
 International Journal of 

Molecular Sciences

Article

Lumbar Degenerative Disease Part 1: Anatomy and
Pathophysiology of Intervertebral Discogenic Pain
and Radiofrequency Ablation of Basivertebral and
Sinuvertebral Nerve Treatment for Chronic
Discogenic Back Pain: A Prospective Case Series and
Review of Literature

Hyeun Sung Kim 1,†,* , Pang Hung Wu 1,2,† and Il-Tae Jang 1

1 Nanoori Gangnam Hospital, Seoul, Spine Surgery, Seoul 06048, Korea;
pang_hung_wu@nuhs.edu.sg (P.H.W.); nanooriresearch@gmail.com (I.-T.J.)

2 National University Health Systems, Juronghealth Campus, Orthopaedic Surgery,
Singapore 609606, Singapore

* Correspondence: neurospinekim@gmail.com; Tel.: +82-2-6003-9767; Fax.: +82-2-3445-9755
† These authors contributed equally to this work.

Received: 31 January 2020; Accepted: 20 February 2020; Published: 21 February 2020
����������
�������

Abstract: Degenerative disc disease is a leading cause of chronic back pain in the aging population
in the world. Sinuvertebral nerve and basivertebral nerve are postulated to be associated with
the pain pathway as a result of neurotization. Our goal is to perform a prospective study using
radiofrequency ablation on sinuvertebral nerve and basivertebral nerve; evaluating its short and long
term effect on pain score, disability score and patients’ outcome. A review in literature is done on
the pathoanatomy, pathophysiology and pain generation pathway in degenerative disc disease and
chronic back pain. 30 patients with 38 levels of intervertebral disc presented with discogenic back pain
with bulging degenerative intervertebral disc or spinal stenosis underwent Uniportal Full Endoscopic
Radiofrequency Ablation application through either Transforaminal or Interlaminar Endoscopic
Approaches. Their preoperative characteristics are recorded and prospective data was collected for
Visualized Analogue Scale, Oswestry Disability Index and MacNab Criteria for pain were evaluated.
There was statistically significant Visual Analogue Scale improvement from preoperative state at
post-operative 1wk, 6 months and final follow up were 4.4 ± 1.0, 5.5 ± 1.2 and 5.7 ± 1.3, respectively,
p < 0.0001. Oswestery Disability Index improvement from preoperative state at 1week, 6 months
and final follow up were 45.8 ± 8.7, 50.4 ± 8.2 and 52.7 ± 10.3, p < 0.0001. MacNab criteria showed
excellent outcomes in 17 cases, good outcomes in 11 cases and fair outcomes in 2 cases Sinuvertebral
Nerve and Basivertebral Nerve Radiofrequency Ablation is effective in improving the patients’ pain,
disability status and patient outcome in our study.

Keywords: degenerative disc disease; lumbar spondylosis; pain management; sinuvertebral nerve;
basivertebral nerve; discogenic back pain; pathophysiology of back pain; endoscopic spine surgery;
radiofrequency ablation; prolapsed intervertebral disc

1. Introduction

Degenerative disc disease is a leading cause of chronic back pain in the aging population in the
world [1]. Disc consists of nucleus pulposus, annulus fibrosus and adjacent cartilaginous end plates.
Various factors had been studied to determine the cause of degenerative disc disease and its pain
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generation pathway in an attempt to find an answer to either reverse and prevent further deterioration
of degeneration or provide an optimal pain management strategy to alleviate the pain and suffering
for patients with degenerative disc disease [2–5]. Various genetics, environmental, biomechanics and
anatomical variation are found to have association with degenerative disc disease. Pain generators
are postulated to be discogenic origin, although recent studies found some association with adjacent
vertebral end plates and vertebral bodies, known as modic changes. A normal disc is aneural and
avascular, but pathological pain innervation pathways are generated by stimulation by inflammatory
pathways with its secreted cytokines leading to an inflammatory response leading to neurotization
of the diseased disc [6]. Sinuvertebral nerve and basivertebral nerve are associated with the pain
pathway [7–12]. In this study, we perform a prospective study using radiofrequency ablation on
sinuvertebral nerve and basivertebral nerve and evaluate its short and long term effect on pain score,
disability score and patients’ outcome and discuss the pathoanatomy, pathophysiology and pain
generation pathway in degenerative disc disease and chronic back pain.

2. Results

A total of 30 patients are included in the study who had undergone radiofrequency ablation
procedure during the study period. Mean follow up was 14.9 (6–31) months with mean age of 48 (19–68)
years old. They presents with a mean duration of 27 (8–130) months of discogenic back pain. 11 out
of 30 of the cases are from L4/5 disc, 15 from L5/S1 and 4 cases had multiple levels of involvement.
In 6 cases, Transforaminal Endoscopic Lumbar approach is used to perform radiofrequency application
of which 5 of the cases are involving L4/5 degenerated disc protrusion, one case involved 2 levels i.e.,
T12/L1 and L3/4 of degenerative disc protrusions. In the transforaminal approach group 4 of the 6 cases
used local anesthesia as a method of anesthesia while 2 patients had requested to be under regional
anesthesia as the choice of anesthesia All except 2 of the other 24 cases were under regional anesthesia.
In 8 cases, Interlaminar Endoscopy Lumbar to Disc Approach was performed with radiofrequency
application, in all 8 cases, the diagnosis is degenerated disc protrusion of L5/S1 intervertebral disc
with discogenic back pain on top of radicular leg pain. 16 cases of combined Lumbar Endoscopic
Unilateral Laminotomy Bilateral Decompression with interlaminar radiofrequency ablation, all of
the 16 cases has background mild spinal stenosis marked by thickening of ligamentum flavum with
degenerated disc protrusion and predominant discogenic back pain and neuropathic leg pain but no
spinal claudication. All except 2 patients had intraoperative buttock twitching when radiofrequency
was applied. The 2 cases who did not have any intraoperative buttock twitching were both L4/5
prolapsed intervertebral intervertebral disc with isolated discogenic back pain. Radiofrequency was
applied despite no Kim’s twitching observed in both cases. There were 28 cases had intraoperative
buttock twitching and 2 cases had no intraoperative buttock twitching. Their clinical outcome was
not as good as the other patients with intraoperative twitching. MacNab Score were fair for both
of these cases and VAS score and ODI for pre-operative, 1 week, 6 months and final follow up in
first patient was VAS (6,4,4,4), ODI (64,42,38,38) respectively; second patientwas VAS (8,4,3,4) and
ODI (80,36,32,38) respectively both seemed to have inferior results compared to other patients who
had twitched intraoperatively during radiofrequency ablation. Radiological data was analyzed with
6 showing Modic type 2 changes and 24 with Modic type 1 changes. The stenosis is mild in all cases
of preoperative MRI in terms of Schizas grading, 25 cases had A1, and 4 cases had A3 and 1 case of
A4 grade. Intraoperative endoscopic video evaluation showed there are 6 type 2 grade and, 24 grade
3 Neovascularization and Adhesion grading cases adjacent to the disc and pedicle at the region of
sinuvertebral and basivertebral nerves. There was a statistical significant improvement in VAS score
with mean and range of pre-operative, 1 week, 6 months and final follow up are 7.37 (6–8), 2.96 (2–4),
1.97 (1–4) and 1.67 (1–4) respectively (Figure 1). Using paired T test, VAS score mean difference
between 1wk, 6 months and final follow up with pre-operative were 4.4 ± 1.0, 5.5 ± 1.2 and 5.7 ±
1.3 respectively, p < 0.0001. There was a statistical significant improvement in ODI score with mean
and range of pre-operative, 1 week, 6 months and final follow up are 73.83 (62–86), 28.07 (20–42),
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23.47 (18–38) and 21.13 (2–38) (Figure 1). The mean improvement of ODI at 1week, 6 months and
final follow up compared with pre-operative values are 45.8 ± 8.7, 50.4 ± 8.2 and 52.7 ± 10.3, p <

0.0001. MacNab’s criteria showed excellent outcomes in 17 cases, good outcomes in 11 cases and fair
outcomes in 2 cases. Overall the fair outcome and less clinical significant improvement in outcomes
score were associated with no intraoperative Kim’s twitching when radiofrequency application is
applied. There is one complication of post-operative foot drop, which spontaneously recovered after
3 months, one recurrence of symptoms with conservative management, no revision surgery for all the
patients (Table 1).
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Table 1. Background data and results of Patients who underwent Sinuvertebral Nerve and Basivertebral
Nerve Radiofrequency Ablation.

