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Abstract
Dinitrogen (N2) fixation is a major source of external nitrogen (N) to aquatic ecosystems and therefore exerts control over
productivity. Studies have shown that N2 -fixers release freshly fixed N into the environment, but the causes for this N
release are largely unclear. Here, we show that the availability of phosphate can directly affect the transfer of freshly fixed N
to epibionts in filamentous, diazotrophic cyanobacteria. Stable-isotope incubations coupled to single-cell analyses showed
that <1% and ~15% of freshly fixed N was transferred to epibionts of Aphanizomenon and Nodularia, respectively, at
phosphate scarcity during a summer bloom in the Baltic Sea. When phosphate was added, the transfer of freshly fixed N to
epibionts dropped to about half for Nodularia, whereas the release from Aphanizomenon increased slightly. At the same
time, the growth rate of Nodularia roughly doubled, indicating that less freshly fixed N was released and was used for
biomass production instead. Phosphate scarcity and the resulting release of freshly fixed N could explain the heavy
colonization of Nodularia filaments by microorganisms during summer blooms. As such, the availability of phosphate may
directly affect the partitioning of fixed N2 in colonies of diazotrophic cyanobacteria and may impact the interactions with
their microbiome.

Introduction

The availability of dissolved inorganic nitrogen (DIN) often
limits primary productivity in aquatic ecosystems. The
activity of dinitrogen (N2)-fixing microorganisms (diazo-
trophs) alleviates the nitrogen (N) limitation either directly
when diazotrophs are also photoautotrophs or indirectly
through the release of fixed N to the microbial community.
This fixed N can be released or transferred to the microbial
community via several pathways, ranging from cell death
[1], viral lysis [2, 3], break-up of cells during grazing [4], to

active or passive release of inorganic and organic nitrogen
compounds (e.g., ref. [5]). The nitrogenous compounds are
then available to other microorganisms [6–10] and can
subsequently fuel the activity and growth of higher trophic
levels [9, 11–15]. In addition, diazotrophically fixed N can
also be exported from the upper water column either by
grazing and subsequent transport of fecal pellets to
deeper waters, direct export through sinking (e.g.,
diatom–diazotroph associations [16]), or aggregation and
export of marine snow aggregates. Whether diazo-
trophically fixed N is channeled through the microbial loop
or is exported directly could then have profound effects on
the turnover and productivity of surface waters
[9, 14, 17, 18].

A large portion of N2 fixation in aquatic ecosystems is
carried out by filamentous cyanobacteria that can form
millimeter-large, visible colonies. The non-heterocystous,
colonial Trichodesmium sp. has been suggested to account
for up to half of the marine N2 fixation [19–21], while the
heterocystous Aphanizomenon sp. and Nodularia sp. are
important contributors to N2 fixation in brackish and
freshwater environments (e.g., refs [22–24]). Although
grazing of filamentous diazotrophs and direct export of their
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biomass to deeper waters has been observed (e.g., refs
[12, 25]), the majority of its fixed N appears to be channeled
through the microbial loop and thereby fuels productivity in
surface waters [12, 26, 27] with significant contributions to
net production in some environments [16, 28].

A relatively large fraction of the total N2 fixed might be
released to the surrounding water or microbial community.
Several field and culture studies have reported the produc-
tion of dissolved N compounds (often as ammonium or
amino acids) from N2 fixation and/or their transfer to other
organisms (e.g., [5, 6, 9, 29]). The observed release is often
higher in natural environments [30] than in culture studies
[31, 32], presumably due to the absence of factors poten-
tially promoting N release in culture experiments (such as
grazing, nutrient limitation, stress [32]). A co-culture study
observed that the growth of both microbial partners (an N2-
fixer and a non-N2-fixer) was promoted through N release
relative to the growth in mono-cultures [33], suggesting that
N release by an N2-fixer could be mutually beneficial in a
natural microbial community. The causes for N release in
natural environments are, however, often not known. Stu-
dies on photosynthesis have put forward several mechan-
isms for the causes on the release of dissolved organic
carbon (DOC), including passive diffusion, photosynthetic
overflow, autocatalytic cell death, photorespiration,
resource acquisition, defense mechanisms, infochemicals,
and density reduction [34]. While these may not be directly
transferable to N release, these mechanisms might offer
some insight into the causes for N release, particularly in
photoautotrophic N2-fixing microorganisms. Increased
release of dissolved organic matter (DOM) from phyto-
plankton, primarily as photosynthetic overflow [34], pre-
viously has been linked to nutrient limitation [35]. Iron (Fe)
and phosphorus (P) are well known to impact the activity of
diazotrophs [36–38]. Nevertheless, very little is known
about the function of nutrient limitation on the release of
diazotrophically fixed N2. Indirect evidence that the avail-
ability of inorganic P (i.e., phosphate or DIP) could affect
the release of fixed N has come from increases in DIN
concentration during DIP limitation [39]. In view of the
sparsity of studies and the difficulty of teasing apart indi-
vidual organisms and their physiology in environmental
studies, the extent, magnitude, and mechanisms of fixed N
release in the environment remains mostly unresolved.

The Baltic Sea endures recurring cyanobacterial summer
blooms with high N2 fixation rates; in fact, it harbors some
of the highest rates measured in any aquatic system [24]. In
the central Baltic Sea, the main N2-fixing organisms are the
cyanobacteria Aphanizomenon sp., Dolichospermum spp.,
and/or Nodularia spumigena (e.g., [23]). Aphanizomenon
colonies usually contain few epibionts and little is known
about their identity [40, 41]. In contrast, Nodularia colonies
harbor associated microorganisms distinct from the

surrounding seawater [42], including members of the pro-
teobacteria and the Cytophaga–Flavobacterium–Bacter-
oides group [42, 43]. Nodularia shows little overgrowth
earlier in the season, but dense epibiont colonization at later
stages [44, 45], which is accompanied by changes in the
structure of the associated microbial community [42]. Clo-
sely associated microorganisms isolated from Nodularia
colonies have been shown to be both beneficial and detri-
mental to the cyanobacterial growth [43]. The release and
transfer of freshly fixed N in these blooms has previously
been documented for both cyanobacteria (e.g., ref. [9]), but
the underlying mechanisms are unclear.

