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Abstract

Non-tumoural cells within the tumour microenvironment (TME) influence tumour proliferation, invasiveness and
angiogenesis. Little is known about TME in pituitary neuroendocrine tumours (PitNETs). We aimed to characterise
the role of TME in the aggressive behaviour of PitNETs, focusing on immune cells and cytokines. The cytokine
secretome of 16 clinically non-functioning PitNETs (NF-PitNETs) and 8 somatotropinomas was assessed in primary
culture using an immunoassay panel with 42 cytokines. This was correlated with macrophage (CD68, HLA-DR,
CD163), T-lymphocyte (CD8, CD4, FOXP3), B-lymphocyte (CD20), neutrophil (neutrophil elastase) and endothelial
cells (CD31) content, compared to normal pituitaries (NPs, n = 5). In vitro tumour–macrophage interactions were
assessed by conditioned medium (CM) of GH3 (pituitary tumour) and RAW264.7 (macrophage) cell lines on
morphology, migration/invasion, epithelial-to-mesenchymal transition and cytokine secretion. IL-8, CCL2, CCL3,
CCL4, CXCL10, CCL22 and CXCL1 are the main PitNET-derived cytokines. PitNETs with increased macrophage and
neutrophil content had higher IL-8, CCL2, CCL3, CCL4 and CXCL1 levels. CD8+ T-lymphocytes were associated to
higher CCL2, CCL4 and VEGF-A levels. PitNETs had more macrophages than NPs (p < 0.001), with a 3-fold increased
CD163:HLA-DR macrophage ratio. PitNETs contained more CD4+ T-lymphocytes (p = 0.005), but fewer neutrophils
(p = 0.047) with a 2-fold decreased CD8:CD4 ratio. NF-PitNETs secreted more cytokines and had 9 times more
neutrophils than somatotropinomas (p = 0.002). PitNETs with higher Ki-67 had more FOXP3+ T cells, as well as lower
CD68:FOXP3, CD8:CD4 and CD8:FOXP3 ratios. PitNETs with “deleterious immune phenotype”
(CD68hiCD4hiFOXP3hiCD20hi) had a Ki-67 ≥ 3%. CD163:HLA-DR macrophage ratio was positively correlated with
microvessel density (p = 0.015) and area (p < 0.001). GH3 cell-CM increased macrophage chemotaxis, while
macrophage-CM changed morphology, invasion, epithelial-to-mesenchymal transition and secreted cytokines of
GH3 cells. PitNETs are characterised by increased CD163:HLA-DR macrophage and reduced CD8:CD4 and CD8:
FOXP3 T cell ratios. PitNET-derived chemokines facilitate macrophage, neutrophil and T cell recruitment into the
tumours which can determine aggressive behaviour.
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Introduction
Pituitary neuroendocrine tumours (PitNETs) can be as-
sociated with significant morbidity due to mass effects
on surrounding tissues and/or excessive or low hormone
secretion [3, 46]. Twenty to 45% are invasive and may
exhibit aggressive behaviour with cavernous sinus inva-
sion and high Ki-67, and are often refractory to conven-
tional treatment with poorer outcomes and higher
recurrence rates [15, 18, 53, 82].
The tumour microenvironment (TME) consists of neo-

plastic, immune and stromal cells together with enzymes,
growth factors and cytokines within the extracellular matrix
[5–7, 11, 24]. Chemokines produced by the neoplastic cells
contribute to trafficking and modulation of immune cells,
angiogenesis and tumour invasion [5, 89]. Macrophages are
a major component of the TME and are characterised by a
spectrum of markers representing classically-activated mac-
rophages (known as M1-like macrophages as one end of a
spectrum) characterised by, among others, HLA-DR posi-
tivity [42, 44, 71], and alternatively-activated macrophages
(representing another end, known as M2-like macrophages)
characterised by, among others, CD163 positivity [27, 44,
81]. HLA-DR+ (M1-like) macrophages have an anti-
tumoural effect [27, 60], whereas CD163+ (M2-like) macro-
phages are associated with tumour initiation, progression,
invasion and angiogenesis [42, 44, 66, 73, 87]. Although the
M1 and M2 macrophage nomenclature has been suggested
to be replaced by more nuanced nomenclature [55], we use
these forms when relating to previous literature [42, 44, 66,
73, 87]. Tumour-infiltrating CD8+ T lymphocytes are usu-
ally beneficial to the host as they initiate cytotoxic cascades
against tumour cells; CD4+ T helper 1 cells are associated
with good outcomes, whereas CD4+ T helper 2 and
FOXP3+ T regulatory cells are immunosuppressive [6, 9]; B
lymphocytes are often associated with a good prognosis,
but an immunosuppressive B cell population has also been
described [4, 49, 59, 69]. Neutrophils orchestrate responses
against tumour cells, however, their role in tumour biology
also includes detrimental effects [16, 61].
TME elements influence PitNET aggressiveness, ren-

dering tumours larger [37, 91], more proliferative [8, 52]
and invasive [38, 62, 88, 90]. Studying the TME may
provide novel insights into PitNET biology and may lead
to development of novel therapies, such as the successful
ipilimumab and nivolumab combined treatment in a pa-
tient with an ACTH-secreting pituitary carcinoma [35].
Previous studies have assessed CXCL12 [8, 19, 33, 48,
58, 88, 91], IL-8 [23, 76, 84] and immune cells [6, 37, 38,
52, 85] in PitNETs. However, the crosstalk between the
cytokine network and immune cells in determining the
PitNET phenotype has not been previously comprehen-
sively explored. In this study we aimed to characterise
the cytokine network and the immune cell infiltrates
within the TME of PitNETs.

Materials and methods
Human PitNET samples
Fresh human PitNET tissues from 24 patients (8 somato-
tropinomas and 16 clinically non-functioning PitNETs
(NF-PitNETs), including 13 gonadotropinomas, 1 silent
corticotropinoma and 2 null cell PitNETs) were obtained
at the time of transsphenoidal surgery (Table 1), and a
fragment was processed for primary culture. This study
was approved by the local Ethics Committee (MREC No.
06/Q0104/133) and patients gave written informed con-
sent. Normal pituitary (NP) autopsy samples collected 4–
24 h post-mortem from subjects (age 18-81yr) with no
known endocrine, immune or malignant disease (n = 5).

Immunohistochemical analysis and evaluation
Immunostains were performed on 4 μm paraffin-
embedded tissue sections using Ventana Discovery DAB
Map System (Ventana, Illkirch, France). Slides were
deparaffinised and processed for antigen retrieval for 30
min with cell conditioning solution CC1 (Ventana),
which is a Tris base buffer (pH~ 9). After blocking with
Blocker D solution (Ventana), slides were incubated with
primary antibody for 60 min (Additional file 4: Table S1)
and then with the universal secondary antibody (Ven-
tana) for 20 min. Slides were counterstained with haema-
toxylin. A negative control, where primary antibody was
omitted, was included per experiment. Immunohisto-
chemical studies assessed macrophages using CD68,
CD163 and HLA-DR [42, 44, 71, 81], lymphocytes using
CD8 for cytotoxic T cells, CD4 for T helper cells,
FOXP3 for T regulatory cells and CD20 for B cells. Neu-
trophils were assessed with neutrophil elastase and
endothelial cells with CD31 as well as by their location
and morphology. Slides were scanned and analysed with
Pannoramic Scanner and Viewer Software (3DHIS-
TECH, Budapest, Hungary). Full stained slides were
inspected at low magnification (5x and 10x magnifica-
tion) in order to identify “hot spots” areas, i.e. areas with
high abundance of immunopositive cells within the
tumoural tissue in PitNET slides and within the normal
pituitary tissue in NP slides. All selected areas were first
verified on the respective haematoxylin and eosin slides,
to ensure that cell counting was correctly performed in
tumoural or normal pituitary tissue respectively. We ex-
cluded intra-vascular and non-adenomatous immunopo-
sitive cells. Immunopositive cells were counted in 5
different “hot spots” high power field (HPF) using the
ImageJ software (National Institutes of Health, USA).
Counterstained nuclei identifying tumour cells were also
counted, and the data were expressed as percentage of
immunopositive immune cells relatively to the total
number of tumour cells per HPF. Vessels (stained for
CD31) were manually counted in 3–5 different “hot
spot” fields (20x magnification) allowing the estimation
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of microvessel density (number of vessels per HPF), and
the vessels contour was manually traced using the Ima-
geJ software to obtain an estimation of the total micro-
vessel area (μm2), as described previously [78].