Age (Mean/Range) 48 18–71

Sex (Male/Female) 13 17
Diagnosis Types

Degenerative disc disease without protrusion 4
Spinal Stenosis 12

Degenerated Disc Protrysion 14
Follow up duration (Mean/Range) 27 4–120

Types of Operation 23
Interlaminar Diac Approach 23

Interlaminar Stenosis Approach 12
Transforaminal Approach 6
Neovascularization Grade 0
Grade 1 0
Grade 2 6
Grade 3 24

Modic Type
Type 1 24
Type 2 6

Schiaz Grade
Grade A1 25
Grade A2 5
Grade A3 1

Mean/SD VAS (Pre and Final) 7.4 ± 0.7 1.7 ± 1.5 p < 0.05
Mean/SD ODI (Pre and Final) 71.8 ± 1.88 20.8 ± 14.9 p < 0.05

MacNab Criteria
Fair 2

Good 11
Excellent 17
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3. Discussion

Degenerative disc disease is a leading cause of chronic back pain. As the society is aging, quality
of life in the aging population is central to geopolitical and healthcare developments in preparing for
an aging population. However, in terms of years lived with disability burden pattern there is similar
pattern in 1990 to 2010 with lower back pain being most likely cause of musculoskeletal disability [1].
Various biopsychosocial factors lead to disability in chronic back pain [13,14]. Degenerative disc
disease is a leading cause of lower back pain on a global scale [15]. Intervertebral disc (IVD) is an
avascular and aneural structure yet various studies showed that a diseased IVD lead to significant
disability. This review addresses the pathophysiology of IVD pain by understanding the different
anatomical parts, biomechanical changes, the interaction of local and regional cells with molecular
factors. We also discuss the inflammatory reactions and interactions with various environmental
factors which involved in disc injury and eventual degeneration. Further elaboration is made on
sympathetic nerve channel development of sinuvertebral and basivertebral nerve in intervertebral disc
pain and how radiofrequency ablation can help in treatment of degenerative disc disease [8,11,12].

3.1. Anatomy of a Normal Disc

All vertebra except atlas and axis is separated by intervertebral disc (IVD), which is labelled by
the 2 adjacent vertebrae which it separates in between, for example Lumbar 4/5 intervertebral disc lies
between lumbar 4 and lumbar 5 vertebrae. IVD serves to provide load distribution as a shock absorber,
dispersing the weight and impact sustained. It also served as a channel for nutrition flow between
spinal cord and spine [16]. The total height of all discs made up of 20–30% of the total height of spine in
a standing human. Their shape, structure and mechanical properties vary depending on the location,
loads and stress-strain patterns encountered in the person daily requirements [17]. Adult intervertebral
disc is avascular and aneural, the flow of nutrients are by passive diffusion from adjacent end plate
vessels and pre-disc vessels reaching from the inner layer of the disc in centrifugal manner to outer
layer of disc diffusing outwards [18].

Intervertebral Disc is made up of Nucleus Pulposus (NP), Annulus Fibrosis (AF) and the cartilage
vertebral endplates. Outer layer of AF is attached to end plate and vertebral epiphysis by means of
strong Sharpey fibers. While the central AF collagen fibers coalesce with nucleus to insert themselves
obliquely into the cartilaginous end plate [19].

3.2. Structure of Annulus Fibrosus

Annulus Fibrosus is a structured concentric lamellae consisting of fibrocartilaginous tissue. It is
generally referred to 2 sections, the inner and outer annulus fibrosus. The main composition consists of
water (approximately 70% inner layer and 60% outer layer), collagens mainly type I and type II collagen
of 15% inner and 7% outer dry weight) [18,20]. The structure of annulus runs in a multiple alternating
crisscross layers alternating collagen with varying angles throughout its lamellae. All collagen is a
triple helical structure with 3 polypeptide chains [21]. The collagen has anisotropic, nonlinear and
inhomogeneous mechanical property which help to withstand complex load pattern and in particular
radial forces [22]. The composition of collagen concentration increases from a lower concentration
to higher concentration creating a smooth transition zone of soft and spongy nucleus pulposus to a
stronger and stiff outer annulus [23]. In the annulus fibrosus, proteoglycans are glycosylated proteins
found extracellular matrix. The main ones found in AF are aggrecan and versican promoting hydration
and mechanical strength of the disc. The attached keratin sulphate and chondrointin sulphate attached
to their protein core of glyocosaminoglycans providing the ability to aggregate hyaluronic acid to
promote osmotic swelling pressure required for biomechanical loading, there are also other smaller
quantity of proteoglycan implicated in fibrillary collagen assembly [24]. Overall with its unique
structure AF is able to transfer and distribute load allowing radial bulge, tensile stress, rotation and
compressive loading facilitating IVD joint mobility [20]. Cyclic loading tests showed resilience and
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stability of mechanical loading integrity of AF, allowing it to withstand more than 10000 cycles of stress
magnitude of less than or equal to 45% of its ultimate tensile strength [25].

3.3. Structure of Nucleus Pulposus

Nucleus Pulposus is a gelatinous core of the disc surrounded by AF which keeps it from herniating
into the spinal canal. It consists mainly type II collagen and elastin fibers in a random organized manner
with 20% of the dry weight of the disc. Elastin fibers helped in maintaining the collagen organization
and elastic properties under various loads. Elastin microfibrils forms a meshwork around a central
elastin core sustaining its elasticity [26]. It has a low density of chondrocyte like cells of 5000/mm3

contained in a proteoglycan gel of 50% dry weight. Nucleus is a poorly compressible structure with 80%
water helping it carrying out its role of load dispersion, shock absorption and maintenance of internal
pressure [18,27]. Metabolically active chondrocyte like cells with Golgi Apparatus and Endoplasmic
Reticulum synthesize and turnover a large volume of extracellular matrix components of collagen
and proteoglycans maintaining a high compressive load through movement of the waters and ions in
the matrix. They also maintain tissue homeostasis, play a role in the physio-chemical properties of
cartilage-specific macromolecules, and prevent degenerative diseases like degenerative disc disease
and osteoarthritis [28].

3.4. Structure of Vertebral End Plates

Vertebral endplates are adjacent to each IVD. It composed of an osseous and a cartilaginous
components. Its main constituents are chondrocytes, proteoglycans and collagen mesh network.
Although vertebra end plates has similar macromolecules in their extracellular matrix as NP and AF
but the proportion is different, providing a higher mechanical properties than both AF and NP [29].
The paired end plates are comprised of hyaline cartilage [30]. It serves as an interphase between hard
cortical bone of vertebra body and transiting to the annulus and nucleus via attachment of sharpey
fibers. This helps to keep disc pressurized and prevents it from bulging into the soft cancellous
trabecular bone of vertebra. Endplates are the strongest part of the IVD and failure often associated in
the Vertebra body fracture prior to end plate fracture [18]. Vertebral end plates are vascularized and
it plays a vital role in maintaining nutrition diffusion and hydration of the disc [31]. The thickness
and porosity of end plates vary from central to peripheral region. Central portion of end plate is
thinnest and less dense as compared to the periphery where subchondral bone growth starts [30].
Mechanical properties such as stiffness and strength increase as lumbar spine descend from L1 to
S1 [32] End plates are usually stronger and stiffer than the vertebra body in withstanding higher loads
protecting it from tensile and compressive damage which are the common modes of failure [33].

3.5. Pathoanatomy: Structural Changes to a Disc in a Pathological State

Central to its main changes is the necrosis of chondrocyte like cells in nucleus, it is a natural
process with accelerating rate as per aging. Starting around 2% at birth to 50% in adulthood.
With these cells necrosis, pathological state such as cartilage—collagen interphase degradation,
syndesmophyte formation with abnormal bone growth at the adjacent vertebra and calcification occurs,
stiffening the IVD joint [34].

