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Introduction: CD34-positive endothelial progenitor cells (EPCs) promote angiogenesis and are a prom-
ising tool for regenerative cell therapy of ischemic diseases. However, the number and quality of CD34-
positive cells decrease owing to various external and internal factors; thus, an efficient method is needed
to establish CD34-positive EPCs. The generation of functional cells by reprogramming, that is, manipu-
lating cell fate via gene transfer and/or treatment with chemical compounds, has recently been reported.
Therefore, we aimed to generate CD34-positive cells by the reprogramming of endothelial cells (ECs).
Methods: Based on previous reports, seven candidate chemical compounds were selected to reprogram
human umbilical vein ECs (HUVECs) to CD34-positive cells. Following stimulation with the chemical
compounds, the expression of CD34 was evaluated using quantitative PCR, flow cytometry, and
immunocytochemistry.
Results: HUVECs treated with the compounds exhibited increased CD34 expression. We cultured cells in
alternate media lacking one of the seven compounds and found no CD34 expression in cells treated with
PD0325901-free media, suggesting that PD0325901da MEK inhibitordmainly contributed to the in-
crease in CD34 expression. We found that 98% of cells were CD34-positive after PD0325901 treatment
alone for 7 d. Western blotting revealed that the phosphorylation of ERK was suppressed in PD0325901-
treated cells. No upregulation of CD34 was observed in fibroblast cell lines, even after PD0325901
treatment. These results suggested that PD0325901 induces CD34-positive cells by inhibiting ERK
phosphorylation in ECs.
Conclusions: CD34 expression was strongly induced in ECs by treatment with the MEK inhibitor
PD0325901 in vitro. Our study provides a useful reference for the establishment of CD34-positive EPCs
and will contribute to the development of regenerative therapies, especially for ischemic diseases.

© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Circulating CD34-positive endothelial progenitor cells (EPCs)
promote angiogenesis in vivo and are a promising cell source for
regenerative therapy [1]. EPCs promote angiogenesis by secreting
cytokines such as VEGF and HGF [2] and some studies indicates that
they are directly incorporated into new blood vessels [3,4]. Over the
last two decades, the clinical efficacy of cell therapy using autolo-
gous CD34-positive cells has been demonstrated in ischemic dis-
eases, such as severe limb ischemia, refractory angina, and
myocardial infarction[5e9]. Iwasaki et al. [10] reported that
transplantation of human CD34-positive cells protected cardiac
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function aftermyocardial infarction in a dose-dependentmanner in
a nude rat model. However, the number and quality of circulating
EPCs may vary based on donor characteristics, such as smoking,
aging, hypertension, diabetes, dyslipidemia, and other factors
[11e13]. Therefore, to promote the applicability of EPCs in clinical
cell therapies, newmethods are needed for establishing stable cells
in sufficient numbers and with retained proliferation and angio-
genesis capacities.

Reprogramming refers to the artificial manipulation of cell fate
by regulating transcription factors and epigenetic status. There are
two approaches to reprogram cells: genetic and chemical. Pluripo-
tent stem cells, somatic stem cells, progenitor cells, and other cell
lineages can be generated from somatic cells [14,15]. Genetic ap-
proaches can efficiently reprogram cells by forcibly expressing
certain genes, but they require complexmanipulationprocesses and
expertise in controlling gene transcription and translation. In
contrast, chemical reprogramming, inwhich functional proteins are
stimulated or inhibitedusing chemical compounds, allows for easier
control of the experimental process, with predictable biological ef-
fects and fine-tuning capabilities. Indeed, liver progenitor cells have
been generated from mature hepatocytes through chemical
reprogramming alone [16]. Functional cardiomyocytes have also
been generated from fibroblasts using a chemical approach [17].

In this study, we investigated the applicability of chemically
reprogramming endothelial cells (ECs) to EPCs. Accordingly, we
analyzed the effects of various chemical compounds and their
combinations. We found that PD0325901, an inhibitor of the MEK/
ERK pathway, substantially increased the expression of CD34, a
representative marker of EPCs, in ECs via the inhibition of ERK
phosphorylation.