Pre-operative haematological data collection
Blood samples from each patient were routinely taken
within 7–10 days before the pituitary surgery as part of
the pre-operative work-up protocol. All the serum full
blood counts were performed in a certified National
Health Service laboratory in a standardised manner on a
Sysmax automated counter.

RNA in situ hybridisation with RNAscope
IL-8 and CCL2 and chemokine receptors CXCR2 and
CCR5 were detected using the RNAscope 2.5 HD Du-
plex Chromogenic Assay (Advanced Cell Diagnostics,
ACD, USA), according to the manufacturer’s protocols.
Briefly, 4 μm paraffin-embedded PitNET tissue sections
were baked at 60 °C for 90 min, deparaffinised, and then
boiled with pre-treatment retrieval reagent for 15 min.
Protease digestion was performed at 40 °C for 30 min,
followed by hybridisation for 2 h at 40 °C with Probe mix
according to 1:50 ratio of C2 to C1 probes: mix IL-8
(ACD, cat. no. 310381-C2) and CXCR2 (ACD, cat. no.
468411), and mix CCR5 (ACD, cat. no. 601501-C2) and
CCL2 (ACD, cat. no. 423811). Hybridisation signals were
amplified and visualised with RNAscope 2.5 HD Duplex
Chromogenic Assay reagents. Cell nuclei were counter-
stained with haematoxylin, and slides were mounted
with VectaMount mounting medium (Vector Laborator-
ies, cat. no. H-5000). Probe-DapB (ACD) was used as
negative control. Slides were scanned and analysed with
Pannoramic Scanner and Viewer Software (3DHIS-
TECH, Budapest, Hungary).

Primary culture
Fresh PitNET tissue was collected in high glucose Dul-
becco’s Modified Eagle’s Medium (DMEM, Sigma, Gil-
lingham, UK, cat. no. D6429) supplemented with 10%
heat-inactivated foetal bovine serum (FBS, Gibco,
Loughborough, UK, cat. no. 16000044) and 0.5% genta-
micin (Sigma, cat. no. G1397). Tissue was washed with
magnesium and calcium-free Phosphate Buffered Saline
(PBS) (Sigma, cat. no. D8537), cut into small pieces and
incubated for 45 min at 37 °C in 10 times diluted
Trypsin-EDTA 0.05% (1X) Phenol Red (Gibco, cat. no.
25300054) with frequent pipetting allowing effective cell
dispersion. Trypsin digestion was stopped by adding
complete medium, cells were transferred to a tube and
allowed to stand for 10 min for sedimentation of un-
digested debris. Supernatants containing tumour cells
were transferred to a separate tube, centrifuged at 800 g
for 5 min, and gently re-suspended in 1 mL complete

Table 1 Baseline clinicopathological features of the 24 patients
with PitNETs

Total of PitNETs
(n = 24)

Gender [n (%)]

Male 16 (66.7%)

Female 8 (33.3%)

Current age (yr) [mean ±
standard deviation (SD)]

51.9 ± 15.1

Age at diagnosis
(yr) [mean ± SD]

48.8 ± 15.5

Clinical diagnosis [n (%)]

Acromegaly 8 (33.3%)

NF-PitNET 16 (66.7%)

Hyperprolactinaemia
at diagnosis [n (%)]

8 (33.3%)

Headache [n (%)] 8 (33.3%)

Visual Impairment [n (%)] 13 (54.2%)

Hypopituitarism at
diagnosis [n (%)]

11 (45.8%)

Macroadenoma [n (%)] 24 (100%)

Suprasellar
extension [n (%)]

24 (100%)

Cavernous sinus
invasion [n (%)]

10 (41.7%)

Ki-67 ≥ 3% [n (%)] 5 (20.8%)

Mean number of
treatments [mean ± SD]

1.6 ± 0.9

Mean number of
surgeries [mean ± SD]

1.2 ± 0.5

Reoperation [n (%)] 5 (20.8%)

Hypopituitarism at
last follow-up [n (%)]

14 (58.3%)

Active disease at
last follow-up [n (%)]

4 (16.7%)

Follow-up duration
(yr) [mean ± SD]

2.5 ± 9.1

Pre-operative haematological
parameters [mean ± SD]

Red cell count (1012/
L)

[Normal range (NR): M 4.4–5.8 / F
3.95–5.15]

4.58 ± 0.46

Haemoglobin
(g/L)

[NR: M 130–170 / F 115–155] 132.46 ± 12.47

Haematocrit (%) [NR: M 37–50 / F 33–45] 40.24 ± 3.79

White cell count
(109/L)

[NR: 3.0–10.0] 7.08 ± 3.39

Neutrophil count
(109/L)

[NR: 2.0–7.5] 3.73 ± 1.51

Lymphocyte count
(109/L)

[NR: 1.2–3.65] 2.71 ± 2.25

Monocyte count
(109/L)

[NR: 0.2–1.0] 0.44 ± 0.13

Eosinophil count
(109/L)

[NR: 0.0–0.4] 0.17 ± 0.11

Basophil count (109/
L)

[NR: 0.0–0.1] 0.03 ± 0.02

Platelet count (109/L) [NR: 150–400] 234.96 ± 62.18
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medium. Viable cells were assessed with Tryptan Blue
Solution (Sigma, cat. no. T8154) and 2 × 106 cells were
seeded in complete medium in a well coated with Poly-
L-lysine (Sigma, cat. no. P4707) from a 6-well plate
when viability was > 90%. Cells were incubated overnight
at 5% CO2 at 37 °C. The next day plates were examined
under the microscope, complete medium was aspirated,
cells were carefully washed 3 times with PBS, and then
1mL serum-free medium was added. After incubation
for 24 h, supernatants were collected to clean tubes and
placed immediately on ice to avoid cytokine degradation.
Tubes were centrifuged at 10,000 rpm for 10min at 4 °C
to remove debris, and supernatants were collected and
stored in − 80 °C for 3–6 months until being assayed in
duplicate with the human Millipore MILLIPLEX cyto-
kine 42-plex array.

Cell culture
Rat pituitary somatomammotroph GH3 cell line, ob-
tained from European Collection of Authenticated Cell
Cultures, and the murine RAW 264.7 macrophages
(kind gift from Dr. Giulia Marelli, Barts Cancer Institute)
were incubated at 5% CO2 at 37 °C and cultured in high
glucose DMEM supplemented with 10% FBS and 0.5%
gentamycin. Once cells were 70–90% confluent, they
were passaged after washes with magnesium- and
calcium-free PBS, and mobilisation with Trypsin-EDTA
0.05% (1X) Phenol-Red for GH3 cells or with Accutase®
solution (Sigma, cat. no. A6964) for RAW 264.7 macro-
phages. Once cells were detached (confirmed by light
microscopy), cell suspension was put into new flasks or
spun (3 min, 1200 g) and re-suspended in medium to be
further used in in vitro experiments.
GH3 cell-conditioned medium (CM) was generated by

seeding 5 × 106 GH3 cells in T75 culture flasks for 72 h
in 10mL complete medium. Macrophage-CM was gen-
erated from 5 × 106 RAW 264.7 macrophages in T75
culture flasks for 24 h in 10 mL complete medium
(−PMA_Raw.CM) or stimulated with 5 nM of Phorbol
12-Myristate 13-Acetate (PMA) (Sigma, cat. no. P8139)
in 10mL complete medium (+PMA_Raw.CM).
Cell culture supernatants for cytokine array were gen-

erated by seeding 5 × 105 GH3 cells in 12-well culture
plates for 24 h in serum-free medium conditions at base-
line and after treatment with RAW 264.7 macrophage-
CM. Supernatants were carefully transferred to clean
tubes, centrifuged at 10,000 rpm for 10 min in 4 °C to re-
move debris, and then supernatants were collected and
stored in − 80 °C for 3–6 months until being assayed.