Vertebra end plate porosity increases up from 50–130% with aging and disc degeneration,
affecting its mechanical property [32].

Blood and Nervous supply of IVD changes during different stages of life. During early stages of
skeletal development, blood and lymph vessels are in abundance in majority of the disc with exception
of nucleus. As skeletal maturation occurs, blood and lymph vessels migrate towards AF and end plates
up to 12months of age. Beyond 12months of age to 20 years of age which marked skeletal maturity,
blood vessels start to recede from nucleus and inner annulus to only remaining in outer annulus
and end plates [35]. After full recede process of the blood supply to outer annulus and end plate,
the nutrition supply is relying mainly on diffusion which often is responsible for lower regenerative
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potential of tissue during aging [36]. There are 2 pathways that diffusion occurs from the blood
vessels at disc margin: the cartilaginous endplate-nucleus pulposus pathway and the annulus fibrosus
periphery pathway [37]. Impairment of either of these pathways can lead to different degenerative
patterns with cartilaginous endplate-nucleus pulposus pathway affecting mainly nucleus pulposus
and annulus fibrous pathway affecting the annulus fibrosus using 3D finite element model [2].

3.6. Types of Pathology in a Disc

According to lumbar disc nomenclature version 2.0, disc conditioned are broadly classified into
Noramal, Congenital/developmental variation, Degenerative changes, Trauma, Inflammatory/Infection,
Neoplasia and Miscellaneous paradiscal masses of uncertain origin [38]. The authors would
focus on degeneration in this review. Degenerative changes are sub classified as annular fissures,
degeneration and herniation.

Annular fissure is separation between the AF fibers or between AF fibers and the vertebral bone.
There are 3 patterns in AF fissures, namely, concentric fissure, radial fissure (vertical or oblique) and
transverse fissure which is a horizontal oriented radial fissure. Annular tear is synonymous as fissure
but it is a term which gives a connotation to traumatic cause.

Degeneration includes terms such as dessication of the disc, fibrosis, narrowing of disc space
and diffuse bulge of annulus beyond its normal confine, mucinous degeneration and intradiscal gas.
The associated consequences of degenerated disc such as syndesmophyte formation, sclerosis of end
plates and modic changes seen in MRI are spectrum of disc degeneration [39–41].

Herniation is categorized into focal displacement of disc material beyond the normal limits of
IVD space. Disc material can be any constituent of the disc i.e., annulus, nucleus, apophyseal bone,
end plate or combination of the above. The IVD normal margin is defined by Vertebra body end plates
in cephalad caudal dimension and outer rim of vertebral ring apophyses excluding the osteophytes.
Focal displacement refers to less than 25% of the dimension in 90 ◦ of periphery of the disc in axial
plane. A more diffuse presence of disc tissue extension beyond the confined of normal IVD is term
bulging of disc. Asymmetric bulging of disc greater than 25% of disc circumference can occur in
deformity of spine but not considered as a form of herniation [42]. Disc herniation is subclassified into
protrusion or extrusion depending on the shape of disc material. Protrusion is seen if the edge of disc
material present outside IVD space is less than the distance between the base of the disc herniation.
There is typically no migration in a disc protrusion type of herniation. Disc herniation is categorized
as contained which is when the displaced disc is covered by annulus fibers or posterior longitudinal
ligament which would appear to have smooth margin on axial computer tomography (CT) or magnetic
resonance imaging (MRI), they are typically contained by a few fibers of superficial posterior annular
fibers or posterior longitudinal ligament while uncontained disc occurs when such restrain from the
fibers are lost [42,43]. Extrusion is defined when disc material distance from its edge to base in at least
one plane is more than the edges of the base or when there is no continuity exists in between disc
material and its base. The latter form of extrusion is often termed sequestration when the disc material
is completely separated from the parent disc. The term migration is used when displacement of disc
material is beyond the IVD margin from the site of extrusion [44]. Degenerated disc includes all normal
and pathologic degenerative processes in the disc [38]. Degenerative disc disease (DDD) includes
both annulus fibrosis and adjacent apophyses degeneration termed as “spondylosis deformans “ and
nucleus pulposus and vertebral end plate degeneration known as “intervertebral osteochondrosis”.
It had been suggested that the former is a consequence of normal aging while the latter is pathological
but not necessarily symptomatic [38].

3.7. Pathophysiology: Etiology of Degenerative Disc Disease

Degenerative Disc Disease (DDD) is a result of complex interplay of structural, genetics,
environmental, trauma, and aging. Non traumatic degeneration starts with progressive decrease in
disc nutrient supplies and changes in the extracellular matrix composition as part of aging process.
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Over time such changes leads to disc being less capable of maintaining its function of load distribution
and ECM turnover. There is lowering of pH and oxygen concentration due to these changes [37].
Calcification of end plates developed due to these changes which further led to decrease in nutrient
flow and blood supply leading to further dysfunction of disc subjecting in response to microtrauma.
Accumulation of microtrauma over time and propagates the mechanical damage manifesting as annular
fissure and nucleus damage [45].

3.8. Potential Trigger Events

Several trigger events can lead to progression of DDD. The cause and effect of the trigger is not
direct correlation. It is likely cumulative effect of several factors acting in sync to cause the gradual
and progressive process of DDD. Several triggers are discussed in this review. Structural changes and
biomechanics of spine and pelvis, trauma, genetics, smoking, nutrition deficiency plays important role
in leading to DDD.

3.9. Structural and Biomechanics of Spine and Pelvis Affecting DDD

Alterations in the regular alignment of spine in one segment of the spine will leads to compensatory
changes in another part of spine to compensate the alignment in order for man to stay upright and
look straight. Pelvis driven Lumbar disc disease is a possible mechanism of degenerative disc disease.
Study showed that because pelvic morphology plays a key role defining the spinal shape as well as its
load and function it thereby potentially predisposes the development of spinal degeneration if the
shape of pelvis is out of normal range [46]. Vertebra body shape plays a role in determination of the
stress distribution between the superior and inferior adjacent IVD. For example a wedge shape L5 will
have different forces going through the L4/5 and L5/S1 disc compared to regular and rectangular shape
L5. Study showed that asymmetry of superior and inferior endplates in the mid-sagittal plane is a risk
factor for lumbar disc degeneration [47].

Fei et al., studied sagittal parameters and the effects on lumbar herniation. The author showed that
the mean lumbar lordosis, sacral slope and thoracic kyphosis were significantly lower, with a higher
pelvic tilt and the increased sagittal vertical axis in lumbar disc herniation group as compared to the
control group in a young sample population [48]. Overall, vicious cycle situation where coronal and
sagittal imbalance accelerated disc degeneration and advanced disc degeneration leads to subluxation
of facet joints and abnormal weight bearing causing a deformity in the spine [49].

3.10. Muscle Dynamics and General Joint Laxity Effect on Disc Pathology

IVD with adjacent vertebras and attached soft tissues are part of functional spinal unit. Panjabi et al.,
explained the importance of neutral zone being a parameter that correlate well with instability of spinal
system [50]. For optimal muscle power generation, good alignment of the bone allow optimal stretch
in muscle generating the power required in activities and helps to prevent pathological increase in
forces going through the joints. In patients with chronic radiculopathy, disc herniation and severe facet
degeneration were associated with altered paraspinal muscle morphology at or below the pathology
level [51]. The status of muscle and ligamentous laxity may have an association with prevalence of
the lumbar disc disease with significantly higher prevalence of the lumbar disc herniation and also
worse clinical and radiological outcomes than patients without general joint laxity with conservative
treatment or after surgery [52,53].