Considering the very low DIP concentrations encoun-
tered in the late summer bloom, the Baltic Sea provided the
ideal site to employ a combination of stable isotope incu-
bations and single-cell techniques to (1) determine the
degree of P limitation within colonies of the heterocystous
diazotrophic cyanobacteria Aphanizomenon and Nodularia,
(2) measure the transfer of fixed N and carbon (C) to
associated epibionts of the cyanobacteria, and (3) test
whether DIP availability plays a role in the transfer, under
low DIP concentrations in a Baltic Sea summer bloom.

Material and methods

Sampling and experimental setup

The sampling and experimental setup corresponds to that
described in Schoffelen et al. [46]. For context and refer-
ence, this section describes the same experiments (with
some additional subsampling), which are also summarized
as a sketch in Supplementary Fig. S1. Subsamples exclu-
sively presented in Schoffelen et al. [46], for example,
colony-based DIP uptake, are not included here. Field
sampling was carried out on three occasions in August 2015
(6th, 8th, and 12th August) at the Swedish National Marine
Monitoring site B1 (58°48′18″N, 17°37′52″E), located
close to the Askö Marine Research Station (Baltic Sea
Center) at the south-eastern coast of Sweden, using a motor-
driven boat. Surface waters were collected in a 30-L high-
density polyethylene container (Nalgene) by submerging
the container in the surface water from the side of the boat.
Colonies of filamentous cyanobacteria were gathered by
lowering a plankton net (mesh size 20 μm) down to ~3 m
depth, hauling it up to the surface and transferring the
collected material to a 2.5-L polycarbonate bottle until
further processing in the laboratory. Both surface waters
and collected colonies were transported back to the Askö
Marine Research Station within 30 min after sampling. In
the first experiment (6th August 2015), the surface water
was subsampled for nutrient concentrations and bulk DIP
uptake rates using the radiotracer 33P (see section below).
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The second experiment (8th August 2015) was carried out
as described for the first experiment with the addition of:

a. bulk rates of CO2 and N2 fixation (see section below),
b. incubations for single-cell rates of CO2 and N2

fixation by cyanobacteria and the transfer of freshly
fixed C and N to their epibionts using the stable
isotopes NaH13CO3 and 15N2, respectively, at in situ
DIP concentrations (see section below; here, also trace
amounts of 33P-DIP were added and the cyanobacter-
ial single-cell DIP uptake rates have been published in
[46]), and

c. subsamples for cyanobacteria and epibiont character-
ization (see section below).

The third experiment (12th August 2015) was carried out
as described for the first experiment with the addition of
single-cell rates of CO2 and N2 fixation by cyanobacteria
and the transfer of freshly fixed C and N to their epibionts
using the stable isotopes NaH13CO3 and

15N2, respectively,
but under artificially increased (+1 μmol L−1) DIP con-
centration. All incubations were carried out in a
temperature-controlled and light-controlled room that was
set for in situ conditions measured on the sampling day at
station B1 at a 1–2 m water depth (17.4–18.0 °C, ~280 μmol
photons m−2 s−1 light irradiance, 18 h:6 h light–dark cycle).
All sampling and incubation equipment was cleaned with a
phosphorus-free detergent (Decon90, Decon Laboratories
Limited) and acid washed (HCl) prior to use to minimize
nutrient contaminations during sampling or labeling
experiments. The description of nutrient sample collection,
analysis, and the nutrient data (DIP) have been published in
Schoffelen et al. [46].

Bulk CO2 and N2 fixation rates

CO2 and N2 fixation rates in the bulk seawater were mea-
sured following the modified bubble method described by
Klawonn et al. [47]. Water collected at station B1 was
transferred to four 2.5-L polycarbonate bottles and capped
headspace-free. To three of the four bottles, isotopically
enriched sodium bicarbonate (NaH13CO3, ≥98 atom%,
Sigma-Aldrich) and N2 gas (

15N2, ≥99 atom%, lot number I-
17299, Cambridge Isotope Laboratories) were added
through the septum caps. The 15N2 gas was tested for trace
contamination of 15NH4

+ using the hypobromite oxidation
method [48] prior to the experiments, and no contamination
was detected. The bottles were gently agitated for 15 min,
the gas bubble was then released, and the bottle was
again capped headspace-free. Isotopic enrichments of 13C
(~11.7 atom%) and 15N (~4.3 atom%) in the CO2 and N2

pool were determined using gas chromatography coupled to
isotope-ratio mass spectrometry (GC-IRMS; Finnigan Delta

Plus) and membrane inlet mass spectrometry (MIMS;In
Process Instruments GAM 200), respectively, in subsamples
taken at the end of the incubation. The three isotopically
enriched bottles and the one untreated bottle (for natural
abundance of 13C and 15N) were all incubated for 24 h at the
conditions described above. Incubations were terminated by
vacuum filtration of 0.5 L each onto a 25 mm pre-
combusted (460 °C, 6 h) GF/F filter (Whatman). The fil-
ters were dried (60 °C, 12 h) and stored at room temperature
in the dark until further analysis. Elemental and mass
spectrometric measurements, analysis, and calculations
were done as described in Martínez-Pérez et al. [49].