Human and rat Millipore MILLIPLEX cytokine arrays
Cytokine arrays on human PitNET-derived supernatants
were performed by Eve Technologies (Calgary, Alberta,
Canada), according to their protocol by using Bio-Plex™

200 system (Bio-Rad Laboratories, Inc., Hercules, CA,
USA), and human cytokine/chemokine array with IL-18
(HD42) kit (Millipore, St. Charles, USA). This array
measured 42 different cytokines, chemokines and growth
factors in the same sample: G-CSF, GM-CSF, IFNα2,
IFNγ, IL-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6,
IL-7, IL-8, IL-9, IL-10, IL-12(p40), IL-12(p70), IL-13, IL-
15, IL-17A, IL-18, CXCL1, CXCL10, CCL2, CCL3,
CCL4, CCL5, CCL7, CCL11, CCL22, CX3CL1, sCD40L,
Flt-3 L, PDGF-AA, PDGF-BB, TGF-α, TNF-α, TNF-β,
VEGF-A, EGF and FGF-2.
Millipore MILLIPLEX arrays on supernatants from rat

GH3 cells were also performed by Eve Technologies, using
a different species-specific kit array: rat cytokine/chemo-
kine array 27-plex (RD27) (Millipore) able to measure 27
different cytokines, chemokines and growth factors in the
same sample: G-CSF, GM-CSF, IFNγ, IL-1α, IL-1β, IL-2,
IL-4, IL-5, IL-6, IL-10, IL-12(p70), IL-13, IL-17A, IL-18,
CXCL1, CXCL2, CXCL10, CCL2, CCL3, CCL5, CCL11,
CX3CL1, TNF-α, VEGF, EGF, Leptin and LIX.

Invasion, migration and morphology studies
Invasion assays were carried out using the BioCoat
Matrigel Invasion Chambers with 8 μm pores (24-well
insert; BD Biosciences, CA, USA, cat. no. 354480). Inva-
sion chambers were hydrated for 2 h with 500 μl of
serum-free medium at 37 °C. After Matrigel rehydration,
750 μl of macrophage-CM or complete medium was
added to the lower chamber as chemoattractant and
2.5 × 104 GH3 cells in 500 μl serum-free medium were
added to the upper chamber and incubated at 37 °C.
After 72 h, invading cells through Matrigel were fixed in
100% methanol and stained with 2% Giemsa blue
(Sigma-Aldrich, MO, USA, cat. no. G5637-5G). Total
number of invading cells per chamber were counted,
and normalised to invading cells towards complete
medium. Macrophage chemotaxis were evaluated by
Transwell BioCoat Migration insert plates with 8 μm
pores (24-well insert; Corning Fisher Scientific, USA,
cat. no. 354578) following a similar protocol as described
for invasion assay. Migration and invasion studies were
run in duplicates and were repeated at least 3 times.
Morphological changes were assessed, as previously de-
scribed [10], by measuring 6 different shape parameters
using ImageJ: area (area of selection in calibrated square
units, μm2); perimeter (μm); Feret’s diameter (longest
distance between any 2 points along selection boundary);
roundness (representing shape, 4 × [Area] / π × [Major
axis]2, with value of 1 for a circle and 0 for very elon-
gated shapes); circularity (representing perimeter
smoothness, 4π × [Area][Perimeter]2, with value of 1 in-
dicating a perfect circle and value close to 0 indicating
elongated shape) and solidity (value of 1 indicating more
stiffness and less deformable cells). Per treatment
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condition, 5 images at 40x were taken and 15 cells were
measured per image, thus 75 cells were analysed per ex-
periment (minimum of 3 experiments were done).

Immunocytochemistry
GH3 cells (5 × 104) were plated on 15mm coverslips
placed in 12-well plates. After overnight attachment, GH3
cells were treated with -PMA_Raw.CM, +PMA_Raw.CM
or complete medium for 24 h. Cells were fixed in 4% para-
formaldehyde for 15min at room temperature, following
washes with PBS cells were permeabilised with 0.1% Tri-
ton X-100 in PBS for 5min at 4 °C. Cells were blocked in
1% bovine serum albumin for 30min at room
temperature, and then incubated with primary antibodies
(listed in the Additional file 4: Table S1) followed by a 30
min incubation with secondary conjugated antibodies
(Alexa Fluor 568-conjugated goat anti-mouse IgG, Alexa
Fluor 488-conjugated donkey anti-mouse IgG and Alexa
Fluor 488-conjugated donkey anti-rabbit IgG; 1:1000; Mo-
lecular Probes, Invitrogen). Coverslips with stained cells
were mounted with Fluoroshield with DAPI mounting
medium (Sigma, cat. no. F6057). Stained slides were visua-
lised on confocal microscope LSM 880 Zeiss and images
taken at 63x magnification. E-cadherin and ZEB1 fluores-
cent intensities were quantified using the software Carl
Zeiss Zen Blue Edition v2.3.

Real-time quantitative polymerase chain reaction (RT-
qPCR)
RNA from GH3 cells and RAW 264.7 macrophages was
extracted using Qiagen’s RNeasy micro kit (cat. no. 74004)
according to manufacturer’s protocol. RNA samples were
assessed by NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Rockland, DE, USA). Comple-
mentary DNA was synthesised from 1 μg of RNA using
High-Capacity cDNA Reverse Transcription Kit (Thermo-
fisher Scientific, cat. no. 4374966) following the manufac-
turer’s protocol. RT-qPCR reactions were prepared using
Brilliant III Ultra-Fast SYBR Green QPCR Master Mix
(Agilent Technologies, Palo Alto, CA, USA, cat. no.
600882) and run with Thermal Cycler with MxPro soft-
ware (Agilent) using a 2-step programme: pre-incubation
3min at 95 °C, then 40 cycles of 20s at 95 °C and 20s at
60 °C. Cycle threshold (CT) values were analysed with
ΔΔCT quantification method. Target gene expression was
normalised to GAPDH expression used as internal con-
trol. Primers sequence (Sigma-Aldrich) were as follows:
CCR5 forward 5′-GTATGTCAGCACCCTGCCAA-3′,
reverse 5′-GAGCAGGAAGAGCAGGTCAG-3′; CX3CR1
forward 5′-CCATCTGCTCAGGACCTCAC-3′, reverse
5′-CACCAGACCGAACGTGAAGA-3′; MMP9 forward
5′-CTTGAAGTCTCAGAAGGTGGATC-3′, reverse 5′-
CGCCAGAAGTATTTGTCATGG-3′.