3.11. Mechanical Load

Lumbar spine overload was associated with work tasks requiring combinations of manual handling
of objects and trunk rotation or bending. Those included healthcare, foundry and forest workers,
production operators, cabinetmakers, locksmiths and bricklayers [54]. In a study of 4 groups of workers
in Korea National Health and Nutrition Examination Survey, lumbar spine degeneration is significantly
increased in blue collar and agribusiness and low-level workers [3,55]. Cellular ovine culture studies
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also showed that the result with mechanical loading with limited nutrition leading to detrimental
effects on IVD cells in whole organ culture [56,57]. Chronic and excess exposure to high mechanical
load can lead to deleterious effects on IVD, however low rate of loading is important for forced
convection aiding in diffusion of nutrients both to normal and degenerated disc. Hence appropriate
amount of loading is necessary in preference over complete offloading by bedrest in maintenance of
healthy disc [58].

3.12. Genetics and Degenerated Disc

Genes played a significant role in disc degeneration. Twin studies shown up to 50–70% of an
individual risk of DDD is attributed to genetic disposition [59,60] and Case control studies showed
significant familial disposition with DDD [61]. Genes that are postulated to be related to DDD are
genes affecting IVD structure, catabolic cyctokines polymorphism and inflammatory cascade cycokine
polymorphisms. For genes affecting IVD structure, Aggrecan, COL1, COL9, COL 11, FN, HAPLIN 1,
Thrombospondin, Cartilage Intermediate layer protein (CLIP) and Asporin (ASPN) genes has effects
in maintenance of IVD structure. The catabolic cytokines polymorphisms are vitamin D receptor
gene polymorphisms MMP1, MMP2, MMP3, PARK2, and PSMB9 and anticatabolic tissue inhibitor of
metalloproteinases (TIMPs) favor catabolism and can contribute to the degeneration of the IVD [3].

3.13. Environmental and Psychosocial Factors Associated with DDD

Smoking, obesity and diabetes mellitus are positively correlated with DDD. Of the 3 factors,
smoking is the highest correlations to DDD and their effect is synergistic [62]. ADAMTS5 is the primary
aggrecanase found in animal study that mediating smoking-induced disc aggrecanolysis and DDD [63].
Elmasary et al., showed that smoking caused nicotine-mediated down-regulation of cell anabolism
affecting the glycosaminoglycan concentration at the cartilage endplate, reducing it up to 65% from
normal physiological conditions and reducing of solutes exchange between blood vessels and disc
tissue affecting mainly the nucleus pulposus, whose cell density and glycosaminoglycans levels were
reduced up to 50% of their normal physiological levels [64,65].

3.14. Nutritional Deficiency

Healthy disc required good nutritional supply. Interruption of the nutritional pathway can lead
to disc degeneration [2]. Nutrition studies are challenging due to variability of food culture and wide
prevalence of DDD as a result to multifactorial factors, the correlation of diet and DDD is weak with
insufficient fish and egg consumption [66].

3.15. Exercise

Physical exercise is clinically recommended in several guidelines to help in alleviating pain [67]
Physical exercise helps in IVD cell proliferation in animal model studies, particularly in moderate to
high volume low repetition and frequency exercises [68,69]. It has effect on paraspinal muscle strength
and aids in reducing pain and disability [70].

3.16. Pathophysiology of Pain in Lumbar Degenerative Disc Disease

After Initial trigger event, several interlinked macro and microscopic changes in the disc leads to
development of DDD and pain sensitization. It starts with microscopic damage leading to cytokine
secretion which stimulate immune cell migration and further cytokine secretion. The effect is an
increase in neutrophils and nerve ingrowth and spinal nerve sensitization leading to lower back pain.
The presence of physical irritation by changes in anatomy can lead to further neural compression and
neuropathic pain.
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3.17. Types of Lower Back Pain

There are mainly 2 groups of back pain, specific back pain and non-specific back pain. Specific back
pain is divided into 3 subtypes. (A) discogenic back pain, which presents with back and/or leg pain
which has no radiological significant compression of nerve roots. (B) nociceptive back pain other
than disc such as myofasicial back pain which includes back sprain and back spasms, osteoarthritis
back pain which includes synovial joints such as facet joints, vertebral fractures and osteoporosis.
(C) Neural leg pain such as radicular pain secondary to nerve root compression Non specific back
pain may arise spontaneously without evidence of any anatomical abnormalities, the exact cause of
non specific back pain is unknown, biopsychosocial factors play important role in non specific back
pain. Centralization occurs when pain becomes chronic and pathological neuronal pathways may
form when disc is degenerated [71].

3.18. Adjacent Vertebra End Plates and Bodies Stressed Related Pain Response

Previously it was thought that discogenic back pain as its name suggests is predominantly due to
disc origin of pain. However more evidence recently suggests that adjacent vertebral end plates play a
significant role in discogenic back pain with the main pathologic innervation focus on the end plates
region [31,72].

3.19. Modic Changes and Pain Simulation

Modic changes (MC) in MRI shown as signal changes in T1w and T2w images often accompany
DDD. Modic Changes prevalence is high in LBP patients (43 % median prevalence in a meta-study)
compared to only 6 % median prevalence of the asymptomatic population [73]. There is postulation that
Modic changes in bone is a sign of end plate damage with persistent stimulus and damage accumulation
coupled with various factors leading to symptomatic response from the Modic changes [74]. MC is
associated with more frequent and longer duration of LBP [75]. The size of MC is directly correlated
with the severity of LBP [76]. Further analysis with disc and bone tissue obtained around IVD and the
adjacent MC showed there is plausible cross communication between these 2 tissues with pairwise
correlating expression of similar gene and cytokine interaction in disc and adjacent bone marrow with
Modic changes [72]. Disc-secreted factors are important in MC pathobiology, a feature that should
motivate new treatment approaches that target MC spinal levels on top of targeted DDD. The cause and
nature of the communication between the 2 surfaces are unknown. However, Neurotrophic receptors
of the tropomyosin receptor kinase (Trk) family were up-regulated in MC disc and bone marrow, it is
postulated to be its communication pathway. But typical appearance of both adjacent cephalad and
caudal vertebra bodies adjacent to the diseased disc with MC couple with the fact that there is direct
correlation of size of MC to severity of DDD showed there is significant correlation and communication
between the interphase [77].

3.20. Genetics and Its Effect on Pain Perception in Disc Diseases

Catechol-O-methyltransferase, which is encoded by COMT, is a major mammalian enzyme
involved in the degradation of catecholamines, it is postulated to be a putative pain sensitivity
gene COMT. Important role of COMT gene in the symptomatic lumbar disc herniation is show in
susceptibility studies with the influence of genetic variants of COMT gene in the variation in pain after
treatment for low back pain [78,79]. There is an interest in developing relevant genetic markers such as
COMT to provide useful clinical information in terms of predicting outcome after surgery for patients
diagnosed with DDD [80].
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3.21. Factors Release Inducing Innervation and Neuronal Sensitization

3.21.1. Inflammatory Processes

Inflammatory response plays a key role in induction of hyperalgesia of the disc as experiments
show that exposure of nucleus pulposus to annulus fibrosis leads to increase inflammatory cells around
the region of exposure [81,82]. The degenerating disc releases growth factors, such as bFGF and
TGF-beta1; together with increased levels of tumour necrosis factor-α, interleukin-1β, Nerve Growth
Factor, NGF and Brain Derived Neutrophic Factor, BDNF leads to increase production of macrophages
and mast cells which might play a key role in the repair of the injured annulus fibrosus and subsequent
disc degeneration [83]. These Factors also stimulate neurite growth and calcitonin gene-related peptide
expression, both of which were blocked by anti-NGF treatment. In a protein arrays study, it was
found that there is increased levels of 20 inflammatory factors, many of which have nociceptive
effects; demonstrating that degenerating and painful human IVDs release increased levels of NGF,
inflammatory and nociceptive factors ex vivo that induce neuronal plasticity and may actively diffuse
to induce neo-innervation and pain in vivo [84]. Other anti-inflammatory cytokines such as IL-1, IL-6,
and COX 2 are associated with DDD and pain related to DDD [85]. Systematic Review on genes
and biomarkers for pain in DDD shows that five genetic variants; i.e., OPRM1 rs1799971 G allele,
COMT rs4680 G allele, MMP1 rs1799750 2G allele, IL1α rs1800587 T allele, IL1RN rs2234677 A allele,
were associated with reduced recovery of lower back pain and three biomarkers; i.e., TNFα, IL6 and
IFNα, were associated with persistent back pain [86]. In our endoscopic videos analysis, we found the
presence of grade 2 and 3 neovascularization associated with all cases which required sinuvertebral and
basivertebral nerves ablation. We postulate that neovascularization and inflammation with adhesion
formation is associated with pathological neuronal sensitization.