Bulk DIP uptake rates

Bulk DIP uptake rates were determined using small poly-
carbonate bottles filled with 60 mL of bulk water and
150 kBq radiolabeled phosphate (33PO4

3− equivalent to
0.02 nmol/L final concentration, specific activity 111 TBq
mmol−1, t1/2 25.4 days; Hartmann Analytic). Incubations
were performed in five replicates with two (background)
controls: one with filtered seawater (0.22 µm pore size) and
the other heat killed (80 °C, 30 min). Both controls were
used to reveal any unspecific binding of the radiotracer to
the bottle, filter, or organic material. All incubations were
carried out at conditions described above. Subsamples from
the radiotracer incubations were taken every 6 h starting at
time zero (t0) to monitor linearity of uptake. The subsamples
were filtered through a polycarbonate filter (GTTP, 0.2 µm
pore size, 25 mm diameter, Millipore) and washed twice
with 5 mL of filtered seawater. The filter was then trans-
ferred to a 6 mL scintillation vial containing 5 mL scintil-
lation fluid (Irga-safe plus, PerkinElmer). Total radioactivity
was determined from every incubation bottle using 100 µL
of water that were directly transferred into a scintillation
vial. All samples from one experiment were measured on
the same day using a liquid scintillation counter (type: 425-
034, Hidex). Bulk DIP uptake rates were calculated using
the linear regression for the radiotracer incorporation into
biomass between time points (only the linear part was used,
see Supplementary Fig. S2), the total amount of radiotracer
added, and the DIP concentration in the water. Uptake rates
were corrected for radiotracer decay, and unspecific radio-
tracer binding using the controls.

Cyanobacteria and epibionts characterization

Cyanobacterial colonies were hand-picked from the plank-
ton net-collected material with the help of a stereomicro-
scope. Visual characterization was done by epifluorescence
microscopy and scanning electron microscopy (SEM). For
epifluorescence microscopy of Aphanizomenon (one col-
ony), the picked colony was preserved with formaldehyde
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(1% w/v final concentration) for 30 min at room temperature
and rinsed with demineralized water before being transferred
onto a polycarbonate filter (GTTP, 0.22 μm pore size,
25 mm diameter, Millipore). The filter was stored frozen at
−20 °C until further processing. For epifluorescence
microscopy of Nodularia (one colony), we used one of the
filters from the single-colony incubations (see below). Both
colonies were microscopically identified on the filters by
their auto-fluorescence signal and the colony-associated
microorganisms were visualized by 4′,6-diamidino-2-phe-
nylindole (DAPI) staining using an epifluorescence micro-
scope (Zeiss Axioplan2 and Axio Imager M2).

The SEM analysis was used to determine the number of
epibionts per cyanobacterial cell, only considering cells
closely associated to the cyanobacteria (also see single-cell
section below). The SEM-based epibiont counting was done
on the filters obtained from the single-cell incubations (8th
August) described below. In random selection, a total of 24
and 8 images containing 32 and 18 cyanobacterial cells and
64 and 251 epibionts were counted for Aphanizomenon and
Nodularia (one colony each), respectively.

The elemental composition of the cyanobacteria was
measured using energy-dispersive X-ray spectroscopy
(EDS) coupled to the SEM (SEM-EDS). For each Apha-
nizomenon and Nodularia, one colony was sampled at the
start of the incubation (t0; only for 8th August), and one of
the three colonies incubated for single-cell measurements
(t24) was also used for elemental analysis (see Supplemen-
tary Fig. S1; details of analysis and data published in
Schoffelen et al. [46]). The penetration depth of this SEM-
EDS analysis was ~2 µm, which assures that the obtained
signal from the cyanobacteria has minimal interference from
the polycarbonate filter [46]. However, the epibionts are
much smaller than the cyanobacteria themselves. Therefore,
we analyzed the elemental composition (using SEM-EDS)
of the epibionts (8 Aug 2018) on colonies that were picked
and transferred to silica wafers to avoid interference. These
colonies were fixed with formaldehyde (1% w/v final con-
centration) for 30 min at room temperature, washed with
demineralized water, and then transferred to the silica
wafers. The wafers were stored frozen at −20 °C until
further analysis. From one colony of each Aphanizomenon
and Nodularia, 21 and 33 epibionts across 7 and 7 ran-
domly selected fields of view were analyzed, respectively.
No significant differences (p > 0.05) in the elemental ratios
were detected between epibionts of Aphanizomenon and
Nodularia based on a Mann–Whitney test (for non-normal
distributions) and all epibiont data was therefore combined.

Single-cell C and N uptake rates

Cyanobacteria CO2 and N2 fixation and epibiont C and N
uptake rates were determined using a stable isotope

approach followed by nanometer-scale secondary ion mass
spectroscopy (nanoSIMS). The batches of incubation sea-
water were prepared by adding NaH13CO3 and 15N2 to a
2.5-L polycarbonate-filled bottle and capped headspace-free
as described above but with filtered seawater (0.2 μm pore
size). The bottle was agitated for 15 min on a rotary shaker
and the gas bubble was released. The isotope-labeled water
was carefully transferred to 6-mL Exetainers. Single hand-
picked cyanobacterial colonies were then added to the
Exetainers, the radiotracer 33P was added (see [46]), the
Exetainers were closed headspace-free, and were incubated
under the conditions described above. Isotopic enrichments of
13C and 15N in the CO2 and N2 pool were measured as
described above from subsamples of the batches of prepared
incubation water (average across experiments of ~11.9 atom%
13C, ~1.8 atom% 15N were used in the calculation). Per
species a single sample (i.e., a single colony) was termi-
nated at t0 (only 8th August; used for SEM-EDS analysis of
cyanobacteria; see [46]) and three samples (i.e., three
colonies) after 24 h by fixing the sample with formaldehyde
(1% w/v final concentration) for 30 min at room tempera-
ture and then filtering onto a gold-sputtered polycarbonate
filter (0.22 μm pore size; 25 mm diameter; Millipore). Fil-
ters were washed with nanopure water, dried at room tem-
perature, and mounted onto microscope glass slides using a
small drop of 0.1% low-melting-point agarose. The micro-
scope slides were stored in the dark at room temperature
before single-cell analysis. One of the three colonies sam-
pled after 24 h was later used in the elemental analysis and
the other two colonies were reserved for nanoSIMS analysis
of the cyanobacteria. NanoSIMS measurements of the epi-
bionts were done on one colony for Nodularia and on up to
three colonies for Aphanizomenon, since here the SEM-
EDS filter was also used for nanoSIMS analysis (Supple-
mentary Fig. S1).

