four columns, the first column 
presents the province name, the second one calculates the gradient of 
historical infections, the third column shows the improvement in MAPE 
score, and the fourth column shows the improvement of R2. The columns 
3 and 4 are respectively taken from Tables 3 and 4 for better analysis. 
The infections gradient may be mathematically calculated as follows:  

Gradient = Increase in historical infections in last 30 days/30                 (6) 

For the province of California, Alabama, Florida, Manitoba, Quebec, 
South Carolina, Virginia and Wyoming, the magnitude of gradient is 
3304.83,1144.46, 2714.96, 82.3, 964.24,853.8, 937.7, and 194.8 
respectively. A higher gradient signifies that rate of infections per day is 

Table 6 
Comparative analysis of proposed approach with state-of-art algorithms.  

Province Name RNN VARMAX MSDTL 

Alabama 99.74 87.48 1.40 
Alaska 98.74 92.27 7.30 
Alberta 99.14 89.74 30.26 
Arizona 99.78 47.28 2.58 
Arkansas 99.63 82.23 2.96 
Aruba 93.50 4957.97 8.62 
Australian Capital Territory 160.80 20.71 0.43 
Bermuda 30.15 72.59 1.13 
Bonaire. Sint Eustatius and Saba 85.78 11.73 14.70 
British Columbia 98.45 93.07 18.56 
California 99.93 1000.67 1.00 
Cayman Islands 12.74 40.03 2.48 
Channel Islands 74.77 79.41 4.89 
Colorado 99.69 482.94 50.72 
Curacao 82.54 94.69 55.54 
Faroe islands 40.07 32.04 0.57 
Florida 99.92 34.20 3.58 
French Guiana 96.89 22.72 2.77 
French Polynesia 97.50 95.54 70.54 
Georgia 99.84 36.21 1.65 
Gibraltar 67.16 80.82 5.75 
Greenland 1569.28 41.13 8.37 
Guadeloupe 96.18 85.00 19.78 
Hawaii 60.70 38.20 28.60 
Idaho 99.51 87.46 13.09 
Illinois 99.88 83.95 8.37 
Indiana 99.78 87.87 1.50 
Iowa 99.72 86.48 3.24 
Isle of Man 17.14 27.77 5.11 
Kansas 99.63 88.21 42.12 
Kentucky 99.67 88.70 49.65 
Manitoba 97.37 96.50 4.21 
Martinique 93.54 90.99 50.86 
Mayotte 93.60 67.45 18.96 
New Brunswick 30.02 50.47 25.09 
New foundland and Labrador 8.06 34.81 12.30 
New South Wales 92.60 22.64 1.20 
New York 99.86 40.49 0.71 
Nova Scotia 75.11 37.78 5.82 
Ohio 99.81 88.45 7.10 
Ontario 99.45 83.53 1.81 
Oregon 99.34 85.88 16.54 
Pennsylvania 99.78 84.75 1.72 
Puerto Rico 95.09 76.20 36.49 
Quebec 99.54 74.58 0.62 
Queensland 74.02 22.38 10.16 
Reunion 95.68 78.11 60.09 
Saskatchewan 94.78 92.38 22.98 
Sint Maartin 70.52 30.17 17.92 
South Australia 43.18 34.67 16.66 
South Carolina 99.71 83.41 1.38 
South Dakota 99.43 89.90 24.99 
St Martin 55.51 84.72 27.31 
Texas 99.94 75.54 1.07 
Turks and Caicos Islands 59.06 35.08 22.06 
Victoria 98.11 48.35 21.57 
Virginia 99.71 39.71 3.68 
Washington 99.61 81.33 4.07 
West Virginia 99.08 91.43 17.86 
Western Australia 61.96 31.618 8.91 
Wisconsin 99.84 89.88 42.13 
Wyoming 98.68 93.91 4.17  

Table 7 
Performance evaluation of the proposed approach.  

Province Name Rate of 
infectious 
spread 

Improvement in 
MAPE score (%) 

Improvement in 
R2 

Alabama 1144.46 76.2 18.3 
Alaska 197.23 77.6 77.12 
Arizona 711.23 93.01 1378.42 
Bermuda 2.43 81.35 12 
California 3304.83 72.67 20.26 
Faroe Islands 2.1 74.66 19.9 
Florida 2714.96 96.39 12023.36 
Georgia 1239.86 95.44 2177.84 
Illinois 2952.3 20.28 17.94 
Indiana 1571.03 97.73 468.78 
Manitoba 82.3 21.60 28.08 
New South Wales 44.66 21.56 60 
Pennsylvania 1350.13 53.51 21.05 
Quebec 964.26 84.91 13.6 
South Carolina 853.8 93.86 1326.19 
Texas 4797.26 92.24 43.31 
Virginia 937.7 83.93 309.21 
Wyoming 194.8 69.71 65.54 
Greenland 0.1 − 72.22 − 0.86 
Martinique 0.9 − 4.69 − 1.78 
Queensland 0.4 − 152 − 108.7 
Turks and Caicos 

Islands 
0.46 − 115 − 34.01  
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very high i.e., infections are spreading at a very faster pace each day. A 
similar trend is followed for all 58 provinces. However, there are few 
provinces where an increase in the infections (gradient) is even less than 
1, i.e., infections are not even increasing linearly. For Example, Green-
land’s Martinique, Queensland, and Turks and Caicos Island observed 
gradients of 0.1, 0.9, 0.4, and 0.46, respectively. 