Affymetrix microarray analysis and xCell deconvolution
Total RNA from a different set of 7 human sporadic PitNET
samples (3 somatotropinomas and 4 NF-PitNETs) and 5
NPs was isolated using the Qiagen’s RNeasy micro kit and
target labelling and hybridisation were performed using
Affymetrix GeneChip 3′ IVT Express Kit (Affymetrix, Santa
Clara, CA, USA) according to manufacturer’s instructions
(samples described in detail in [10]). Microarray data have
been deposited with the National Center for Biotechnology
Information Gene Expression Omnibus (www.ncbi.nlm.nih.
gov/geo, accession number GSE63357). For deconvolution,
we used the gene-signature webtool method xCell [2, 56],
which inferred different immune and stromal cells from
microarray expression data giving a score per cell type. This
tool uses the M1 and M2 macrophage nomenclature.

Statistical analysis
Statistical analyses were carried out using the SPSS stat-
istical software v20 (IBM, USA) and GraphPad v6
(Prism, USA). Mann Whitney U test, one-way or two-
way ANOVA tests with post-hoc comparison tests were
applied as appropriate. Correlations between continuous
variables were determined by Pearson correlation coeffi-
cient r. p values < 0.05 were considered significant.

Results
Pituitary tumour cells release chemokines, with NF-
PitNETs secreting higher amounts than
somatotropinomas
In order to identify the most relevant cytokines derived
from human PitNETs, we established primary cultures
from 24 PitNETs. All tumours were larger than 1 cm in
diameter, 10 had cavernous sinus invasion and 5 had Ki-
67 ≥ 3% (Table 1). We assessed 42 different cytokines in
fresh tumour culture supernatants (Additional file 5: Table
S2). The cytokine array identified IL-8, CCL2, CCL3,
CCL4, CXCL10, CCL22, CXCL1 and CX3CL1 as the main
PitNET-derived cytokines (Table 2), all chemokines spe-
cialised in immune cell recruitment [5]. Ninety percent of
PitNETs secreted IL-8, CCL2 and CCL3, while CXCL1
was secreted by 50% of the tumours (Table 2). RNAscope
data showed that CCL2 and IL-8 are mainly synthesised
by pituitary tumour cells, while these have low expression
of chemokine receptors; chemokine receptors were, in
turn, strongly expressed in scattered perivascular cells,
morphologically distinct from tumour cells, likely corre-
sponding to immune cells (Fig. 1a).
NF-PitNETs secreted higher amounts of cytokines/che-

mokines than somatotropinomas, especially CCL2 (16x
more), IL-8 (25x more) and CCL4 (27x more), except for
FGF-2 which was found in higher concentrations in soma-
totropinoma supernatants (Fig. 1b). NF-PitNETs were more
often secreting IL-8, CCL2, CCL4, IL-6 and PDGF-AA than
somatotropinomas (Fig. 1c). Secretome differences between
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NF-PitNETs and somatotropinomas were not explained by
pre-operative somatostatin analogue treatment, as there
were no secretome differences between pre-treated and
non-pre-treated somatotropinomas (Additional file 1: Fig-
ure S1a). There were also no secretome differences between
sparsely and densely granulated somatotropinomas (Add-
itional file 1: Figure S1b). The PitNET-derived cytokine
secretome was not associated per se with cavernous sinus
invasion, elevated Ki-67 or presence of hypopituitarism at
diagnosis (data not shown).

Immune infiltrates differ between PitNETs and NPs
PitNETs contained more CD68+ macrophages (4.6 ± 0.4
vs 1.2 ± 0.2%, p < 0.001) and CD4+ T cells (1.0 ± 0.1 vs
0.6 ± 0.1%, p = 0.005), but fewer neutrophils (0.7 ± 0.2 vs
1.4 ± 0.1%, p = 0.047) and a trend for fewer CD8+ T cells
(1.8 ± 0.2 vs 2.6 ± 0.3%, p = 0.077), with a significant 2-
fold decrease in the CD8:CD4 cell ratio compared to
NPs (Fig. 2). There were no significant differences in B
and FOXP3+ T cells content (Fig. 2).
Macrophages are the most abundant immune cell type in

PitNETs, while other immune cells are present in lower
amounts (Fig. 2). Macrophages in PitNETs are predomin-
antly CD163+, while HLA-DR+ macrophages predominate
in NPs, resulting in a 3-fold increase in the CD163:HLA-
DR macrophage ratio in PitNETs (Fig. 3a). These immuno-
histochemical findings were confirmed on a different set of
samples [10] using gene expression analysis with xCell, with
PitNETs having a higher score than NPs for macrophages
(0.090 ± 0.016 vs 0.031 ± 0.013; p = 0.025) and CD163+
macrophages (0.042 ± 0.007 vs 0; p = 0.001) (Additional file 2:
Figure S2). The CD163+ macrophage phenotype in Pit-
NETs may be due, at least in part, to higher concentrations

of PitNET-derived M2-polarising cytokines, as IL-4 levels
were almost 5x higher than interferon-γ (M1-polarising
cytokine) (Fig. 3b).
We observed significant correlations between infiltrat-

ing immune cell populations in PitNETs, namely be-
tween CD8+ and CD4+ T cells (r = 0.534; p = 0.007),
CD8+ and FOXP3+ T cells (r = 0.504; p = 0.012), CD4+
T cells and neutrophils (r = 0.490; p = 0.05).
NF-PitNETs had more neutrophils than somatotropino-

mas (0.9 ± 0.1 vs 0.1 ± 0.1%, p = 0.002), but there were no
differences regarding other immune cells, neither CD163:
HLA-DR, CD8:CD4 or CD8:FOXP3 cell ratios (Add-
itional file 6: Table S3). There were no significant
differences in infiltrating immune cells among the differ-
ent NF-PitNET types (Additional file 6: Table S3) or be-
tween sparsely and densely granulated somatotropinomas
(data not shown).

Tumour cell-derived cytokines attract immune cells into
the TME
PitNETs with higher macrophage content were associ-
ated to higher levels of IL-8 (p = 0.023), CCL2 (p =
0.216), CCL3 (p = 0.065), CCL4 (p = 0.036) and CXCL1
(p = 0.024) (Fig. 4a), chemokines known to promote
macrophage chemotaxis [1, 5, 41, 43]. We observed
higher CCL2 (p = 0.036), CCL4 (p = 0.086), CXCL10
(p = 0.134) and VEGF-A (p = 0.025) levels in the super-
natants from PitNETs with higher CD8+ T cell contents
(Fig. 4b). PitNETs with more neutrophils released higher
levels of CCL2 (p = 0.033) and CCL4 (p = 0.044), cyto-
kines known to attract neutrophils [16, 63, 92], and there
was a noteworthy trend to release higher levels of che-
mokines involved in neutrophil chemotaxis (Fig. 4c),

Table 2 Top 12 highly secreted cytokines/chemokines/growth factors in the human PitNETs-derived cell culture supernatants (n =
24)

Cytokine/ Chemokine/
Growth factor

Mean concentration
(pg/mL) ± SEM

Serum-free
medium (pg/mL)

n (%) of PitNETs with
detectable cytokine

IL-8 854.18 ± 445.79 7.06 22 (91.7%)

CCL2 578.03 ± 222.66 4.00 21 (87.5%)

CCL3 150.55 ± 88.22 0 22 (91.7%)

CCL4 94.25 ± 47.20 3.09 18 (75.0%)

CXCL10 76.67 ± 47.58 0 14 (58.3%)

CCL22 67.25 ± 16.74 20.78 15 (62.5%)

CXCL1 60.30 ± 26.14 20.78 12 (50.0%)

CX3CL1 35.14 ± 17.12 6.73 19 (79.2%)

FGF-2 26.65 ± 4.11 0 19 (79.2%)

IL-6 24.90 ± 19.27 0 12 (50.0%)

PDGF-AA 22.36 ± 6.78 0.12 20 (83.3%)

VEGF-A 15.85 ± 4.06 0 18 (75.0%)

PitNETs-derived supernatants collected at 24 h on serum-free medium conditions and cytokine secretome determined with the human Millipore MILLIPLEX
cytokine 42-plex array. Data are shown as mean concentration (pg/mL) ± standard error of the mean (SEM). Right column shows the number and percentage of
PitNETs with detectable cytokine levels, i.e. cytokine concentration above the lowest standard curve point and serum-free medium quantification
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namely IL-8 (p = 0.073), CXCL1 (p = 0.097) and CXCL10
(p = 0.098). There were no significant associations be-
tween PitNET-derived cytokine secretome and infiltrat-
ing CD4+, FOXP3+ and B cells (data not shown).
PitNET-infiltrating immune cells did not correlate

with circulating immune cell types, suggesting that im-
mune infiltrates are subject to differential recruitment

into the PitNET rather than altered bone marrow pro-
duction (Additional file 3: Figure S3).