nanoSIMS analysis

Single-cell C and N uptake activity rates were determined
based on the incorporation of DI13C and 15N2 into the
cyanobacteria cell biomass and the uptake of released 13C
and 15N compounds by the epibionts using a nanoSIMS
50 L (CAMECA) at the Max Planck Institute for Marine
Microbiology in Bremen, Germany. The analysis of the
cyanobacterial cells is described in detail in Schoffelen et al.
[46]; the following paragraph therefore describes the ana-
lysis of the epibionts. Aphanizomenon and Nodularia fila-
ments were identified based on autofluorescence and
morphology and were marked using a laser micro-dissection
system (6000B, Leica). Since Aphanizomenon filaments
have a sparse epibiotic colonization, most of the individual
epibionts were later identified by their nanoSIMS signals
(e.g., 12C14N− or 32S−) while some were additionally
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imaged prior to nanoSIMS using SEM. However, many
microorganisms associated to Nodularia were embedded in
the colonies’ mucilage (forming multiple layers; Supple-
mentary Fig. S3), which made it difficult to identify them in
the SEM and/or nanoSIMS images. We therefore mainly
focused on the epibionts in single to double layers around
the filaments and epibionts of Nodularia were visualized
with SEM prior to nanoSIMS analysis so that measurements
could be attributed to individual cells.

After loading the sample into the nanoSIMS, marked
filaments were pre-sputtered with a Cs+ primary ion beam
of 300 pA to remove surface contaminations, implement
Cs+ ions into the samples, and achieve a stable secondary
ion emission rate. A primary Cs+ ion beam with a current
between 1 and 1.5 pA and a beam diameter <100 nm was
rastered across the cells for analysis. For individual cells,
secondary ion images of 12C−, 13C−, 12C14N−, 12C15N−,
31P−, and 32S− were simultaneously recorded using six
electron multipliers. The analysis areas were 15 μm × 15 μm
in size. An image size of 256 × 256 pixels with a dwell time
of 1 ms per pixel was used for the imaging and a minimum
of 40 planes were measured per area. To minimize inter-
ferences for 12C15N− the instrument was tuned for high
mass resolution (>8000 MRP). All nanoSIMS measure-
ments were analyzed using the Matlab-based software
package Look@NanoSims [50] (available at http://na
nosims.geo.uu.nl/nanosimswiki/doku.php/nanosims:lans).
For every measurement, secondary ion images were drift
corrected and accumulated. Regions of interest were drawn
around cells using the secondary ion images, and 13C/12C,
15N/14N (inferred from 12C15N−/12C14N−), and 32S/12C
ratios were calculated. Detection limits for the 13C/12C and
15N/14N ratios were 0.0117 and 0.0043, respectively (for
13C/12C also see [46]). The nanoSIMS images were corre-
lated with previously recorded SEM images showing the
epibionts along the cyanobacterial filaments.

The relative C and N uptake activity of the epibionts was
calculated based on the incorporation of 13C and 15N into
the biomass (originating from DI13C or 15N2), natural
abundance of 13C and 15N from the bulk biomass (see bulk
CO2 and N2 fixation section), and the DI

13C or 15N2 labeling
in the incubation water. Cellular rates of the epibionts were
based on a “prolate spheroid” biovolume calculation [51]
and a biovolume to cellular C conversion factor [52]. Cel-
lular N content was calculated using the C:N ratio deter-
mined from SEM-EDS analysis as described above. Uptake
rates might be slightly underestimated due to sample pre-
paration for nanoSIMS analysis [53].

C-based and N-based growth rates

Substrate-based growth rates for epibionts and cyano-
bacteria were determined based on the incorporation of

DI13C or 15N2 into the biomass (XB; corrected for natural
abundance) assuming an even distribution of isotopes
between cells during cell division as follows:

Substrate� based growth rate day�1
� � ¼ XB=XIð Þ � 2 � 1=t;

ð1Þ

with XI (corrected for natural abundance) representing the
DI13C or 15N2 atom% labeling and t the incubation time. A
Mann–Whitney test (for non-normally distributed data) was
used to determine significant differences in C-based and
N-based growth rates between incubation conditions (in situ
or DIP amended) including all measured cells.

Partitioning of fixed C and N between cyanobacteria and
epibionts

In our experiments, we currently cannot mass balance fixed
C and N budgets, which would require not only the mea-
surement of fixed C and N lost to the medium but also the
monitoring of total biomass of both cyanobacteria and
epibionts throughout the incubation. This in itself is difficult
given the heterogeneity of the epibiotic coverage of Nodu-
laria and methodological complexity. To estimate how the
fixed C and N is partitioned between the cyanobacterial
cells and their epibionts, we therefore used the median
number of epibionts per cyanobacterial cell and the median
cellular rates assuming median cell sizes and C:N ratios
calculated from all cells of both treatments. Since the rela-
tive and cellular rates are based on the isotopic labeling of
the substrate, that is, CO2 and N2, the calculation of transfer
of fixed C and N from cyanobacteria to epibionts assumes
that the epibionts only receive newly fixed diazotroph-
derived C and N. The contribution of epibionts to the total
assimilation of C and N among the cyanobacteria and epi-
bionts was calculated as follows:

Epibionts C assimilation of the total %ð Þ
¼ EC � En

� �
= EC � En
� �þ CC
� ��100;

ð2Þ

Epibionts C assimilation of the total %ð Þ
¼ EN � En

� �
= EN � En
� �þ CN
� ��100;

ð3Þ

in which CC and CN represent the median C and N
assimilation by the cyanobacterial cells, EC and EN
represent the median C and N assimilation by the epibionts,
which is multiplied by the number of epibionts attached per
cyanobacterial cell (En). Since it is possible that not only
freshly fixed material was released/transferred, we also
calculated the transfer assuming that the substrate for the
epibionts was a mixture of freshly fixed material and “older
biomass,” using the same equations. For this, we assumed
that the released C and N from the cyanobacteria, that is,
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substrate for the epibionts, had an isotopic composition that
was equal to the isotopic composition of the cyanobacterial
biomass at the end of the incubation.