2. Methods

2.1. Cell lines and cultures

Human umbilical vein endothelial cells (HUVECs) were pur-
chased fromLonza (Basel, Switzerland) and used in the experiments
at passage 4e7. HUVECs were cultured in endothelial growth me-
dium 2 (EGM2, Lonza). Human fetal lung fibroblasts (MRC-5) were
purchased from the Japanese Collection of Research Bioresources
Cell Bank (Osaka, Japan) and cultured in Dulbecco'smodified Eagle's
medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with
10% fetal bovine serum and 1% penicilline streptomycin solution
(FUJIFILM Wako Pure Chemical, Osaka, Japan).

2.2. Chemical screening

HUVECs and MRC-5 cells were seeded onto fibronectin-coated
culture dishes (Wako or Sigma-Aldrich). With the seeding of the
HUVECs, the following chemical compounds were added to EGM2:
3 mM CHIR-99021 (Cayman Chemical Company, Ann Arbor, MI,
USA), 1 mM A83-01 (Wako), 1 mM LDN193189 (Sigma-Aldrich),
10 mM Y-27632 (Wako), 500 mM valproic acid (VPA) (Wako), 20 mM
Forskolin (Tokyo Chemical Industry, Tokyo, Japan), and 1 mM
PD0325901 (Wako). For the further analysis of PD0325901, HUVECs
or MRC-5 cells were cultured in basal media containing 0.5, 1, or
5 mM PD0325901. The culture mediumwas changed every 2 d, and
confluent cells were passaged using TrypLE™ Express Enzyme
(Thermo Fisher Scientific,Waltham,MA, USA). Cells were harvested
for evaluation at 1, 4, 7, and 10 d after treatment.

2.3. Realtime PCR

Samples were lysed in TRIzol (Thermo Fisher Scientific). Total
RNA was extracted using the phenol chloroform method and
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reverse-transcribed into single-strand cDNA using a High-Capacity
RNA-to-cDNA™ Kit (Thermo Fisher Scientific). Real-time PCR was
performed using Fast SYBR™ Green Master Mix (Thermo Fisher
Scientific) and a StepOnePlus real-time PCR system (Thermo Fisher
Scientific). The primers for the PCR are listed in Supplemental
Table 1. The target mRNA expression was normalized to that of
the housekeeping gene peptidylprolyl isomerase A (PPIA), and
calculated using the 2eDDCt method.

2.4. Flow cytometry

Cultured cells were detached after incubation with TrypLE™
Express Enzyme (Thermo Fisher Scientific) for 5e13 min at 37 �C.
Cells (adjusted to 5.0 � 104e1.0 � 105 per sample) were treated
with primary antibodies for 20 min at 4 �C. The following primary
antibodies and isotype control antibodies were used: mouse FITC
anti-human CD34 antibody, 1 mg/100 mL/sample (BioLegend, San
Diego, CA, USA, #343604); APC anti-human CD31 antibody, 0.2 mg/
100 mL/sample (BioLegend, #303116); mouse FITC mouse IgG2a, k-
isotype control antibody, 1 mg/100 mL/sample (BioLegend,
#400207); and APC mouse IgG1, k-isotype control antibody, 0.2 mg/
100 mL/sample (BioLegend, #400120). Secondary antibody re-
actions were not performed because all primary antibodies were
fluorescently labeled. The reacted samples were centrifuged at
3000 g for 5 min and washed twice with 2% bovine serum albumin
(BSA, Wako) in phosphate-buffered saline (PBS). After filtering the
samples using a cell strainer (Corning, Corning, NY, USA), flow
cytometry was performed using a Spectral Analyzer SA3800 (SONY,
Tokyo, Japan). The obtained data were analyzed using FlowJoTM

software (Becton, Dickinson & Company, Franklin Lakes, NJ, USA,
version 10.8.0).