3.21.2. Neuronal Sensitization and Pathologic Innervation of Disc

Mechanical pressure on a normal disc does not result in pain as compared to a diseased disc.
There is suggestion of diseased disc sensitization with growth of nerve fibers within the fissures and
even lying within the deep layers [87,88]. The nerve fibres often described are sinuvertebral nerve
(SVN) and basivertebral nerve (BVN).

3.21.3. Sinuvertebral Nerve

Sinuvertebral nerve was first described by Dr. Hubert von Luschka in 1850, as a nerve derived
from spinal nerve and has connection to sympathetic nervous system with intersegmental anastomoses,
now it has been shown that sinuvertebral nerve distribution is extending as far as posterior annulus
fibrosus [89,90]. The sinuvertebral nerve is formed by the union of a somatic root from the ventral
ramus and an autonomic root provided by the grey ramus. It arises bilaterally from the ventral ramus of
each spinal nerve just distal to the dorsal root ganglia, supplying both proprioceptive and nociceptive
fibers and joined by grey ramus communicans to provide the sympathetic supply to sinuvertebral
nerve. After the union with grey ramus communicans, it takes a recurrent course to re-enter the spinal
canal through the intervertebral foramen via the deep anterior intraforaminal ligament, lying alongside
the pedicle cephalad to the corresponding disc [89]. Sinuvertebral nerve distribution is controversial
whether it is segmented at the spinal nerve of origin level or branching out rostrally and caudally in
spinal canal. The opinions is divided on its distribution [8] Various studies show that the nerve divides
into superficial and deep networks around the posterior longitudinal ligament with the superficial
network predominantly sympathetic and deep network being somatic supplying annulus and posterior
longitudinal ligaments [90]. However Nakamura showed that sympathetomy can cause up to 90%
loss of sensory fibres to the posterior annulus fibrosus suggesting that both sympathetic and somatic
networks are connected [91]. Besides supplying the annulus, the posterior longitudinal ligament,
studies showed that sinuvertebral nerve supplies several other anterior spinal structures such as
ventral surface of the dura mater extending to the lateral aspects sparing the dorsal surfaces of dura,
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the periosteum of the vertebrae and the ligaments of facet joints, for the somatic fibers, however it
does not supply sensation to the facet joint which is supplied by medial branch of the posterior
ramus [7,92]. While the sympathetic fibers also innervate surrounding anterior spinal vasculature in
the outer annulus, end plates, vertebral bodies and vertebral marrow (Figure 2).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 28 
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Figure 2. Figure of Coronal Mid Pedicle Cut of Lumbar Spine. A: Sympathetic ganglion, B: Pedicle,
C: Dorsal Root Ganglion, D: Sinuvertebral Nerve giving rise to branches D1: Ascending branch
which goes intraosseous and give rise to Basivertebral Nerve near the pedicle D4, D2: Descending
Branch supplying adjacent to Posterior longitudinal ligament and disc, D3: Direct branches to
intervertebral disc.

Since sinuvertebral nerve is both somatic and sympathetic, the information transmitted by
sinuvertebral nerve is an important clinical question. Cavanaugh et al., stimulate New Zealand white
rabbits were used in series neurophysiologic and neuroanatomic studies. It shows that extensive
distribution of small nerve fibers and free nerve endings in the superficial annulus of the disc and
small fibers and free nerve endings in adjacent longitudinal ligaments with long lasting excitatory
changes after dissection of grey ramus communicans of these rabbits, suggesting that it is more visceral
afferents predominant pain pathway in discogenic pain [93].

Various substances and peptides had been implicated as the carrier of neuronal message in the
sinuvertebral nerve. Tyrosine vasoactive intestinal polypeptide, substance P and calcitonin gene related
peptide are found in nociceptive fibers in both superficial and deep divisions of sinuvertebral nerve.
Most of these substances are found in sympathetic nerve transmission peptides, hence supporting
previous findings that it has sympathetic nerve supply [94–96].
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There is controversy on how the sinuvertebral nerve communicate and flow through the lumbar
spinal system. Morinaga using retrograde transport markers cholera toxin B and horseradish peroxidase
crystals demonstrated retrograde flow from L5/6 to L1/2 in rats [97]. Cavanaugh et al., demonstrated a
similar ascending track in sympathetic flow from lower lumbar vertebrae [93].

3.22. Discogenic Back Pain and Sinuvertebral Nerves

Sinuvertebral nerve (SVN) is associated with 26–39% of patients with lower back pain [98,99]. It has
a variable penetration to annulus in normal and diseased state, penetrating much deeper in diseased
state and even as deep as nucleus pulposus [100–102]. The penetration is mediated by vascularized
granulation formation bringing in the neurotropic factors and facilitating the pathologic penetration of
sinuvertebral nerve fibers to deeper disc region [102,103]. The sinuvertebral nerve fibers are denser
in the end plates of degenerated disc as compared to normal disc [104]. Studies showed that when
sinuvertebral nerve penetrated deep enough to be in contact with nucleus pulposus, various side effects
occurs such as increased neural damage, inflammatory cells accumulation and increased capillary
permeability and increment of nerve discharge [82,105]. In our experience, which we published
in the literature, we find patients with sinuvertebral and basivertebral nerve pain presenting with
radicular pattern of pain without any significant radiological and endoscopic evidence of significant
irritations [106,107].

3.22.1. Basivertebral Nerve

Basivertebral nerve (BVN) is a paired nerve believed to play an important role in end plate pain
nociceptive transmission and are branches from sinuvertebral nerve complex (Figure 2). BVN transmits
pain signal from end plate [31,72,74]. BVN are branches of SVN which enters vertebral body through
central vascular foramen together with basivertebral vessels and branches around the end plates [12,108].
The transmission substances are found to be substance P, protein S-100, PGP 9.5 and CGRP which are
predominantly nociceptive neurotransmitters [84,109–111]. BVN density is proportional to the amount
of disc damage, creating evidence of its role in chronic lower back pain [31]. As disc degenerates and
adjacent end plates showing concordant damage, a convective flow induced during cyclical spinal
loading allows cross talk between disc and bone marrow of subchondral bone through the release of
inflammatory mediators and an ineffective healing response of progressively increase inflammatory
mediators and response generation but little progress in healing due to inherent relentless cycle of
degenerative cascade [72,75,112].

3.22.2. Diagnostic and Treatment Procedures

Patient who presents with degenerative disc disease has mechanical pain which is worse on flexion
related activities as more compressive stress is placed on the IVD during flexion. The pain may radiate
to the bilateral buttock region but unlike radicular pain due to compression of nerve, discogenic pain
seldom goes below the level of the knees. The diagnostic gold standard test is provocative discogram
which would reproduce the lower back pain that the patient experienced. It involves injection of a
contrast into the disc concern and concurrent assessment of the patient’s pain response, it is important
to assess the pattern of pain which should be similar to the pattern that patient complains of. A well
performed discogram can be more specific than magnetic resonance imaging [107]. Once proven by
provocative discogram, a few strategies in treatment had been shown to have variable effectiveness
in the literature. Anesthetic (4% xylocaine or 0.75%) bupivacaine mixed with contrast during
discogram can give therapeutic effect on top of diagnostic intervention [9]. Other electrothermal based
intervention through catheters such as intradiscal electrothermal annuloplasty (IDET), disc fx [113] and
transforaminal epidurosopic laser ablation of sinuvertebral nerve with good clinical outcomes [10,114].

A randomized controlled double blind sham controlled multi-center study showed there
is improved of significant clinical improvement using radiofrequency ablation of BVN through
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transpedicular intraosseous probe insertion [12]. The author’s group also treated BVN with
epiduroscopic basivertebral nerve laser ablation (TEBLA) with good clinical results [11].