Results

Environmental conditions, bulk CO2 and N2 fixation,
and DIP uptake during the cyanobacterial summer
bloom

The environmental conditions of the cyanobacterial bloom
were published in Schoffelen et al. [46], but are described
here again for better reference and context. Nutrient con-
centrations monitored throughout 2015 at sampling station
B1 showed that DIN was largely depleted by the beginning
of May and remained low throughout August (Swedish
Meteorological and Hydrological Institute database for
monitoring station B1). At the onset of the N2-fixing cya-
nobacterial bloom in August (bulk CO2 fixation: 15.5 ±
1.2 µmol C L−1 day−1; bulk N2 fixation: 1.23 ± 0.07 µmol
N L−1 day−1), DIP concentrations dropped from ~150 to
only ~30 nmol L−1 over the course of 2 days and stayed low
for the duration of the bloom. Water conditions were gen-
erally calm, surface water temperatures (1–2 m depth) were
between 17.4 and 18.0 °C, and sunlight irradiance was high
at ~280 μmol photons m−2 s−1 during the summer bloom.
With respect to the filamentous cyanobacterial diazotrophs,
Aphanizomenon sp. was most abundant followed by Doli-
chospermum sp. and Nodularia sp. [46], which is consistent
with previous findings [23].

During the cyanobacterial bloom, DIP uptake rates in the
bulk seawater were uniform at 2.1–2.4 nmol L−1 h−1 during
the first 6 h of incubation independent of the initial DIP
concentrations of 154, 34, and 23 nmol L−1 on 6, 8, and
12th August 2015, respectively (Fig. 1). However,

phosphate uptake halted when DIP concentrations dropped
below ~10 nmol L−1, respectively (Supplementary Fig. S2),
indicating that the bulk microbial community starts
experiencing DIP limitation below this concentration. The
filamentous cyanobacterial colonies, however, already
experienced DIP stress at higher DIP concentrations with an
apparent KM of ~60 nmol L−1 [46].

Epibiont visualization, abundance, and elemental
composition

Microscopic characterization of picked cyanobacterial
colonies (stained with DAPI) revealed mostly non-
autofluorescent bacteria associated with filaments of both
Aphanizomenon and Nodularia (Fig. 2, Supplementary
Fig. S3). Associated cells occurred primarily as individual
cells or occasionally as small clusters of 2–5 cells along
Aphanizomenon filaments. In contrast, Nodularia filaments
were densely populated, with large cell clusters often
forming a multi-layer biofilm within the mucilage along the
filament. Due to this mucilage in the multi-layer biofilm,
epibionts were indistinguishable from each other and the
organic-rich mucus under SEM and/or nanoSIMS. There-
fore, we focused mainly on single-layer or double-layer
epibiont biofilms closely associated to the filaments (see
Methods section). Associated epibiotic cells had an average
size of 0.84 ± 0.11 µm3 (median ± SE). The abundance of
epibionts was highly variable with median abundances of 2
(mean ± SD of 2.3 ± 1.7; n= 24 fields of view) and 20
(mean ± SD of 35.4 ± 35.1; n= 8 fields of view) epibionts
per cyanobacterial cell for Aphanizomenon and Nodularia,
respectively. Since we only considered closely associated
cells on Nodularia filaments, our estimate is conservative
and the true number of epibionts is likely much higher
considering the dense colonization in the mucilage (Fig. 2,
Supplementary Fig. S3). Elemental analysis of the epibionts
showed C:N, C:P, and N:P ratios slightly below the cano-
nical Redfield ratio (Fig. 3), while the filamentous cyano-
bacteria had higher elemental ratios (C:P ~130:1 [46]).

Single-cell C and N uptake by cyanobacterial
filaments and their epibionts

Cyanobacterial filaments were highly enriched in 13C and
15N showing their active 13CO2 and

15N2 fixation during the
24-h incubations (Fig. 4; [46]). Epibionts of Aphanizomenon
showed low enrichments in both isotopes indicating a low
transfer of freshly fixed material from Aphanizomenon to its
epibionts. Relative activities of epibionts were calculated
from the enrichments assuming that the transfer of freshly
fixed material is the only source of C and N for the epibionts.
C-based and N-based relative activities (see Methods section)
of the Aphanizomenon-associated cells were low at 0.03 ±

Fig. 1 Dissolved inorganic phosphorus (DIP) uptake rates by bulk
seawater at different DIP concentrations measured between 6th
and 12th August 2015. Symbols and error bars indicate means and
standard deviations of five replicate incubations
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0.04 (median ± SD) and 0.03 ± 0.03 (median ± SD) under
in situ conditions, respectively (Fig. 5). The transfer of
freshly fixed material to the epibionts remained low at 0.03 ±
0.06 and 0.07 ± 0.07 (median ± SD) for C-based and N-
based activity, respectively, when DIP was added to con-
centrations of ~1 µmol L−1 with no significant difference for
C (p= 0.66) and a significant difference for N (p < 0.001),
respectively (Fig. 5). Epibionts of Nodularia showed higher
enrichments in both isotopes, demonstrating a substantial
transfer of freshly fixed material (Figs. 4 and 5). Under in situ
conditions, the C-based and N-based relative activity of the

epibionts was 0.08 ± 0.05 (median ± SD) and 0.08 ± 0.03
(median ± SD), respectively. However, when DIP was added
to concentrations ~1 µmol L−1, the relative activities of the
epibionts dropped significantly (p < 0.001 for both C and N)
to 0.05 ± 0.02 (median ± SD) and 0.05 ± 0.01 (median ± SD)
for C and N, respectively. This drop in the relative activities
indicates that less freshly fixed C and N was transferred from
Nodularia to its epibionts.