2.5. Immunocytochemistry

Adherent cells were fixed with 4% paraformaldehyde in PBS
(Wako) for 10 min at room temperature (RT) and permeabilized
with 0.1% v/v Tween-20 (Wako) in PBS (PBST) for 5 min at RT.
Blocking was performed for 30 min at RT in PBST. Samples were
incubated at 4 �C overnight with the following primary antibodies
in PBST containing 2% w/v BSA: 1:200 anti-CD31 mouse antibody
(Abcam, Cambridge, UK, #ab9498) and 1:200 anti-CD34 rabbit
antibody (Abcam, #ab81289). Secondary antibody reactions were
conducted at RT for 1 h using the following secondary antibodies in
PBST containing 2% w/v BSA: 1:300 goat anti-mouse IgG (Alexa
Fluor® 647; Abcam, #ab150115) and 1:300 donkey anti-rabbit IgG
(Alexa Fluor® 488; Abcam, #ab150073). Nuclei were stained with
40,6-diamidino-2-phenylindole (AAT Bioquest, Pleasanton, CA, USA;
1:3500 in PBS containing 2% w/v BSA). Cells were imaged using a
BZ-X700 fluorescence microscope (KEYENCE, Osaka, Japan).

2.6. Western blotting

After 24 h of exposure to the chemical compounds, cells were
collected and lysed on ice for 30 min using RIPA buffer (Wako) with
1:100 protease inhibitor cocktail (Wako), 1:100 phosphatase in-
hibitor cocktail (Wako), and 5 mM DTT (Wako). Protein concen-
trations were measured using a BCA Protein Assay Kit (Takara Bio,
Kusatsu, Japan) and SpectraMax M2 (Molecular Devices, San Jose,
CA, USA). The protein lysates were mixed with equal volumes of
sample buffer containing 2-mercaptoethanol (Nacalai Tesque,
Kyoto, Japan) and Laemmli sample buffer (Bio-Rad Laboratories,
Hercules, CA, USA) and incubated at 95 �C for 7 min. Samples were
electrophoresed using Mini-PROTEAN TGX Gels (Bio-Rad) at 200 V
for 25e40 min with Precision Plus Protein Dual Color Standards
(Bio-Rad), and 15 mg protein was applied per well. Proteins were
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blotted on membranes using a Trans-Blot Turbo Transfer Pack (Bio-
Rad) on a Trans-Blot Turbo system (Bio-Rad). The membranes were
washed with Tris-buffered saline (TBS, Bio-Rad) for 5 min and
blocked with 5% w/v nonfat dry milk in TBS (Bio-Rad) containing
0.1% v/v Tween-20 (Wako) (TBST) for 1 h at RT. Primary antibody
reactions were performed at 4 �C overnight with the following
antibodies: GAPDH (D4C6R)mousemAb [Cell Signaling Technology
(CST), Danvers, USA, #97166], 1:2000 in 5% w/v nonfat dry milk in
TBST; Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) XP® rabbit
mAb (CST, #4370), 1:2000 in 5%w/v BSA in TBST; and p44/42 MAPK
(Erk1/2) rabbit mAb (CST, #4695), 1:1000 in 5% w/v BSA in TBST.
Secondary antibody reactions were performed at RT for 1 h with
the following antibodies: HRP-linked anti-mouse IgG (CST, #7076),
1:3000 in 5% w/v nonfat dry milk in TBST, and HRP-linked anti-
rabbit IgG (CST, #7074), 1:3000 in 5% w/v nonfat dry milk in TBST.
Target proteins on the membranes were detected using Clarity
Western ECL Substrate (Bio-Rad) on a Fusion Solo 7s Edge (VILBER,
Marne-la-Vall�ee, France).

2.7. Magnetic activated cell sorting

Adherent cells were incubated with TrypLE™ Express Enzyme
(Thermo Fisher Scientific) for 5e13 min at 37 �C. Detached cells
were filtered with a pluriStrainer (30 mm; pluriSelect, Leipzig,
Germany) and incubated with CD34 antibody-linked magnetic
beads (Miltenyi Biotech, Bergisch Gladbach, Germany) at 4 �C for
30 min. Cells were washed with PBS containing 0.5% w/v BSA and
2 mM ethylenediaminetetraacetic acid (Wako) and separated by
magnetic-activated cell sorting (MACS) using a miniMACS sepa-
rator and MS columns (Miltenyi Biotech). Unlabeled cells were
collected from the flow-through (negative fraction). Obtained cells
were immediately used for each application.