From Table 7, it can be seen that if the magnitude of the gradient is 
significantly higher for a province, then the proposed approach is quite 
efficient in forecasting COVID-19 Infections. For Alabama, the magni-
tude of the gradient is 1144.46, which is comparatively very large. So, 
the improvement in MAPE score and R2 values are also better (with 
improvements of 76.2% and 18.3, respectively) than the without-TL 
approach. Similarly, for Manitoba, the magnitude of the gradient is 
82.3. Thus, the prediction preciseness of the proposed approach is also 
effectual i.e., improvement in MAPE score and R2 value of 21.60% and 
28.08 respectively as compared to without-TL. This trend is observed for 
as many as 58 provinces (out of a total of 62 provinces), which confirms 
the increased efficacy of the proposed model. The increase of infectious 
spread in the past 30 days is minimal for 4 provinces out of a total of 62 
provinces i.e., the magnitude of the gradient of infectious spread in the 
past 30 days is very small. In such cases, enhancement of the prediction 
preciseness from the proposed approach is absent as compared to the 
without-TL approach. For Example, the gradient for Greenland is 0.1 
(which is very minuscule ). 

So, the proposed approach has resulted in poor performance i.e., 
deterioration in the MAPE score and R2 values (− 72.22% and − 0.86, 
respectively) as compared to without-TL. Similarly, for Martinique, the 
small gradient of 0.9, deteriorated the performance of MAPE score R2 

values by − 4.69% and − 1.78, respectively. Similar behavior is observed 
for Queensland and Turks and Caicos Islands, as visualized in Table 7. 
For these provinces, the proposed approach has been found as not so 
suitable. 

Therefore, our major observations on the performance of the pro-
posed multi-source deep-TL approach are as follows:  

a) If historical infections of 30 days are variably increasing with respect 
to time i.e., a stationary pattern (gradient of infectious spread) is not 
observed, then our proposed model will result in efficient forecasting 
of COVID-19 infection. It can be visualized from Table 7, that when 
the gradient value is higher in magnitude, the proposed-TL approach 
is providing better efficacy of the model. For example, the gradient of 
infectious spread is higher for Florida and New South Wales 
(2714.96 and 44.66, respectively), thus the proposed approach 
attained precise predictions. Hence, it can be visualized from Fig. 4 
(g), and Fig 4(l) for Florida and New South Wales in which the 
without-TL approach has resulted in imprecise predictions (i.e., very 
high MAPE score 99.31, 1.53 respectively) whereas with-TL 
approach in Fig. 5 (g), Fig 5 (l) has provided more precise fore-
casting (better MAPE score: 3.58 and 1.20, respectively). Such trends 
are also observed for 58 provinces from a total of 62 provinces. 

b) The proposed model of multi-source deep-TL methodology has pro-
vided more stable outcomes with a lower rate of fluctuations in 
future infection forecasting in comparison with the without-TL 
approach. For example, it can be visualized from Fig. 4(b) and 4(h) 
for Alaska and Georgia in which the without-TL approach depicts 
very large fluctuations (i.e., very poor R2 values: 81.21 and − 2177, 
respectively) whereas the with-TL approach (Fig. 5(b) and (h)) has 
resulted in more stable outcomes (i.e., better R2 values: 4.09 and 
0.84, respectively). Since the infection gradient for Alaska and 
Georgia is higher in magnitude (197.23 and 1239.86, respectively), 
the performance of the proposed approach has resulted in more 
stable and accurate results. Such trends of stable forecasts (better R2 

values) are also observed for as many as 58 provinces out of a total of 
62 provinces. Thus, the proposed technique has provided more 
steady forecasts of the expected number of daily cases per province in 
the next 6 days.  

c) If gradient of infectious spread is very low, it means certain level of 
stationarity is observed in past infections. That is, if increase in the 
confirmed cases witnesses little variation over the time, then the 
proposed approach may not result in efficient performance. For 
example, it can be visualized from Fig. 6(b) and (f) for the province 
Greenland and Queensland etc., in which with-TL resulted in poor 
performance. That is, deterioration of MAPE score and R2 values 
− 72.22% and − 0.86 for Greenland and − 152% and − 108.7 for 
Queensland, respectively.  

d) When the gradient of infectious spread is very minimal, the proposed 
model has resulted in high fluctuating outcomes (less robust) in 
comparison to without-TL approach. For example, the proposed 
approach depicts very large fluctuations for Martinique, and Turks 
and Caicos Island (see Figs. 6(d), Fig 4(h)) whereas the without-TL 
approach (Fig. 6(c) and (g)) has resulted in more stable outcomes 
(deterioration of MAPE score and R2 values by − 4.69% and − 1.78 
for Martinique, and − 115% and − 34.01 for Turks and Caicos Island, 
respectively). Since the infection gradient for Martinique and Turks 
and Caicos Island is low in magnitude (0.9 and 0.46, respectively), 
the performance of the proposed approach degrades. 