To compare the relative activities of the epibionts with
the growth rates of the cyanobacteria, the relative activities
were translated to C-based and N-based growth rates. The

Fig. 2 Microscopic images of
Aphanizomenon (a, b) and
Nodularia (c, d) filaments
showing their epibiotic
colonization using
epifluorescence of 4′,6-
diamidino-2-phenylindole
(DAPI)-stained cells (a, c) and
autofluorescence (b, d). Scale
bars are 10 μm

Fig. 3 Elemental composition of epibionts (n= 54; no significant
difference between Aphanizomenon-associated (n= 21) and Nodularia
-associated (n= 33) epibionts; Mann–Whitney, p values C:N= 0.10,

C:P= 0.43, N:P= 0.80) as determined by SEM-EDS. Dashed lines
indicate the canonical Redfield ratio
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Fig. 4 Single-cell imaging of Aphanizomenon and Nodularia filaments
and their epibionts. Single epibionts were identified using either
nanometer-scale secondary ion mass spectroscopy (nanoSIMS)
(Aphanizomenon only) or scanning electron microscopy (SEM;
Nodularia and Aphanizomenon) and their C and N uptake was sub-
sequently measured using nanoSIMS. C and N uptake are shown as

13C/12C and 15/14N ratios. Cellular sulfur distribution is shown as the
32S/12C ratio which also clearly showed the epibionts. Outlines indicate
measured cyanobacterial cells and epibionts. NA= natural abundance.
NanoSIMS scale bars are 2 μm. NanoSIMS images are superimposed
on a black background box to adjust the image orientation relative to
the SEM images

Fig. 5 Single-cell C-based and N-based activities and growth rates of
Aphanizomenon (a, c, e) and Nodularia (b, d, f) and their epibionts. a,
b Cyanobacterial (triangles) and epibiotic (circles) relative activities
under in situ (white) and added dissolved inorganic phosphorus (DIP)
(+1 µM) conditions (gray), respectively. c–f Growth rates of the
cyanobacteria and epibionts for both in situ (white) and added DIP
(+1 µM; gray) conditions (lines=medians, boxes= 25th and 75th
percentiles, bars= standard deviation, black circles= outliers). In
Aphanizomenon colonies incubated under in situ conditions, of a total
of 153 measured epibionts across 25 fields of view, 111 and 41 cells

had 13C/12C and 15N/14N ratios, respectively, above detection limit. In
the +DIP condition, from a total of 18 measured epibionts across 10
fields of view, 15 and 15 epibionts had 13C/12C and 15N/14N ratios,
respectively, above detection limit. In Nodularia colonies incubated
under in situ conditions, of a total of 253 measured epibionts across
eight fields of view, 238 and 205 epibionts had 13C/12C and 15N/14N
ratios, respectively, above detection limit. In the +DIP condition, from
a total of 104 measured epibionts across five fields of view, 104 and 86
epibionts had 13C/12C and 15N/14N ratios, respectively, above
detection limit
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C-based growth rate of Aphanizomenon decreased from
0.51 to 0.38 day−1 (p < 0.001) [46], while the N-based
growth rate increased from 0.22 to 0.29 day−1 (p < 0.001)
when DIP was added. The C-based growth rate of its epi-
bionts did not change significantly (p= 0.66) while the N-
based growth rate increased significantly (p < 0.001)
(Fig. 5). The response of Nodularia and its epibionts,
however, was very distinct. Nodularia grew significantly
faster with added DIP (both C-based and N-based; p <
0.001) than under in situ conditions [46]. At the same time,
the epibionts’ growth rates declined significantly (both C-
based and N-based; p < 0.001) (Fig. 5).

Discussion

Blooms of filamentous diazotrophic cyanobacteria develop
annually during summer in the Baltic Sea. While several
parameters contribute to the bloom development, they tend
to be largely fueled by an excess of DIP in stratified surface
waters low in DIN [54]. At the time of our field experiments
in 2015, a typical cyanobacterial bloom was developing in
early August when DIP concentrations were still around
150 nmol L−1. Within a 2-day time window, the DIP con-
centration decreased to about 20–30 nmol L−1 and remained
low throughout the bloom. Despite these low DIP con-
centrations, the majority of the microbial community was
still able to obtain sufficient P for growth as indicated by the
unchanged DIP uptake rate of the bulk seawater. Our
incubations showed that DIP limitation in the bulk com-
munity is likely to set in only at concentrations below
~10 nmol L−1. This is consistent with estimated KM values
for bacterial/microbial DIP uptake at concentrations of
<20 nmol DIP L−1 [55–57]. Previous studies also observed
that most of the DIP uptake is carried out by the pico-
plankton community, which appear to outcompete larger
organisms at low DIP concentrations (usually <10 µm size
fraction; e.g., [57–64]). Fittingly, the cyanobacterial colo-
nies in the bloom experienced acute DIP stress as DIP
concentrations were well below their apparent KM [46]. It
has to be kept in mind, though, that cyanobacterial colonies
can entrap other organisms and have epibiotic communities
distinct from the surrounding seawater [42, 43, 65]. While
the apparent KM value does not distinguish between the
different members of the colonies, the elemental ratios of
individual cells within a colony can reveal potentially low
cellular P content, presumably the result of P stress. The
single-cell C:P and N:P ratios of the cyanobacterial fila-
ments showed high elemental ratios (C:P ~130:1 with an
increase to ~170:1 within 24 h; [46]) in agreement with the
scarcity of DIP. This is in stark contrast to the epibiotic
communities. Epibionts of both Aphanizomenon and
Nodularia had elemental ratios slightly below the canonical

Redfield ratio (Fig. 3), suggesting that the epibionts were
not experiencing P stress at that time.