3.22.3. Radiofrequency Ablation

Currently in the authors’ practice, we used a protocol which involved first taking a history
and physical examination of the patients presenting with lower back pain and radicular leg pain
(Figure 3). A typical degenerative disc disease pain would be a patient with no history of cancer or
trauma, presenting with chronic lower back pain worse on prolonged standing and activities. Carrying
heavy load and bending caused aggravation of pain with radiation to the buttock and radicular
pain. After MRI which may showed degenerative disc changes which is classified by Pfirrmann
classification with good inter and intra observer agreement [115] and Modic classification of the
adjacent vertebral body [39] but no significant compression by Schiaz grading, a decision is made on
clinical diagnosis of degenerative disc disease. If symptoms are severe and typical of degenerative
disc disease, a provocative discogram (Figure 4) can be done to confirm the diagnosis. Treatment
options can be conservative treatment with physiotherapy [6,116], injection, fluoroscopic guided
radiofrequency ablation [12,117] and recently to improve accuracy of radiofrequency ablation and
ensure safety, we do radiofrequency ablation through endoscopic visualization with transforaminal
endoscopic approach [10]. Interlaminar approach can be performed to do radiofrequency ablation of
sinuverterbral nerve and basiverterbral nerve as well as shown in this study. The indication is mainly
BVN and SVN based discogenic back pain and leg pain with concurrent thickening of ligamentum
flavum or L5/S1 discogenic back and leg pain.
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Figure 3. Radiofrequency ablation of the sinuvertebral nerve and basivertebral nerve. In (A),
normal disc, there is a presence of sinuvertebral nerve branches but no pathological neurotization and
no neovascularization. (B) Pathological neovascularization and neurotization around the disc with
hyperalgesia from signals transmitted by the sinuvertebral nerves and basivertebral nerves. (C) When
radiofrequency is applied to the pathological hyperalgesic nerve fibers, there is twitching of the patient’s
buttock muscles. (D) As radiofrequency ablation continues, the pathological neurotized nerve fibers
are coagulated and twitching of the buttock muscles stopped in our case series. The patients performed
better in clinical outcomes if they had initial buttock twitching and subsequent stoppage of twitching
after radiofrequency ablation.
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Figure 4. Provocative discogram at L1/2. The left picture shows the landmark of the Antero Posterior
view of the L1/2 disc entry point. The right picture shows the lateral view with provocative discogram,
the patient had immediate axial back pain and left buttock pain which is similar in nature to her chronic
back pain.

In our prospective case series, we applied radiofrequency ablation to sinuvertebral nerve and
basivertebral nerve in patients with discogenic back and leg pain without imaging suggestive of
significant neural compression. We observed clinical and statistical significant improvement of VAS
pain score and ODI score with good to excellent MacNab pain relief score in all except 2 patients
who had no twitching of buttock during radiofrequency ablation. And in that 2 patients, the VAS,
ODI improvement and MacNab score for pain relief is only fair. The twitching observed is postulated
to be due to stimulation of aberrant connections with traversing nerve or exiting nerve root during
pathological neurotization of the sinuvertebral and basivertebral nerve. The presence of twitching
of buttock is suggestive that we are on the right spot in application of the radiofrequency and there
is pathological neurotization. We also used a novel neovascularization grading and found that only
patients with grade 2 (presence of neovascularization) and grade 3 (presence of neovascularization and
adhesions to neural elements) were found in our patients endoscopic findings. This is an important
inferred sign in view that both the sinuvertebral nerve and basivertebral nerve are usually not able to
be seen even with endoscopic magnified vision.

Overall, this study was performed in patients with Modic changes in association with pathological
increased Mechanical loading component due to degenerative disc disease and its relationship to
neovascularization and postulated association with neurotization of the sinuvertebral and basivertebral
nerve, successful ablation of these pathological nerves as evidenced by Kim’s twitching which subsided
after treatment has a positive clinical outcome, all the selected patients with correct indications and
associated Kim’s twitching showed statistically significant improvements in VAS, ODI and MacNab
Criteria after application of radiofrequency ablation to sinuvertebral and basivertebral nerve.

3.23. Limitations

As this is a novel procedure and concept beginning to gain acceptance in the spine community,
the number of cases performed in the study in small with inherent limitations. Procedures performed
has confounding factors of approaches (transforaminal compared to interlaminar), amount of bone
resection (interlaminar endoscopic lumbar disc approach compared to interlaminar endoscopic
unilateral laminotomy with bilateral decompression) with their respective different sizes of scope and
working cannula used to perform these procedures. Indications had a mixture of degenerative disc
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disease with and without degenerated disc protrusion and spinal stenosis without significant facet
arthropathy as confounding factors. We attempted to limit the confounding factors by only including
patients with back and leg pain without significant neural compression by Schiaz grade. Among the
bulging degenerative disc, we selected only degenerated disc protrusion cases which discectomy
was not performed and radiofrequency ablation was done on similar specific spots. Radiofrequency
ablation is also applied in region of the bulging disc which we believed have connecting fibres to
sinuvertebral nerves and basivertebral nerves though these areas of bulging disc.

3.24. Summary of Discogenic Back Pain Pathway and the Role Sinuvertebral Nerve and Basivertebral Nerve in
Molecular Science

Discogenic back pain is a clinical challenge for scientists and physicians. It encompasses a complex
pathway leading to significant disability. It starts with disc injuries leading to disruption of the structure
of the disc. Such damages can happen in minor repeated microrepetitive injuries to disc leading to
mechanical structural disruption, chemical and inflammatory pathways activation. These activations
leads a vicious cycle of destruction of the disc and interacts with the adjacent vertebral bodies which
science community postulates that it leads to Modic changes. These chemical and inflammatory
reactions can lead to acute back and radicular pain initially which may subside with conservative
management. However if the microscopic mechanical instability, chemical and inflammatory reactions
continued unabated, neovascularization and pathological neurotization may occur which leads to
pathological sensitization of sinuvertebral nerve and basivertebral nerve. Chronic sensitization of
these pathological nerves can lead to centralization of pain.

In our opinion, many of the myriad of pain pathways in degenerative disc diseases that have not
been resolved so far are likely inter-related problems. Treatment had been targeted at different levels
by various physicians, (1) at the disc level directly by various agents to remove parts of diseased disc
or pain generators (2) in fusion to stabilize the mechanical instability (3) in oral anti-inflammatory
medications epidural steroids taken in acute phase and chronic phase to decrease the chemical and
inflammatory reactions to disc injuries, (4) in radiofrequency ablation of sinuvertebral and basivertebral
nerves which are the nerves related to the discogenic back pain which is the focus of our study (5) in
medications and devices such as spinal cord stimulation to decrease centralization related chronic pain.

Such a wide myriad of solutions to a common clinical problem means that the true solution is still
eluding the scientific community, perhaps molecular science can contribute research in the diagnosis
and subsequent correct targeted treatment developments which can lead us to finding the solution to
this common clinical problem.

Molecular science can play a significant role in the advancement of the mystery in discogenic
back pain. First, molecules specific to the chemical and inflammatory response to disc injury would
be helpful for diagnosis. Second, Modic changes is closely associated to pathological mechanical
loading, many of the studies of discogenic pain, including molecular biology, that had been conducted
in the past, have not been successful in finding the linkage between discogenic pain during rest and
during mechanical loading in the form of pain pathway. Part of the reason is because mechanical
loading dynamic loading response molecules and the pain pathway molecules might be different.
If we can find a molecular pathway in detecting pathological mechanical loading leading to Modic
changes it would be helpful in diagnosis of discogenic back pain. Third, molecules specific to adhere
to neovascularization processes in the region of sinuvertebral and basivertebral nerves or specific to
these pathological nerves can be helpful in diagnosis of sinuvertebral and basivertebral nerves related
discogenic back pain. Forth, MRI detectable contrast can be tagged to these molecules to home in the
area of pathological sinuvertebral and basivertebral nerves for better diagnosis and targeted treatment.