2.8. Statistical analysis

Statistical analyses were performed with GraphPad Prism
(version 5.01, GraphPad Software, San Diego, CA, USA). Values were
presented as means plus/minus standard deviation (SD) or stan-
dard error of the mean (SEM). The averaged variables were
compared using Student's two tailed t-test (Two-group compari-
son) or one-way analysis of variance (ANOVAs) (Multiple-group
comparison). P-values less than 0.05 were considered statistically
significant and the notations of p-values are as follows: p < 0.05 as
single asterisk (*): p < 0.01 as double asterisks (**): p < 0.001 as
triple asterisks (***).

3. Results

3.1. Screening of chemical compounds to reprogram ECs into CD34-
positive EPCs

We selected candidate chemical compounds for EC reprog-
ramming from previous reports regarding reprogramming of so-
matic cells into progenitor-like, somatic stem-like, or other
lineage cells using chemical compounds [16e27]. The most
common chemical compounds activated Wnt, inhibited trans-
forming growth factor b (TGF-b), inhibited bone morphogenetic
protein (BMP), inhibited Rho-associated kinase (ROCK), inhibited
histone deacetylase, induced cyclic adenosine monophosphate
(cAMP), or inhibited MEK activity [16e27]. Based on their activ-
ities and potential to reprogram endothelial cells into EPCs, we
selected the following seven chemical compounds: CHIR99021
(glycogen synthase kinase-3 inhibitor) as the Wnt signaling
activator, A83-01 [anaplastic lymphoma kinase (ALK) 4, ALK5, and
ALK7 inhibitor] as the TGF-b signaling inhibitor, LDN193189
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(ALK1, ALK2, ALK3, and ALK6 inhibitor) as the BMP signaling
inhibitor, Y-27632 as the ROCK1 inhibitor, VPA as the histone
deacetylase inhibitor, forskolin (adenylate cyclase activator) as
the cAMP inducer, and PD0325901 as the MEK inhibitor. HUVECs
were cultured in EGM2 containing the seven chemical com-
pounds for 7 d (Fig. 1A). We assessed the expression of PECAM1, a
marker of ECs, and CD34, a representative marker of EPCs, by
qPCR [1,28]. Both PECAM1 and CD34 expressions were upregu-
lated in HUVECs treated with seven chemical compounds
compared to those in untreated or vehicle-treated HUVECs.
Especially, the level of CD34 was 98-fold increased by treatment
of seven chemical compounds (Fig. 1B). To investigate the protein
expression of CD31 (PECAM1) and CD34, we performed flow
cytometry and revealed that the CD31þCD34þ cell population
increased after chemical exposure (95.6% ± 0.36%) compared with
that in untreated HUVECs (5.2% ± 0.77%) (Fig. 1C).

To identify the specific chemical compound associated with the
increase in CD34 expression, we prepared EGM2 culture media
lacking each of the seven compounds and cultured HUVECs in the
separate media for 7 d (Fig. 1D). The expression of CD34 was not
detected in cells treated with PD0325901-free media, while there
was no significant reduction in expression in the other groups
(Fig. 1E). In contrast, cells treated with A83-01- or forskolin-free
media showed significantly higher levels of CD34 than the all-
compound-treated cells (Fig. 1E). These findings suggested that
PD0325901 promotes CD34 expression in HUVECs.

3.2. PD0325901 upregulated CD34 expression via inhibition of ERK
phosphorylation

We investigated the detailed effects of PD0325901 on CD34
expression in HUVECs. Cells were exposed to 1 mM PD0325901 for
7 d (Fig. 2A). qPCR analysis showed that CD34 expressionwas 1095-
fold higher in PD0325901-treated than in untreated HUVECs
(Fig. 2B), indicating amore pronounced increase than that observed
under exposure to all compounds (Supplemental Fig. 1A). Flow
cytometric analysis showed that the frequency of CD31þCD34þ