Immune cells in the TME of PitNETs may determine
tumour proliferation and angiogenesis
PitNETs with higher proliferative index (Ki-67 ≥ 3%) had
lower CD8:CD4 ratio, as well as lower CD8:FOXP3 and

Fig. 1 a RNAscope staining of IL8 (green)-CXCR2 (red) and CCL2 (red)-CCR5 (green) mRNA in a NF-PitNET and a somatotropinoma. CCL2 and IL-8
are mainly expressed in pituitary tumour cells, while the chemokine receptors are strongly expressed in scattered perivascular cells
(morphologically distinct from tumour cells), likely corresponding to immune cells. Scale bar 20 μm. b Cytokine secretome from NF-PitNETs (n =
16) and somatotropinomas (n = 8). Data are shown for the top 12 secreted proteins as mean ± standard error of the mean. *, <0.05 (Mann
Whitney U test). c Percentage of NF-PitNETs (n = 16) and somatotropinomas (n = 8) with detectable cytokine levels, i.e. concentration above the
lowest standard curve and serum-free medium quantification. Data are shown as percentage and for the top 12 secreted proteins as identified by
the Millipore MILLIPLEX assay in primary culture supernatants. *, < 0.05, **, < 0.01 (Chi-squared test)
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Fig. 2 (See legend on next page.)
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CD68:FOXP3 ratios as a result of increased infiltration of
FOXP3+ T cells (0.7 ± 0.2 vs 0.3 ± 0.6%; p = 0.013) (Fig. 5a-
b). All PitNETs with “deleterious immune infiltrate
phenotype”, i.e. higher content of macrophages, T helper
lymphocytes, FOXP3+ T regulatory cells and B cells
(CD68hiCD4hiFOXP3hiCD20hi) had a Ki-67 ≥ 3% (Fig. 5c).
There were no differences between PitNETs with or with-
out cavernous sinus invasion regarding immune cell

content or cell ratios (data not shown). The CD163:HLA-
DR macrophage ratio was positively correlated with micro-
vessel density (p = 0.015) and area (p < 0.001) (Fig. 6).

GH3 cell-derived factors increase macrophage chemotaxis
and alter their morphology
To study the interactions between pituitary tumour
cells (GH3 mammosomatotroph tumour cell line)

(See figure on previous page.)
Fig. 2 Immunohistochemical analysis of immune cells in PitNETs and normal pituitary (NP). Immune cells analysed: macrophages (CD68+),
cytotoxic T lymphocytes (CD8+), T helper lymphocytes (CD4+), T regulatory cells (FOXP3+), B cells (CD20+) and neutrophils (neutrophil elastase+).
Data are shown as mean ± standard error of the mean for percentage of immune cells compared to the total number of tumour cells, and for
CD8:CD4 or CD8:FOXP3 cell ratios. Representative images are shown for NF-PitNET, somatotropinoma and NP. Scale bar 50 μm. PitNETs, n = 24;
NPs, n = 5. *,< 0.05, **,< 0.01, ***,< 0.001 (two-way ANOVA with Bonferroni multiple comparison test for immunopositive cell comparative analysis;
Mann Whitney U test for cell ratio comparative analysis)

Fig. 3 a Immunohistochemical analysis of CD163+ and HLA-DR+ macrophages in PitNETs and normal pituitary (NP). Data are shown as mean ±
standard error of the mean (SEM) for CD163:HLA-DR ratio and for the number of CD163-positive and HLA-DR-positive cells per high power field
(HPF). Representative images are shown for a PitNET and NP. Scale bar 50 μm. PitNETs, n = 24; NP, n = 5. ***, < 0.001 (Mann Whitney U test). b
Macrophage-polarising cytokines in PitNET culture supernatants. Supernatants were collected at 24 h in serum-free medium conditions and
cytokine secretome determined with the human Millipore MILLIPLEX cytokine 42-plex array. Results are shown as mean ± SEM for IL-4 and IL-10
(M2-polarising cytokines, blue bars) and IFNγ (M1-polarising cytokine, green bar). *,< 0.05, **,< 0.01 (one-way ANOVA with Bonferroni multiple
comparison test)

Marques et al. Acta Neuropathologica Communications           (2019) 7:172 Page 9 of 21



Fig. 4 Cytokine secretome of PitNETs cell culture supernatants with lower vs higher content of macrophages (a), CD8+ T cells (b) and neutrophils
(c). The cutoffs used to define low and high immune cell content were: 6% for macrophages, 1% for CD8+ T cells and 0.5% for neutrophils. Data
are shown for the top 12 secreted proteins as mean ± standard error of the mean. *, < 0.05 (Mann Whitney U test)
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and macrophages (RAW 264.7 macrophage cell line),
we established an in vitro model using CM from
each of the cell line as a chemoattractant agent for
the other. To investigate the role of GH3 cell-
derived factors in macrophage chemotaxis, we per-
formed a transwell migration assay, observing a
remarkable 36-fold increase in macrophage migration
towards GH3-CM in comparison to complete
medium or recombinant CX3CL1 (Fig. 7a). CX3CL1
was used as positive control, as this was the chemo-
kine with the highest concentration in GH3 superna-
tants (Additional file 7: Table S4), and has a
recognised chemoattractant effect on RAW 264.7
macrophages [22]. Immune cell chemotaxis depends
not only on tissue chemokine gradient, but also on

chemokine receptor expression in trafficking cells
[5]. GH3-CM increased more than 12x the expres-
sion of CX3CR1 (receptor with specific affinity for
CX3CL1 and highly expressed in RAW 264.7 macro-
phages [22]), as well as the expression of CCR5 (p =
0.051) (Fig. 7b). Thus, the GH3-CM macrophage
chemoattractant effect can be explained, at least in
part, by upregulation of chemokine receptor expres-
sion in RAW 264.7 macrophages. After GH3-CM
treatment, macrophages showed morphological
changes typical of activated macrophages: increase in
cell area, perimeter, Feret’s diameter and spindle-
shaped morphology [42, 44] and decrease in solidity,
roundness and circularity (Fig. 7c), representing cells
with enhanced migration phenotype.