Thus, it can be concluded as whenever the gradient of infection 
spread is variably increasing, then the proposed predictive modeling 
results in more stable and precise forecasting than the without-TL 
approach. However, when the gradient is very low i.e., a certain level 
of stationarity is observed in past infections, then the without-TL 
approach performs better. In such a scenario, the proposed approach 
results in high fluctuations and imprecise forecasting. 

6. Conclusion and future works 

This paper has proposed a novel approach for COVID-19 infections 
forecasting using a multi-source deep transfer learning methodology. 
The proposed approach is also novel as for the first time it considers 
parameters such as population density and economic conditions for 
COVID-19 efficient forecasting since COVID-19 is a contagious disease. 
It has been proved experimentally, by investigating different features 
independently and recording their performance. Later, when all the 
features are combined, better performance resulted. Apart from these 
novel parameters, the COVID-19 infection spread in published literature 
is found to be dependent on the rate of infections, fatality, and recovery 
over a period. This time-dependent task can effectively be solved using 
the well-known LSTM model. However, a comparative analysis has been 
performed with other existing state-of-art algorithms such as RNN and 
VARMAX, to validate the performance of LSTM over them. The avail-
ability of the COVID-19 province-specific dataset is very little, thus 
LSTM suffers from low variance and high bias. So, to tide over these 
limitations of LSTM, the proposed approach has utilized transfer 
learning to enhance the LSTM accuracy in COVID-19 forecasting by 
employing a multi-source domain dataset for initial training. 

The performance of the proposed approach has been evaluated using 
two different statistical measures, which are: MAPE and coefficient of 
determination. The empirical evidences show that, a maximum 
improvement up to 96% (with the proposed TL approach) with the 
average accuracy ranging from 65 to 85% have been observed in terms 
of MAPE score. The maximum similarity up to 0.84 (with the proposed 
TL approach) has been observed between actual infections and fore-
casted infectious in terms of R-squared test, whereas the without-TL 
LSTM model resulted in very poor similarity. The proposed approach 
provides more stable and precise forecasting, whenever the gradient is 
high, as compared to without-TL. However, when stationarity is 
observed, then without-TL approach performs better than the proposed 
approach. Thus, keeping in mind the strength and weakness of the 
proposed approach, a stable and more accurate transmission forecast is a 
crucial requirement for administrators for analyzing the current sce-
nario to deal with the threats of COVID-19. 
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Towards the end, we may firmly infer that novel technique for 
COVID-19 infection forecasting, using multisource deep transfer 
learning is extremely effective. Henceforth, we would improve our 
approach to forecast the COVID-19 infection evolution of developing 
nations where coverage of COVID-19 testing is inadequate. We will 
incorporate more parameters which are related to infectious spread, to 
provide better infection forecasting in future. Also, the proposed 
approach of MSDTL using LSTM will be further evolved so that its pre-
diction precision is enhanced including the cases of stationarity. 

The proposed approach can be extended in modelling the prediction 
of any contagious disease precisely, since future infections will be 
dependent on density, population, and time. The proposed approach 
may also target many other real-world applications with data scarcity 
and data insufficiency. The proposed approach can be applied for the 
prediction of stock prices for a company that is recently listed in a 
country. Since the company is a recent entrant to that country, the data 
is insufficient to precisely forecast its stock prices. Thus, in this case, 
multi-source deep transfer learning can be employed and related data 
from other countries having similar economic conditions can be incor-
porated, and accurate forecasts of these stocks can be modelled. Simi-
larly, the proposed approach can also be applied in weather forecasting 
if some unusual weather phenomenon is observed. In such cases, data 
pertaining to this unusual phenomenon will be rare. But this limitation 
can be optimally tackled by the proposed multi-source deep TL, which 
applies deep TL on related multi source datasets for precise forecasting 
of such unusual weather phenomena. For example, recently in some 
parts of the world, sudden heat waves were observed, and at some 
places, the recorded ground temperature was nearly 50◦ Celsius, which 
was very unusual. Thus, in such scenarios, multi-source deep transfer 
learning can be employed and similar data from different parts of the 
regions/world can be captured which may help in appropriate weather 
forecasting. Such a study may therefore aim for better prediction by 
employing multi-source deep transfer learning. 
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