cells was 98.2% ± 0.36% after PD0325901 exposure (Fig. 2C).
Immunocytochemical analysis revealed that PD0325901-treated
cells expressed CD34 in the cytosol and cell membrane (Fig. 2D).
Additionally, these cells showed reduced cell proliferation
compared to vehicle-treated cells (Supplemental Fig. 2A), and the
number of viable PD0325901-exposed cells remained almost un-
changed for 7 d (Supplemental Fig. 2B and C). We assessed the
effects of treatment duration and concentration on HUVECs
cultured in EGM2 containing 0.5, 1, or 5 mM PD0325901 for 4, 7, or
10 d (Supplemental Fig. 3A). CD34 expression increased with the
increasing duration and concentration of PD0325901 treatment,
but there were no significant differences between 0.5 mM for 10 d,
1 mM for 7 d, 1 mM for 10 d, 5 mM for 7 d, and 5 mM for 10 d
(Supplemental Fig. 3B). In addition, cell proliferation was reduced
in cells treated with 5 mM PD0325901 compared with those treated
with 0.5 mM and 1 mM PD0325901 at all time points (data not
shown). We found that 1 mM PD0325901 increased CD34 expres-
sion more quickly than 0.5 mM PD0325901 and retained cell pro-
liferation compared with 5 mMPD0325901. We examined the time-
dependent changes in CD34 protein expression in HUVECs cultured
in EGM2 containing 1 mM PD0325901. Flow cytometry analysis
indicated that the CD31þCD34þ cell population increased from day
1e7 (Supplementary Fig. 3C).

To confirm the inhibitory effects of PD0325901 on MEK activity
in HUVECs, we investigated the phosphorylation of extracellular
signal-regulated kinase (ERK) 1/2dthe downstream signaling
protein of the MEK pathwaydby western blotting using
samples treated with 1 mM PD0325901 for 24 h (Fig. 3A). Western



Fig. 1. Chemical screening of compounds affecting CD34 expression. (a) Experimental protocol. (b) Expression of endothelial marker PECAM1 and endothelial progenitor cell
(EPC) marker CD34 in HUVECs following treatment with vehicle and seven chemical compounds based on RT-qPCR. Different letters above the columns indicate significant dif-
ferences (p < 0.05, one-way ANOVA followed by Tukey's multiple comparison test). (c) Expression of CD31 and CD34 based on flow cytometry. (d) Experimental protocol. (e) RT-
qPCR analysis of CD34 in cells exposed to six compounds (seven compounds - X). *p < 0.05; **p < 0.01; ***p < 0.001; one-way ANOVA followed by Dunnett's multiple comparison
test compared with seven chemical compounds as control. Data are presented as the mean ± SD, n ¼ 3.
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Fig. 2. PD0325901 upregulates CD34 expression. (a) Experimental protocol. (b) RT-qPCR analysis of PECAM1 and CD34 in HUVECs treated with vehicle and PD0325901. Data are
presented as the mean ± SEM of four independent trials, n ¼ 3. Different letters above the columns indicate significant differences (p < 0.05, one-way ANOVA followed by Tukey's
multiple comparison test). (c) Flow cytometric analysis of CD31 and CD34 in HUVECs treated with vehicle and PD0325901. Data are presented as the mean ± SD, n ¼ 3. (d)
Immunofluorescence of CD31 and CD34 in vehicle- and PD0325901-treated samples. Scale bar ¼ 50 mm.

Fig. 3. Western blotting indicates PD0325901 inhibits ERK phosphorylation in HUVECs. (a) Experimental protocols. (b) Western blot analysis of extracellular signal-regulated
kinase (ERK) phosphorylation. All data are presented as the mean ± SD, n ¼ 3.

C. Hosoda, S. Mitani, A. Sakata et al. Regenerative Therapy 26 (2024) 654e662
blotting revealed that ERK1/2 was present in all samples, but
phosphorylated ERK1/2 levels were substantially reduced in
PD0325901-treated samples compared to those in untreated and
658
vehicle-treated HUVECs (Fig. 3B). These results indicated that
PD0325901 upregulates the expression CD34 by inhibiting ERK1/2
phosphorylation.
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3.3. Isolation of CD34-negative HUVEC fraction and PD0325901
exposure