Fig. 5 Immune cell infiltrates (a) and immune cell ratios (b) in PitNETs with lower (< 3%) vs higher (≥3%) Ki-67. PitNETs with lower Ki-67, n = 19;
PitNETs with higher Ki-67, n = 5. *, < 0.05, **, <0.01 (Mann Whitney U test). c) Percentage of PitNETs with Ki-67≥ 3% according to the presence of
a “deleterious immune infiltrate phenotype”, i.e. higher content of macrophages, CD4+ T helper lymphocytes, FOXP3+ T regulatory cells and B
cells (CD68hiCD4hiFOXP3hiCD20hi). PitNETs with “deleterious immune infiltrate phenotype”, n = 4; PitNETs without “deleterious immune infiltrate
phenotype”, n = 20. ***, <0.001 (Exact Fisher’s test)
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Macrophage-derived factors affect the behaviour and
invasiveness of GH3 cells
RAW 264.7 macrophage-CM induced significant changes
in GH3 cells: morphology changes, increased invasion,
epithelial-to-mesenchymal transition (EMT) activation
(Fig. 8) and alteration in cytokine secretion (Additional file
7: Table S4). Macrophage-CM from untreated (−PMA_
Raw.CM) or PMA-treated macrophages (+PMA_Raw.CM)
increased GH3 cell area, perimeter and Feret’s diameter,
and reduced their solidity, roundness and circularity indi-
cating that GH3 cells acquired an EMT-like phenotype.
Macrophage-induced morphology changes in GH3 cells
were confirmed with immunocytochemistry for actin: GH3
cells treated with macrophage-CM developed a granular
pattern of actin with prominent stress fibres and numerous
spikes (Fig. 8a), representing an EMT-like cytoskeletal alter-
ation [50].
GH3 cells showed higher invasion towards +PMA_Raw-

CM compared to complete medium (Fig. 8b). As invasion
depends on cell ability to secrete proteases to degrade

extracellular matrix, we hypothesised that macrophage-
CM upregulates matrix metalloproteinases (MMPs) ex-
pression in GH3 cells allowing them to invade. MMP-9 is
a key protease for type IV collagen degradation (main
component of Matrigel [32], and of the pituitary capsule
and cavernous sinus wall [14, 31, 36]), as well as MMP-9
overexpression is associated with PitNET invasiveness
[36]. Hence, we studied MMP-9 expression in GH3 cells
after treatment with macrophage-CM, and we observed a
significant MMP-9 upregulation in GH3 cells exposed to
macrophage-derived factors (Fig. 8c).
Macrophage-CM induced EMT activation in GH3 cells,

decreasing E-cadherin and increasing ZEB1 expression
(Fig. 8d), two hallmarks of EMT activation [17]. These
findings are in line with the morphological changes and
invasion assays results, suggesting that macrophage-
derived factors interact with pituitary tumour cells influ-
encing their behaviour and invasiveness.
We also found that PMA-activated macrophage-CM

induced cytokine secretion changes in GH3 cells,

Fig. 6 Microvessel density (MVD) or area (TMVA) correlation with CD163:HLA-DR macrophage ratio. Representative images are shown from
samples with low and high CD163:HLA-DR ratio. Scale bar 100 μm, n = 24. P values were determined by the Pearson correlation
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increasing the release of CX3CL1, CCL3, CXCL1,
CXCL10, IL-1β, IL-10, IL-13 and VEGF (Additional file
7: Table S4), peptides that play a role in different
tumourigenic mechanisms [5, 7, 40, 41].

Discussion
In this study, we found that PitNETs are an active source
of cytokines, particularly chemokines, which facilitate
macrophage, neutrophil and lymphocyte recruitment into
the TME. We found increased macrophage content in the
tumours, which together with the other cells provide an
inflammatory signature correlating with Ki-67 staining.
Our in vitro cell model data confirmed the macrophage
chemoattractant effect of pituitary tumour-derived factors,
while macrophage-derived factors influence tumour cell
behaviour leading to morphological changes, increased in-
vasion, cytokine secretome changes and EMT activation.
Thus, the cytokine network within the TME of PitNETs,
derived from both tumour and immune cells, as well as
from PitNET-associated fibroblasts [47], may play a role
in the modulation of the TME and in the aggressiveness
of PitNETs (Fig. 9).
IL-8, CCL2, CCL3 and CCL4 were highly secreted by

the majority of PitNETs. Cytokine array data from human
craniopharyngiomas identified CCL2 and IL-8 as the most
secreted cytokines in plasma, primary culture superna-
tants, cell and tissue lysates [57]. There are no previous
data on CCL2, CCL3 or CCL4 in PitNETs, but these che-
mokines are involved in tumour growth and invasion in
other tumours [5, 41], as well as in immune cell chemo-
taxis in cancer [5, 12, 16, 41, 43, 63, 72, 92]. We found no
association between CCL2, CCL3 or CCL4 levels and Pit-
NET aggressiveness, but PitNETs with a higher content of
macrophages, CD8+ T cells and neutrophils secreted
higher chemokine levels. PitNETs with more macrophages
were associated with higher levels of IL-8, a chemokine
that influences several oncogenic pathways [1, 86]. IL-8
mRNA was previously found in PitNETs, although differ-
ent detection methods provided a wide range of expres-
sion levels [23, 76, 84]. We also identified other
chemokines potentially relevant in PitNETs, namely
CXCL10, CCL22, CXCL1 and CX3CL1. Our data suggest
CXCL1 and CXCL10 as potential modulators of PitNET-

infiltrating neutrophils and macrophages. CXCL1 and its
receptor CXCR2 were previously identified in human Pit-
NETs [79], but there are no data regarding CXCL10,
CCL22 and CX3CL1. Together, these findings suggest a
link between endocrine cells and chemokines reflecting
their possible involvement in tumourigenesis and modula-
tion of immune infiltrates, as well as a promising target
for drugs affecting the PitNET cytokine network, as
already explored for other cancers [7, 41, 67].
Macrophages are present in normal [29, 39] and neo-

plastic pituitary [10, 21, 37]. Our immunohistochemical
and xCELL data showed that PitNETs contained 3-4x
more macrophages than NPs, and are the predominant
immune cell type in PitNETs. We found no association
between PitNET-infiltrating macrophages and cavernous
sinus invasion, and the correlation with high Ki-67 was
borderline. Lu et al. reported that macrophage content
was correlated with size and invasiveness [37]. AIP
mutation-positive somatotropinomas, often more aggres-
sive [45, 46], have more PitNETs-infiltrating macro-
phages than sporadic somatotropinomas or NPs [10].
Next, we studied the phenotype of infiltrating macro-

phages in human PitNETs and NPs using CD163 (M2-like)
and HLA-DR (M1-like) macrophage markers [44, 71, 81].
We noted a 3-fold increased CD163:HLA-DR ratio in Pit-
NETs compared to NPs, in line with our xCell data (score
for M2-macrophages was >4x higher in PitNETs). The pre-
dominance of M2-macrophages in PitNETs can be due, at
least in part, to higher concentrations of PitNET-derived
M2-polarising cytokines, namely IL-4, which was ~5x
higher than IFNγ, the main M1-polarising cytokine [42,
44]. M1- and M2-like macrophages have been described in
normal rat pituitary and in diethylstilbestrol-induced pro-
lactinomas [21], with prolactinomas having remarkably
more M2-macrophages than NP. M2-macrophages number
increased during the first weeks of diethylstilbestrol treat-
ment, even before tumour formation, suggesting a role for
M2-macrophages in initiating tumourigenesis. During di-
ethylstilbestrol treatment capillaries became more tortuous
with increased calibre and developed haemorrhage areas,
suggesting a possible role for M2-macrophages in angio-
genesis and vasculature modulation in PitNETs [21], in
agreement with our observed correlations between CD163:

(See figure on previous page.)
Fig. 7 a Transwell chemotaxis assay performed on RAW 264.7 macrophages towards complete medium, GH3-CM and recombinant CX3CL1
(rCX3CL1) at concentration 100 ng/mL for 72 h. Data are shown as mean ± standard error of the mean (SEM) for the ratio of migrated RAW 264.7
macrophages towards GH3-CM or rCX3CL1 in relation to migrated macrophages in complete medium. n = 6. ***, <0.001 (one way-ANOVA with
Bonferroni multiple comparison test). b CX3CR1 and CCR5 expression in RAW 264.7 macrophages determined by RT-qPCR after treatment with
GH3-CM for 24 h vs complete medium. Data are shown as mean ± SEM for CX3CR1 or CCR5 relative fold change expression to GAPDH,
determined by the ΔΔCT method. n = 3. **, <0.01 (Mann Whitney U test). c Morphological evaluation of RAW 264.7 macrophages after treatment
for 72 h with complete medium (n = 3), GH3-CM and rCX3CL1 at concentration of 100 ng/mL. Data are shown as mean ± SEM for the 6
morphological parameters evaluated by Image J: cell area (μm2), Feret’s diameter (μm), solidity (0–1), perimeter (μm), roundness (0–1) and
circularity (0–1). Per experiment 75 cells were analysed, with a minimum of 3 experiments per treatment condition. Scale bar 25 μm. ***, <0.001
(one-way ANOVA with Bonferroni multiple comparison test)
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(See figure on previous page.)
Fig. 8 a Morphological evaluation of GH3 cells after treatment for 72 h with complete medium and RAW 264.7 macrophage-CM, either from
untreated macrophages (−PMA_Raw.CM) or macrophages treated with PMA (+PMA_Raw.CM). Data are shown as mean ± standard error of the
mean (SEM) for the 6 morphological parameters evaluated by Image J: cell area (μm2), Feret’s diameter (μm), solidity (0–1), perimeter (μm),
roundness (0–1) and circularity (0–1). Seventy-five cells were analysed per experiment, with a minimum of 3 experiments per treatment condition.
Scale bar 25 μm. ***, <0.001 (one-way ANOVA with Bonferroni multiple comparison test). Alterations on actin cytoskeletal fibers in GH3 cells after
treatment with macrophage-CM for 72 h in comparison to complete medium; representative images taken on confocal microscope at 63x
magnification; DAPI was used to stain the nuclei. b Matrigel-coated chamber invasion assays on GH3 cells towards complete medium,
−PMA_Raw.CM and + PMA_Raw.CM after 72 h. Data are shown as mean ± SEM for the ratio of invading GH3 cells towards -PMA_Raw.CM and +
PMA_Raw.CM in relation to invading GH3 cells in complete medium conditions. Invasion studies were repeated 4 times in duplicate. *, <0.05
(one-way ANOVA with Bonferroni multiple comparison test). c MMP-9 expression in GH3 cells in complete medium or after treatment for 24 h
with + PMA_Raw.CM, as determined by RT-qPCR. Data are shown mean ± SEM for the relative MMP9 mRNA fold change expression to GAPDH, as
determined by the ΔΔCT method. n = 3. **, <0.01 (Mann Whitney U test). d Alterations in E-cadherin and ZEB1 expression by GH3 cells after 72 h
treatment with complete medium, −PMA_Raw.CM or + PMA_Raw.CM. Untreated GH3 cells show strong E-cadherin with membranous localisation
but also in the cytoplasm as well as low nuclear ZEB1 expression, while macrophage-CM treated GH3 cells display decreased E-cadherin
expression and increased nuclear ZEB1 expression. Pictures were taken on confocal microscope at 63x magnification. DAPI was used to stain the
nuclei. E-cadherin and ZEB1 fluorescent intensities are shown as mean ± SEM and were quantified in 30 different cells per treatment condition.
***, <0.001 (one-way ANOVA with Bonferroni multiple comparison test)

Fig. 9 The tumor microenvironment of PitNETs. Pituitary tumour cells release different cytokines, particularly chemokines (including IL-8, CCL2,
CCL3, CCL4, CXCL10, CXCL1), directly into the tumour microenvironment promoting the recruitment and infiltration of immune cells, including
macrophages, lymphocytes and neutrophils. PitNET-infiltrating immune cells change the behaviour of pituitary tumour cells, namely increasing
their proliferative capacity. PitNET-associated fibroblasts are also able to secrete cytokines into the TME, including IL-6 and other chemokines,
which in turn lead to increased invasion of pituitary tumour cells
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HLA-DR macrophage ratio and PitNET microvessel density
and area. These findings support a role for infiltrating M2-
macrophages in the angiogenesis of PitNETs, as previously
described in other cancers [13, 27, 42, 44, 80, 83]. We found
no association between PitNET-infiltrating CD163+ macro-
phages and cavernous sinus invasion, although a recent
study showed more CD163+ macrophages in invasive NF-
PitNETs than in non-invasive tumours [68].
We found that a low CD8:CD4 ratio is associated with

higher Ki-67, suggesting that relatively low CD8+ to high
CD4+ T cells, rather than absolute CD8+ and CD4+ T cell
amounts per se, represent a relative imbalance potentially
affecting tumour proliferation. This has been previously de-
scribed in gliomas, where the number of tumour-
infiltrating CD8+ and CD4+ cells alone had no prognostic
value, while the presence of a low CD8:CD4 ratio was an
independent predictor for poor progression-free and overall
survival [26]. Poor clinical outcome and persistence/recur-
rence was described in PitNETs with tumour-infiltrating
lymphocytes [38]. Another study found no association be-
tween CD8+ T cell count and Ki-67, tumour size, gender
or age [85]. We observed more CD4+ and fewer CD8+
cells, with a significant 2-fold decrease in CD8:CD4 ratio in
comparison to NPs, supporting the known anti-tumoural
role of cytotoxic CD8+ T cells and the pro-tumoural CD4+
T cells, possibly Th2 [9, 25, 26]. Indeed, downregulation of
Th1 pathway-related genes was observed in aggressive Pit-
NETs [64]. CD163+ macrophages, the predominant form
we observed in PitNETs, support CD4+ Th2 cells and pre-
vent the expression of cytokines required for CD4+ Th1
cells [37, 54], which may further contribute to a PitNET-
associated Th2 phenotype. Visa versa, CD4+ Th2 cytokines
in the TME sustain M2 macrophages [43, 44, 54] possibly
contributing to the CD163+ macrophage phenotype we ob-
served in PitNETs.
Although we found generally low amounts of FOXP3+

T cells in PitNETs, as previously shown [30], PitNETs
with higher Ki-67 had significantly more FOXP3+ T cells.
Moreover, a significant 3-fold reduced CD8:FOXP3 ratio
was noted in PitNETs with a higher Ki-67, revealing that a
deleterious imbalance between CD8+ and FOXP3+ T cells
may lead to increased proliferation and thereby aggres-
siveness, as described for other cancers [70, 77]. In our
study, all PitNETs with a “deleterious immune pheno-
type”, i.e. higher content of macrophages, T helper lym-
phocytes, FOXP3+ T regulatory and B cells, had a Ki-67 ≥
3%, which together with results regarding cell ratios
CD68:FOXP3, CD8:CD4 and CD8:FOXP3, highlights that
the pooled inflammatory context integrating different im-
mune subpopulations within the TME of PitNETs is more
relevant for biological behaviour and aggressiveness than
each PitNET-infiltrating immune cell per se.
We found significantly less neutrophils in PitNETs

than NPs. Somatotropinomas had fewer neutrophils than

NF-PitNETs which could be due to less chemokine re-
lease, particularly IL-8, as suggested by our data, but
other factors can be also involved such as impaired neu-
trophil chemotaxis in acromegaly [20].
There is some variability in the PitNETs immune infil-

trates reported in the literature [28, 37, 38, 52, 65, 85].
This variability can reflect the variable level of immuno-
surveillance from tumour to tumour [9, 74, 75], patient
selection [37], or can be due to lack of standardisation
method reporting immune infiltrates [37, 38, 85], such
as reporting hot spots or taking random HPFs, or
reporting interstitial areas or perivascular inflammatory
cells [37], usage of different cell markers and antibodies
to detect the same immune cell type [28, 37, 38], or as-
sessment of full slides versus tissue microarrays, which
can all greatly influence the results. Despite these issues,
our immunohistochemical data are in agreement with
our xCELL data, and are generally in line with the previ-
ously published data [37, 38, 52, 85].
Our in vitro cell line experiments focused on macro-