4. Materials and Methods

A prospective case series evaluation was performed for patients who had uniportal spinal
endoscopic radiofrequency ablation of both basivertebral nerve and sinuvertebral nerve as a treatment
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for chronic discogenic back pain between 1 June 2016 to 1 June 2018 performed by single senior spine
surgeon. We include patients who had chronic discogenic back pain as they met inclusion criteria of
(1) clinical presentation back-associated leg pain in a dermatomal distribution of at least 6 months
in duration with documented failure of conservative management [106] (2) Magnetic Resonance
Imaging (MRI) showing degenerative disc PfirrmannType 3 [118] and above disc changes with or
without degenerated disc bulge and Modic Changes of either type 1 and 2 (Figure 5). We included
patients without any clear compression of nerve roots based on Schiaz grading in imaging studies,
thickened ligamentum flavum is acceptable for the study as long as no clinically significant neural
compression with degenerated disc bulge [119]. Preoperative Discography was performed in patients
who had no other spinal pathology except axial back pain and non bulging degenerative disc
disease as a diagnostic test to confirm concordant discogenic back pain. Intraoperative Discography
would be performed if there were other spinal pathologies which warrants surgery such as bulging
degenerative disc disease and spinal stenosis with concurrent discogenic back pain from degenerative
disc disease. We excluded patients with previous spinal surgery, traumatic fracture, infection and
tumor. We excluded patients with predominant non mechanical leg pain, patients with neurogenic
claudication. We excluded patients with MRI showing prolapsed uncontained disc or significant facet
arthropathy. We also excluded patients who required discectomy or removal of any disc fragment for
neural compression during endoscopic spine surgery.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 16 of 28 

 

discogenic back pain from degenerative disc disease. We excluded patients with previous spinal 
surgery, traumatic fracture, infection and tumor. We excluded patients with predominant non 
mechanical leg pain, patients with neurogenic claudication. We excluded patients with MRI showing 
prolapsed uncontained disc or significant facet arthropathy. We also excluded patients who required 
discectomy or removal of any disc fragment for neural compression during endoscopic spine surgery. 

The senior surgeon (HSK) would use interlaminar uniportal full endoscopic approach for 
patients with associated spinal stenosis and when the disc pathology occurs in L5/S1 level. While 
transforaminal endoscopic lumbar approach was performed on lumbar one to lumbar five levels 
without spinal stenosis. In either approach, the procedure would end with sinuvertebral and 
basivertebral nerve ablation as the final step. 

 
Figure 5. (A) Degenerative disc disease with Pfirrmann grade III disc, showing inhomogeneous 
structure, and an unclear distinction of nucleus and annulus and intermediate signal intensity in T2 
image with slightly decreased disc height and disc bulge. (B) Radiofrequency ablation of the disc, 
sinuvertebral nerve and basivertebral nerve showing shrinkage of degenerative disc and there is an 
increase in the signal of Modic changes in the adjacent vertebra body. 

4.1. Surgical Technique 

In all 3 types of endoscopic surgeries, the procedure consists of 2 parts. First part is to (1) safely 
access to the spinal canal with or without removing ligamentum flavum and (2) thermal shrinkage 
of disc protrusion by radiofrequency coagulator. Second is to expose the region of sinuvertebral and 
basivertebral nerve in order to perform radiofrequency ablation to basivertebral nerve and 
sinuvertebral nerve. 

4.1.1. Interlaminar Endoscopic Lumbar Approach to Disc [121–124] (Figure 6) 

Procedure is done under sedated regional or general anesthesia. Patient is placed in prone 
position. Endoscope is docked on the junction of ipsilateral facet joint and intervertebral disc line on 
intraoperative fluoroscopy. Serial dilation is done and the TESSYS Endoscopic System (Joimax 
GmbH, Karlsruhe, Germany) with endoscope of 30° viewing angle, a 7.3 mm outer diameter, a 4.7 
mm-diameter working channel, and 251 mm of total length is introduced to docking point. 
Hemostasis performed and soft tissue dissection done to expose ligamentum flavum. Ligamentum 
flavum is split using a probe and working channel is pushed into the spinal canal away from the 
neural elements towards the disc space. Working channel is manipulated with rotation to retract 
neural elements out of harm’s way. Disc was inspected for any uncontained herniated disc fragments 
which would be excluded from the study. Degenerated bulging disc which were included in the 
study would have radiofrequency thermal shrinkage procedure performed on the annulus surface. 

Figure 5. (A) Degenerative disc disease with Pfirrmann grade III disc, showing inhomogeneous
structure, and an unclear distinction of nucleus and annulus and intermediate signal intensity in T2
image with slightly decreased disc height and disc bulge. (B) Radiofrequency ablation of the disc,
sinuvertebral nerve and basivertebral nerve showing shrinkage of degenerative disc and there is an
increase in the signal of Modic changes in the adjacent vertebra body.

The senior surgeon (HSK) would use interlaminar uniportal full endoscopic approach for patients
with associated spinal stenosis and when the disc pathology occurs in L5/S1 level. While transforaminal
endoscopic lumbar approach was performed on lumbar one to lumbar five levels without spinal
stenosis. In either approach, the procedure would end with sinuvertebral and basivertebral nerve
ablation as the final step.

4.1. Surgical Technique

In all 3 types of endoscopic surgeries, the procedure consists of 2 parts. First part is to (1) safely
access to the spinal canal with or without removing ligamentum flavum and (2) thermal shrinkage
of disc protrusion by radiofrequency coagulator. Second is to expose the region of sinuvertebral
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and basivertebral nerve in order to perform radiofrequency ablation to basivertebral nerve and
sinuvertebral nerve.

4.1.1. Interlaminar Endoscopic Lumbar Approach to Disc

Procedure is done under sedated regional or general anesthesia. Patient is placed in prone
position. Endoscope is docked on the junction of ipsilateral facet joint and intervertebral disc line on
intraoperative fluoroscopy. Serial dilation is done and the TESSYS Endoscopic System (Joimax GmbH,
Karlsruhe, Germany) with endoscope of 30◦ viewing angle, a 7.3 mm outer diameter, a 4.7 mm-diameter
working channel, and 251 mm of total length is introduced to docking point. Hemostasis performed
and soft tissue dissection done to expose ligamentum flavum. Ligamentum flavum is split using a
probe and working channel is pushed into the spinal canal away from the neural elements towards the
disc space. Working channel is manipulated with rotation to retract neural elements out of harm’s
way. Disc was inspected for any uncontained herniated disc fragments which would be excluded from
the study. Degenerated bulging disc which were included in the study would have radiofrequency
thermal shrinkage procedure performed on the annulus surface [120–123] (Figure 6).
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endoscope has a 10-mm outer diameter and a 6-mm working channel, and a 15-degree view angle. 
Endoscope is docked on the junction of ipsilateral facet joint and intervertebral disc line on 
intraoperative fluoroscopy. Using endoscopic diamond burr drills, we drilled just enough lamina to 
safely remove the thickened flavum so as to safely approach the targeted disc. We routinely switched 
the endoscope to a 30° viewing angle, a 7.3 mm outer diameter, a 4.7 mm-diameter working channel, 
and 251 mm of total length for closer examination of the disc and end plates region and to perform 
radiofrequency ablation to the sinuvertebral and basivertebral nerves. 