As demonstrated in Fig. 1C and 2C, and Supplemental Fig. 3C,
we measured the original percentage of CD34þ HUVECs. To
determine whether the increased expression of CD34 was due to
cell selection (elimination of the CD34-negative fraction) or cell
induction (transforming of the CD34-negative to -positive frac-
tion), we purified the CD34-negative fraction from untreated
HUVECs using MACS and cultured it in medium supplemented
with PD0325901 (Fig. 4A). Flow cytometric analysis immediately
after MACS showed that the population of CD34þ cells in the
negative fraction was significantly lower than that in the un-
treated HUVECs (Fig. 4B). In contrast, after exposure to
PD0325901, no significant differences were observed in the
CD34þ population between the negative fraction and total
HUVECs (Fig. 4C). Almost no CD34-positive cells were detected
immediately after MACS, whereas they dominated after
PD0325901 treatment in both cell groups (Supplemental Fig. 4A).
Fig. 4. Isolation of CD34-negative fraction and exposure to PD0325901. (a) Experimental
by magnetic-activated cell sorting (MACS). **p < 0.01 (unpaired Student's t-test). (c) Flow
exposure. n.s., non-significant (unpaired Student's t-test).
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Cell proliferation on day 7 was almost equal and non-confluent in
both the negative and total HUVECs (no passage for 7 d)
(Supplemental Fig. 4B and 4C). These findings suggested that
PD0325901 induces the expression of CD34 in HUVECs.

3.4. Effects of PD0325901 on other types of cells

We investigated the specificity of PD0325901 in upregulating
CD34 expression in cell types other than ECs, namely fetal lung
fibroblasts (MRC-5), which showed very low levels of CD31 and
CD34. We cultured MRC-5 cells in medium with 1 mM PD0325901
on fibronectin-coated dishes for 7 d (Fig. 5A). Interestingly,
regardless of treatment with PD0325901, there were no significant
changes in CD34 expression, whereas PECAM1 expression was
significantly decreased in PD0325901-treated MRC-5 cells (Fig. 5B).
Flow cytometric analysis revealed that the population of
CD31þCD34þ cells did not increase in MRC-5 cells treated with
PD0325901 (Fig. 5C). These findings indicated that PD0325901
upregulates CD34 expression in specific cell types.
protocol. (b) Flow cytometric analysis of CD34 in HUVECs and negative fraction isolated
cytometry analysis of CD34 in HUVECs and negative fraction after 7 d of PD0325901



Fig. 5. Effects of PD0325901 on fetal lung fibroblast MRC-5 cells. (a) Experimental protocol. (b) RT-qPCR analysis of PECAM1 and CD34 expression in MRC-5 cells treated with
vehicle and PD0325901-exposed samples. Different letters above the columns indicate significant differences (p < 0.05, one-way ANOVA followed by Tukey's multiple comparison
test). (c) Flow cytometry analysis of CD31 and CD34 in MRC-5 cells treated with vehicle and PD0325901. Data are presented as the mean ± SD, n ¼ 3.
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4. Discussion

In this study, we screened candidate chemical compounds that
can reprogramECs into EPCs based on the upregulated expression of
CD34. We showed that the MEK inhibitor PD0325901 upregulated
the expression of CD34 in HUVECs by inhibiting ERK phosphoryla-
tion. PD0325901 potently induced CD34 expression in 98% of ECs
after treatmentwith 1 mM for 7 d. Approximately 80% of HUVECs are
CD34-positive immediately after isolation from the umbilical cord;
however, this percentage rapidly decreases with cell proliferation
after the start of in vitro cell culture [29]. However, the mechanism
underlying the changes in CD34 expression in ECs remains unclear.
We showed that PD0325901 directly induced CD34 expression in
CD34-negative cells (Fig. 4B andC). In contrast, CD34expressionwas
not upregulated in lung fibroblast MRC-5 cells after PD0325901
treatment (Fig. 5B and C). These results indicated that certain
signaling pathways may regulate CD34 expression in ECs. We
observed that CD34 expression was significantly increased in cells
treated with A83-01- and forskolin-free media (Fig. 1E), suggesting
that A83-01 and forskolinmay suppress CD34 expression in ECs and
that unknown signaling pathways other than theMEKpathwaymay
participate in the regulation of CD34 expression. A previous study
reported that CD34þ neuroblastoma cancer stem cells (NB-CSCs)
and CD34e NB-CSCs demonstrated significant differences in gene
expression related to stem cell pluripotency andWnt signaling [30].
In hematopoietic stem cells, the thrombopoietin pathway was
shown to be upregulated in lineage marker-positive (Linþ) CD34þ

cells compared to LineCD34e cells [31]. Collectively, these results
suggest that CD34 expression in ECs is induced through the inhibi-
tion of theMEK signaling pathway, but other types of pathwaysmay
also be involved. Future transcriptome analyses are needed to
elucidate these complicated regulatory mechanisms.