phages as these are the predominant immune cell type
in PitNETs, and we selected RAW 264.7 macrophages
for a number of reasons: (i) lack of a reliable rat macro-
phage cell line; (ii) high homology between mouse and
rat cytokines; (iii) expression of CX3CR1 [22], the che-
mokine receptor for CX3CL1 which was the main GH3
cell-derived chemokine according to our cytokine array
data and (iv) to validate some of our previous observa-
tions on a different cell model employing primary bone-
marrow derived rat macrophages and GH3 cells [10].
Our in vitro observations here reported, consistent with
our previous findings on a different cell model [10],
show a remarkable macrophage chemoattractant effect
induced by GH3 cell-derived factors, an effect explained
not only by the chemokine gradient but also by their
ability to upregulate chemokine receptor expression.
These findings are in line with our human data (associ-
ation between PitNET-infiltrating macrophages and
higher PitNET-derived chemokine levels), suggesting
that PitNET cells could attract macrophages. In turn, we
showed that macrophage-derived factors induced nu-
merous effects on GH3 cells, including changes in
morphology, invasion, EMT activation and cytokine
secretome alterations, suggesting that immune cell-
derived factors influence tumour mechanisms and lead
to increased PitNET aggressiveness, as shown in other
cancers [5, 7, 40, 41].
Our study, using a comprehensively phenotyped cohort

of human samples with cytokine array data from primary
culture, immunohistochemical immune cell infiltrates and
clinicopathological data, found an association between
PitNET-derived chemokines and infiltrating immune cells,
particularly macrophages, CD8+ T cells and neutrophils.
These data suggest a potential role for immune infiltrates
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to determine PitNET aggressiveness, particularly prolifera-
tion. Our human data are strengthened by our in vitro
functional data providing mechanistic insights into the
crosstalk between pituitary tumour cells and macrophages.
Limitations of our study include the fact that we have

a relatively small cohort of cases, and thus our observa-
tions need to be validated in larger series preferably in-
cluding all different PitNET types. As the study is based
on fresh primary culture, we inevitably have a relatively
short postoperative follow-up of the patients, rendering
data on recurrence unavailable. In our in vitro data we
used a rat rather than human cell line, as a human pitu-
itary cell line does not exist; moreover, our monolayer
cell cultures are unable to investigate the complex para-
crine and autocrine interactions occurring in vivo within
the TME, which involves a wider range of immune cells
besides macrophages, as well as stromal cells, endothelial
cells, pericytes and the extracellular matrix [6]. We
followed a CD163+ and HLA-DR+ distinction between
macrophages [27, 42, 44], although we acknowledge that
is simplistic and may not comprehensively address the
heterogeneous and complex macrophage phenotypes
representing the wide spectrum of macrophages [55].
There is a considerable heterogeneity on methodology
used to study tumour-associated macrophages, particu-
larly regarding their surface markers. We selected CD68
which satisfactorily identify general macrophages, and
CD163 to identify alternatively activated macrophages
[27, 42, 44]. Studying classically activated macrophages
is more challenging, as a specific marker is lacking, but
HLA-DR or iNOS (inducible nitric oxide synthase) are
often used for this purpose [34, 44, 51]. Thus, our find-
ings from the immunohistochemical study may well be
partially influenced by such elements; nevertheless, our
data were reproduced on a separate set of samples using
a different methodology (the gene-signature based
xCell), providing another layer of evidence regarding the
macrophage phenotype of human PitNETs.

Conclusions
Our data suggest that pituitary tumour cells release
cytokines, particularly chemokines, which facilitate
immune cell recruitment into the tumour microenvir-
onment of PitNETs. The increased inflammatory sig-
nature could influence tumour cell proliferation. We
found increased macrophage migration towards pituit-
ary tumour cell-derived factors in vitro, and in turn,
macrophage secreting-factors change pituitary cells
phenotype inducing epithelial-to-mesenchymal transi-
tion, increased invasion and altered cytokine secre-
tion. Our study provide novel insights into the
PitNET biology, and provide novel targets for treat-
ment of aggressive PitNETs.
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Additional file 1: Figure S1. a) Cytokine secretome from
somatotropinomas treated pre-operatively with somatostatin analogues
(Pre-op SSA, n = 5) vs not treated (No pre-op SSA, n = 3). b) Cytokine
secretome from densely granulated (n = 3) vs sparsely granulated (n = 5)
somatotropinomas. Data are shown for the top 12 secreted proteins as
mean concentration ± standard error of the mean. No significant differ-
ences were found (Mann Whitney U test).

Additional file 2: Figure S2. xCELL Fraction Scores obtained from
microarray expression data from a different set of samples (7 PitNETs - 4
NF-PitNETs and 3 somatotropinomas - and 5 NPs). Data are shown in
mean xCELL Fraction Score ± standard error of the mean. Comparative
analysis was carried out for the immune cell types originally analysed by
immunohistochemistry in our cohort. *, < 0.05, **, < 0.01, ***, < 0.001
(Mann Whitney U test).

Additional file 3: Figure S3. Correlation between PitNET tissue
immune cell infiltrates and the respective circulating immune cell
subpopulation. n = 24. P values were determined by the Pearson
correlation.

Additional file 4: Table S1. Primary antibodies and respective dilutions
used for immunohistochemical (IHC) and immunofluorescence (IF)
studies.

Additional file 5: Table S2. Cytokine secretome from the 24 human
PitNETs-derived cell culture supernatants. PitNETs-derived supernatants
were collected at 24 h on serum-free medium conditions and cytokine
secretome determined with the human Millipore MILLIPLEX cytokine 42-
plex array. Data are shown as mean concentration (pg/mL) ± standard
error of the mean (SEM) for all detectable cytokines/ chemokines/ growth
factors. IL-1ra, IL-2, IL-3, IL-5, IL-7, IL-9, IL-13, CCL7, sCD40L, TNF-β and
TGF-α were undetectable in PitNETs-derived supernatants.

Additional file 6: Table S3. Immunohistochemical analysis of the
immune cells and respective ratios among the various NF-PitNET types,
and subgroup comparative analysis between NF-PitNETs vs somatotropi-
nomas. Immune cells analysed: macrophages (CD68+), CD163+ macro-
phages, HLA-DR macrophages, cytotoxic T lymphocytes (CD8+), T helper
lymphocytes (CD4+), T regulatory cells (FOXP3+), B cells (CD20+) and
neutrophils (neutrophil elastase+). Data are shown as mean ± standard
error of the mean for percentage of immune cells compared to the total
number of tumour cells and for cell ratios. One way-ANOVA test was
used to calculate p value among the NF-PitNETs histiotypes: gonadotroph
PitNET, silent corticotroph PitNET and null cell PitNET (GP vs SCP vs NCP).
Mann Whitney U test was used to calculate p value for the comparison
NF-PitNETs vs somatotropinomas (NF vs Som).

Additional file 7: Table S4. Cytokine secretome from GH3 cells at
baseline (untreated) and after treatment with PMA-activated RAW 264.7
macrophage-CM (+PMA_Raw-CM) for 24 h (n = 3). Data are shown in
concentration (pg/mL) ± standard error of the mean (SEM) for the cyto-
kines/chemokines/growth factors with detectable concentrations as iden-
tified by the rat Millipore MILLIPLEX cytokine 27-plex array. CCL5, CCL11,
G-CSF, GM-CSF, IL-1α, IL-12, IL-17A, TNF-α, EGF, Leptin and LIX were not
detected in the GH3 supernatants (i.e. concentration below the lowest
standard curve point and/or serum-free medium quantification). Mean ra-
tio ± SEM between untreated vs + PMA_Raw-CM GH3 cells-treated is also
shown in the table, with significant p values indicated in the same col-
umn as asterisks. *,< 0.05, **,< 0.01 (Mann Whitney U test).
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