In the absence of P stress in the epibiotic community,
their growth is likely driven by the availability of N and
organic C as most of the cells were likely heterotrophic (i.e.,
absence of autofluorescence). An obvious source of both N
and organic C are the cyanobacterial filaments themselves,
which have been shown to release inorganic and organic
material [5, 6, 9, 29, 40, 44]. In fact, the release of fixed N2

as ammonium has previously been shown for both Apha-
nizomenon [40] and Nodularia [29]. Although those studies
were also carried out in summer, it is unclear if the reported
ammonium release was related to the DIP availability since
DIP concentrations were not measured.

The epibionts are among the organisms most likely to
consume both inorganic/organic C and N that was released
due to their proximity to the source that is within the dif-
fusive boundary layer for the epibionts [29, 40]. Any uptake
of released C or N by epibionts should therefore relate to the
release of freshly fixed material originating from CO2 and
N2 fixation by the cyanobacterial filaments. Although in our
measurements we cannot distinguish other potential auto-
trophic microorganisms from heterotrophs among the epi-
bionts, the microscopic imaging suggests that the vast
majority of the epibionts lacked autofluorescence. Our
estimate of uptake of fixed C released by the cyanobacteria
should therefore be little biased by other autotrophs. Simi-
larly, we cannot exclude that an epibiont may have been an
N2-fixing microorganism. However, Farnelid and co-
authors [66] found that only ~0.7% of nifH sequences
recovered from size-fractionated biomass >10 µm in surface
waters of the Baltic Sea were associated to non-
cyanobacterial sequences, indicating that other diazotrophs
do not play a substantial role in N2 fixation within the
colonies. Further, ammonium inside colonies can reach high
concentrations [40] that would likely inhibit other diazo-
trophs in active N2 fixation.

Our single-cell analyses using nanoSIMS showed that
epibionts of Aphanizomenon consumed less released C and
N than epibionts of Nodularia did, despite both cyano-
bacteria experiencing DIP stress [46]. We recently found
that Nodularia and Aphanizomenon used different P sour-
ces for growth under DIP scarcity during this bloom [46].
Although Nodularia is in principle capable of accessing
ester-bound organic phosphate and phosphonates via
(alkaline) phosphatases and a CP-lyase, respectively
[67, 68], they did not use organic P under DIP scarcity in
the Baltic Sea during the 2015 summer bloom [46]. In
contrast, Aphanizomenon, also capable of using organic P
via alkaline phosphatases [69], exploited organic P sources
to counteract the DIP scarcity [46]. Our observation that
Nodularia transferred substantially more C and N to epi-
bionts than Aphanizomenon could therefore be the direct
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result of the dependence of growth on DIP and Aphani-
zomenon’s use of organic P. To test this hypothesis, we
incubated the field-collected cyanobacterial colonies
(including their epibionts) with additional DIP, enough to
alleviate the DIP stress. With plenty of DIP available,
Aphanizomenon’s C-based and N-based growth rates
decreased and increased slightly, respectively (Fig. 5; [46]).
At the same time, the transfer of C from Aphanizomenon to
its epibionts remained similar while the transfer of N
increased slightly (Fig. 5). However, based on the rela-
tively low activity by the epibionts (Figs. 4 and 5), it is
unlikely that Aphanizomenon released a large amount of
fixed C and/or N under both in situ and increased DIP
concentrations. These results support the idea that Apha-
nizomenon used organic P to combat DIP scarcity and
thereby prevented the release of larger amounts of fixed C
and N. Nodularia’s response to increased DIP concentra-
tions was very different, with cells growing significantly
faster with added DIP than under DIP scarcity (Fig. 5).
Interestingly, at the same time the transfer of fixed C and N
to the epibionts significantly decreased with added DIP,
indicating that the fixed C and N was used for growth of
Nodularia rather than being released into the colony. The
combined results indicate that the availability of DIP can

have a direct effect on the transfer of diazotrophically fixed
N2 to epibionts, but that this is likely dependent on the
prevailing N2-fixing species and its specific dependence on
DIP for growth.

To assess the potential ecological significance, we cal-
culated the partitioning of fixed CO2 and N2 between cya-
nobacteria and epibionts as a function of their growth rate.
The resulting transfer rates are presented as a percentage
(median ± SE) of the total amount of fixed CO2 and N2 (i.e.,
the sum of fixed C and N retained in a cyanobacterial cell
and fixed C and N transferred to its epibionts) and should
thus not be deemed as exact amounts.