Figure 6. (A) Uniportal interlaminar endoscopic approach to disc showing the relationship of the
lumbar five (L5) traversing nerve root which is retracted away by the working channel, exposing the disc
of L4/5, the basivertebral nerve is located above pedicle of left L5, there is grade 3 neovascularization
and inflammatory granulation tissue with adhesion around the basivertebral nerve region. In most
circumstances, the basivertebral nerve is too fine to be seen by endoscopic vision. (B) Same region in
the same patient after radiofrequency was applied to shrink the degenerative disc, and to ablate the
pathological neovascularization with underlying inflammatory tissues and the basivertebral nerve,
the typical response is twitching of the buttock when the correct location of the basivertebral nerve
is ablated. (C) Another patient with similar steps in retraction of traversing nerve root and exposing
neovascularized tissue and the location of the basivertebral nerve. (D) Radiofrequency ablation applied
to neovascularized tissue, disc and basivertebral nerve.
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4.1.2. Lumbar Endoscopic Unilateral Laminotomy for Bilateral Decompression with
Radiofrequency Ablation

Procedure is done under regional or general anesthesia. Patient is placed in prone position.
An iLESSYS Delta Endoscopic System (Joimax GmbH, Karlsruhe, Germany) is used for endoscopic
work. This system has a working cannula of 13.7 mm outer diameter and 10.2 mm inner diameter.
The endoscope has a 10-mm outer diameter and a 6-mm working channel, and a 15-degree view
angle. Endoscope is docked on the junction of ipsilateral facet joint and intervertebral disc line on
intraoperative fluoroscopy. Using endoscopic diamond burr drills, we drilled just enough lamina to
safely remove the thickened flavum so as to safely approach the targeted disc. We routinely switched
the endoscope to a 30◦ viewing angle, a 7.3 mm outer diameter, a 4.7 mm-diameter working channel,
and 251 mm of total length for closer examination of the disc and end plates region and to perform
radiofrequency ablation to the sinuvertebral and basivertebral nerves [120–123].

4.1.3. Transforaminal Endoscopic Lumbar Approach for Radiofrequency Ablation

Procedure is done under local anesthesia with moderate sedation. Patients were placed in prone
position on Wilson Frame [124] (Figure 7). Skin marking is made on the entry point which is in
line with intervertebral disc on anteroposterior view of intraoperative fluoroscopy in a slight 5–10◦

cephalad caudal direction and with 25–35◦ angle to horizontal in axial plane about 12–14cm from
midline of lumbar. The angle of approach varied according to the position of the degenerated disc
protrusion Needle is docked at Kambin’s triangle near the intervertebral disc which is marked by
space between hypotenuse as exiting nerve root, base as superior border of the inferior vertebra and
height as traversing nerve root [125]. We used endoscope of 30◦ viewing angle, 7.3 mm outer diameter,
4.7 mm-diameter working channel, and 251 mm of total length. We performed mobile outside in
technique with drilling of ventral superior articular facet to have better access to disc [124]. Parts of
disc were removed to create space in facilitating the approach to the region of sinuvertebral nerve and
basivertebral nerve. The region of sinuvetebral nerves is commonly located in the region just below
the center of annulus. In order to ablate this area safely under the view, removal of parts of ventral
degenerated disc annulus was inevitable. The region of basivertebral nerves is commonly located close
to the upper medial part of pedicle and in order to expose this area, removal of some part of ventral
annulus is inevitable to safely access the region of basivertebral nerve.
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Figure 7. (A) Right transforaminal endoscopic approach of L4/5 disc space, under endoscopic
view we can assess the traversing nerve root of L5 to be decompressed, L5 pedicle and location of
basivertebral nerve above the pedicle are observed. (B) Application of radiofrequency ablation on the
basivertebral nerve.
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4.2. Ablation of Neuropathic Basivertebral Nerve and Sinuvertebral Nerve

In both transforaminal and interlaminar approaches, the final step is performing radiofrequency
ablation. A bipolar radiofrequency electrocoagulator (Elliquence, Baldwin, NY, USA) is used in
ablation of neuropathic basivertebral nerve around the suprapedicular area (Figures 2 and 3) and
sinuvertebral nerve in mid disc region between posterior annulus and posterior longitudinal ligament.
This is performed with the working channel protecting the neural elements, making sure it is out
of harm’s way. At the area of pathological neurotization of Basivertebral and Sinuvertebral Nerves,
there would typically be neovascularization with or without adhesion tissues, which we grade and
record accordingly. Then bipolar radiofrequency probe is applied to medial suprapedicular area,
we observe for twitching of the buttock when application of bipolar radiofrequency and typically
it starts twitching when basivertebral nerve is coagulated. We termed this iatrogenic twitching
phenomenal when the neural elements are well protected out of harm’s way by working cannula as
Kim’s twitching as it is a sign of the correct targeted treatment area. Once of basivertebral nerve was
completely ablated, Kim’s twitching would stop even when radiofrequency applied to the same area
which was twitching initially. Sinuvertebral nerve on the other hand is just caudal to mid disc region
of the intervertebral disc in the space between the posterior annulus of the disk and the posterior
longitudinal ligament (PLL), when radiofrequency is placed on the right region, either buttock of the
patient would also have Kim’s twitch accordingly and once sinuvertebral [10].

4.3. Data Collection

Basic parameters of age, sex and indication of surgery of the patients are collected, nature of
surgery and levels of surgery is documented. For each patient, the following information was
collected preoperatively and during follow-up: visual analogue scale (VAS) scores for low-back pain,
Oswestry Disability score, and and MacNab’s criteria are used in evaluation of patients’ pain response
and disability. Clinical parameters are measured at pre-operative, 1 week, 6months and final follow
up in a prospective data collection. The medical files were reviewed for data on intraoperative
and postoperative complications including bleeding, infection and revision posterior decompression.
Endoscopic videos review were performed to evaluate the presence of intraoperative twitching and
grade the degree of neovascularization and adhesion. In this novel grading, Degenerative Spinal
Neovascularization Grade. We defined as follows: Grade 1. Normal vascularization, Grade 2.
Neovascularization without adhesion, Grade 3. Neovascularization with adhesion (Figure 8).
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Figure 8. Drawings of the neovascularization grading system. Left picture showing a grade 1 normal
appearance with sparse epidural vessels around the disc. The middle picture showed a grade 2
increased neovascularization of epidural vessels with vascularization. The right picture showed
grade 3 with increased neovascularization of epidural vessels with vascularization and adhesion on
neural tissues.
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Magnetic Resonance Imaging is done pre-operatively and post-operatively. We observed type of
Modic changes, Schiaz [126] grade for degree of spinal stenosis and adequacy of decompression in
patients with spinal stenosis and shrinkage of disc in patients who had degenerative disc disease and
degenerated disc protrusion with or without other pathologies (Figure 9).
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the severe Modic change (Type 1) in the adjacent vertebrae. The patient had decompressed and 
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Figure 9. Sagittal cuts across L5/S1 in a patient with spinal canal stenosis, degenerative disc disease of
L5/S1 with disc protrusion into the spinal canal and vertebral bodies of L4 and L5, there are Type 1
Modic changes signifying bone marrow edema and inflammation. The corresponding axial and sagittal
cuts are labelled (A–C) accordingly. On axial cuts, we can see preoperative spinal canal stenosis with
disc bulge and ligamentum hypertrophy with Schiaz grade A3 with rootlets lying dorsally occupying
more than half of the dura sac area. This patient suffered buttock pain and both leg pain especially
right leg pain for 5 months. The patient visited the clinic with visual analogue scale (VAS) score of
8 that was aggravated from 3 months ago, especially buttock pain and right leg pain, in spite of the
preoperative MRI and spinal stenosis was not severe (Schiaz Grade A3). We can check the severe Modic
change (Type 1) in the adjacent vertebrae. The patient had decompressed and radiofrequency ablation
to sinuvertebral and basivertebral nerves in MRI postoperative day 1 which had been maintained in a
1-year follow up. There is shrinkage of the disc and less marrow changes in bone edema. The patient’s
final follow-up VAS was 1 and returned to work as per normal.

4.4. Statistical Analysis

Clinical data was analyzed with SPSS version 18 statistical analysis software (IBM corporation,
New York). The continuous variables were expressed as mean and standard deviation (SD). The paired
t test is used for comparison of pre-operative and post-operative visual analogue scale (VAS),
Oswestry Disability Index (ODI) and MacNab’s outcome criteria to assess patient’s outcome at
pre-operative, 1 week, 6 months and final follow up. Statistical significance is when p value is less
than 0.05.
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5. Conclusions

Pathoanatomy and pathophysiology of degenerative disc disease is a subject of intensive scientific
research, the pathological neurotization of sinuvertebral nerve and basivertebral nerve can lead to
siginificant pain and disability. Radiofrequency ablation to sinuvertebral and basivertebral nerve is
effective in our prospective case series. More investigation should be considered in the treatment of
sinuvertebral and basivertebral nerve.
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