PD0325901 suppressed the phosphorylation of ERK1/2 in ECs
(Fig. 3B). RaseRafeMEKeERK signaling participates in various
660
cellular activities, such as proliferation, migration, and differentia-
tion. The ERK1/2 signaling pathway is activated by growth factors
[32,33]; therefore, the reduction in CD34þ-cell proliferation in this
study may have been caused by the suppression of proliferation
signals via MEK inhibition.

Regarding the relationship between cell proliferation and CD34
expression in ECs, Delia et al. [29] showed that CD34 expression
decreased with repeated cell division in vitro and increased under
suppressed cell proliferation, such as in high-density or growth
factor-free medium cultures. CD34-positive HUVECs also showed
lower proliferative activity than CD34-negative HUVECs [34]. These
studies suggested that cell proliferation and CD34 expression may
be inversely correlated in HUVECs. In other cell types, Avolio et al.
[35] recently demonstrated that cardiac pericytes can be reprog-
rammed to vascular smooth muscle cell (VSMC)-like cells using
PD0325901 and suggested that the resulting cell proliferation ar-
rest may be independent of the reprogramming effect. In the same
study, the expression of CCND1 (cyclin D1-encoded gene), which is
regulated by MEKeERK signaling and required for cell cycle pro-
gression from G1 to S, decreased in PD0325901-treated cells.
However, they also showed that inhibition of cyclin-dependent
kinase 4/6 (CDK4/6), which is activated by cyclin D1, did not
reprogram cardiac pericytes into VSMC-like cells. These results
suggested that cell proliferation arrest and the reprogramming ef-
fects of PD0325901 occur simultaneously but independently.

In the present study, we observed simultaneous cell prolifer-
ation arrest (Supplemental Fig. 2A, B, and C) and CD34þ cell in-
duction by PD0325901 (Fig. 2B, C, D), which seems to be
consistent with the inverse relationship between proliferation
and CD34 expression reported in previous studies. To determine
whether there is a direct relationship between cell proliferation
arrest and CD34 upregulation by PD0325901, future studies
should consider the effects of cell cycle-associated protein
inhibitors.
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The viability and safety of autologous CD34þ cell transplantation
has been reported in various ischemic diseases [5e9]. Several recent
studies reported the potential of an in vivo reprogramming
approach using PD0325901. For instance, PD0325901 effectively
reprogrammed cardiac pericytes into VSMCs in mice, thereby pro-
moting angiogenesis and inhibiting cardiac dysfunction [35]. Ma
et al. [36] transdifferentiated cochlear supporting cells into hair cells
(HCs) using PD0325901 and showed the induction of HCs regener-
ation in vivo. These findings support the potential of PD0325901 for
reprogramming ECs into CD34þ EPCs for the treatment of ischemic
diseases, though further in vivo studies are needed.

Our study had one obvious limitation in that we did not assess
the angiogenic potential of CD34-positive cells generated by
PD0325901. Future studies should consider the activities of
angiogenesis-related cytokines and evaluate their angiogenic abil-
ity under treatment with PD0325901. In addition, we used HUVEC
at passage 4e7 for the experiments in this study. Comparisons of
the obtained CD34-positive cells with freshly isolated HUVEC
should be also needed for the precise assessments of angiogenic
potential of cells.

5. Conclusions

CD34 expressionwas strongly induced in ECs by treatment with
the MEK inhibitor PD0325901 in vitro. Our findings may inform the
establishment of a generalizable method for preparing CD34-
positive EPCs and contribute to the development of regenerative
therapies, especially for ischemic diseases.
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