In Aphanizomenon, <1% of the fixed C and N was
transferred from cyanobacterial cells to their epibionts,
suggesting that the transfer of fixed C and N and the overall
release was very little (Fig. 6). This small percentage was
not only due to the low number of epibionts but also the
lower uptake per cell (Supplementary Fig. S4). The total
transfer increased only slightly (still ≤1% for C and N) when
more DIP was added, suggesting that, at least at the time of
our sampling, the use of organic P by Aphanizomenon likely
prevented the release and transfer of fixed material. In
contrast to Aphanizomenon, the amount of fixed C and N
taken up by epibionts of Nodularia was 8 ± 5% and 14 ± 9%
of the total amount fixed per cyanobacterial cell, respec-
tively (Fig. 6). However, when DIP was added, this transfer
dropped to 3 ± 2% and 6 ± 4% of the total fixed C and N,
respectively. These estimates of transfer are conservative,
and the total transfer (and release) was likely higher for two
reasons. First, we determined only the transfer of freshly
fixed C and N. The release and transfer rates would have
been higher if a mixture of older material and freshly fixed
C and N was released. We calculated the transfer rates of
fixed C and N assuming that the released material had an
isotopic composition equal to the median enrichment of
the cyanobacterial cells at the end of the incubation, that is,
the substrate for epibionts had the isotopic composition
of the cyanobacterial biomass. Under in situ conditions, the
transfer of fixed C and N from Aphanizomenon to its epi-
bionts would then still be <1% and 3 ± 1% of total C and N
fixed, respectively. For Nodularia, however, the transfer
would increase to 35 ± 24% and 51 ± 36% for C and N,
respectively, under in situ conditions. Second, we only
analyzed the closely associated microorganisms in the sin-
gle or double layers. It is conceivable that not only these
epibionts consumed released C and N but also the other
colony-associated microorganisms. Considering the exten-
sive microbial population in the mucilage of Nodularia
(Fig. 2; Supplementary Fig. S3), the transfer might be
several fold higher than what was recovered in epibionts
directly attached to the filaments. In summary, our data
clearly shows that the availability of DIP can directly affect
the release and transfer of freshly fixed C and N in

Fig. 6 CO2 and N2 fixation by cyanobacteria and C and N uptake by
epibionts as a percentage of the total uptake by the colony (i.e., fixed C
and N recovered in the cyanobacteria and their epibionts) under in situ
(dissolved inorganic phosphorus (DIP)-limited) and added DIP
(+1 µM; DIP-replete) conditions. Arrows indicate pathways of fixation
and release of N2 (solid arrows) and CO2 (dashed arrows). Most of the
fixed C and N is retained in the cyanobacterial biomass, but a portion
of the fixed material is either actively or passively released and is
assimilated by the epibionts. Dark green: heterocysts; light green:
vegetative cells; light magenta: epibionts. Only major fluxes are
plotted, fluxes below 1% are not included here. Please note here that
the partitioning was calculated with cellular rates for cells of median
size and C:N ratios across both treatments (see Methods and Results
section)
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filamentous diazotrophic cyanobacteria, likely to an ecolo-
gically significant extent.

The pathway of release/transfer in our experiments is yet
unknown. Since the colonies were hand-picked for the incu-
bations, side effects of grazing were likely little. The faster
growth response by Nodularia and the nearly unchanged
growth by Aphanizomenon to DIP additions suggests that cell
death or viral lysis were unlikely to have caused the release
under DIP limitation since both would have probably resulted
in the release of DIP/organic P alleviating DIP limitation as
well. Moreover, both diazotrophs still showed substantial C-
based and N-based growth under DIP scarcity. Our results
indicate that the use of distinct P sources by Aphanizomenon
and Nodularia were likely responsible for the observed dif-
ferences in release. This difference fits to the observed denser
colonization of Nodularia, which is progressively overgrown
by bacteria and other organisms during a bloom [42, 44, 45].
The released C and N likely provided an excellent substrate
and matrix for bacterial colonization. It is unclear whether the
release of fixed C and N was from leakage or active excretion.
Leakage could have resulted from, for example, photo-
synthetic overflow under nutrient limitation as has been
postulated for DOC release [34]. The colonization of fila-
ments by epibionts could therefore be relatively one sided,
with epibionts taking advantage of the fixed C and N released
due to P stress [70]. On the other hand, colony-forming
cyanobacteria such as Aphanizomenon and Nodularia often
harbor diverse communities or epibionts, which are distinct
from the bacterioplankton in the surrounding seawater
[42, 43]. For the oceanic filamentous cyanobacterium Tri-
chodesmium, it has been suggested that the epibiotic com-
munity could facilitate the uptake of both Fe and P by
Trichodesmium through the production and activity of side-
rophores and alkaline phosphatases [71, 72]. The release of
fixed C and N by the cyanobacteria could therefore be a
mechanism to attract microorganisms with “food” and even-
tually benefit from or trigger distinct metabolic activities [18].
With more DIP available, these metabolic activities may no
longer be required and transfer decreases. How tightly regu-
lated these interactions are is not quite understood, but
experiments on quorum sensing suggest that the activity of
the cyanobacteria might be more than just the sum of abiotic
factors but rather “a complex interplay of biotic and envir-
onmental factors” [73]. The overall capacity of the cyano-
bacteria to scavenge P might therefore not entirely depend on
its own metabolic capacity but also on that of its associated
microorganisms or microbiome. The release of fixed C and/or
N likely creates a unique microbiome that is based on element
cycling [74]. In Nodularia colonies, the composition of the
microbiome is a dynamic feature throughout the seasons
[44, 45] that is possibly linked to the degree of P limitation.
Organisms inhabiting oligotrophic environments with con-
tinuous nutrient limitation, such as Trichodesmium, may

harbor a more perpetual microbiome that is tailored to its
environment [72].

The capacity of DIP availability to directly affect the release
of freshly fixed C and N likely has an impact on how both
elements are recycled and/or exported. In contrast to C and N
that remains in autotrophic biomass, C and N that is released
and processed either by associated microorganisms or bacter-
ioplankton are passed on to different/higher trophic levels with
the inherent loss of some of the fixed C as CO2. The same is
true for epibionts that are grazed upon within colonies [45].
Further, the overgrowth of colonies can change the weight and/
or density of colonies [44] and could promote the sinking out
of surface waters, directly exporting C and N. Whether the
phenomenon observed here could also be found in other areas
of the marine environments is unclear. If this is indeed the case,
then the availability of DIP to diazotrophs could present a
mechanism directly affecting the cycling and/or export of
diazotrophically fixed N2 in the ocean, and therefore the turn-
over and productivity of oceanic surface waters.
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