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ABSTRACT: Enzymes in the glutathione transferase (GST) superfamily catalyze
the conjugation of glutathione (GSH) to electrophilic substrates. As a consequence
they are involved in a number of key biological processes, including protection of
cells against chemical damage, steroid and prostaglandin biosynthesis, tyrosine
catabolism, and cell apoptosis. Although virtual screening has been used widely to
discover substrates by docking potential noncovalent ligands into active site clefts of
enzymes, docking has been rarely constrained by a covalent bond between the
enzyme and ligand. In this study, we investigate the accuracy of docking poses and
substrate discovery in the GST superfamily, by docking 6738 potential ligands from
the KEGG and MetaCyc compound libraries into 14 representative GST enzymes
with known structures and substrates using the PLOP program [Jacobson et al.
Proteins 2004, 55, 351]. For X-ray structures as receptors, one of the top 3 ranked
models is within 3 Å all-atom root mean square deviation (RMSD) of the native
complex in 11 of the 14 cases; the enrichment LogAUC value is better than random in all cases, and better than 25 in 7 of 11
cases. For comparative models as receptors, near-native ligand−enzyme configurations are often sampled but difficult to rank
highly. For models based on templates with the highest sequence identity, the enrichment LogAUC is better than 25 in 5 of 11
cases, not significantly different from the crystal structures. In conclusion, we show that covalent docking can be a useful tool for
substrate discovery and point out specific challenges for future method improvement.

■ INTRODUCTION
The canonical glutathione transferases (also known as GSTs;
EC 2.5.1.18) catalyze addition of an excellent nucleophile to an
electrophilic center. They play important roles in the
metabolism and detoxification of numerous endogenous and
xenobiotic compounds, including oxidized lipids, drugs, and
pollutants.1−4 The canonical GSTs are a subset of the
thioredoxin fold family of proteins.5,6 They consist of an N-
terminal thioredoxin domain and a C-terminal α-helical
domain. Although a number of GSTs are known to have
specific substrates, many if not most have no clearly assigned
biological substrates. In addition, the general nature of their
chemistry leads to enzymes that tend to be catalytically
promiscuous even with respect to the transition state for the
reaction.2 As a consequence, the de novo prediction of enzyme
function by computational methods becomes challenging.

Computational docking methods have been widely used in
ligand discovery for many enzymes.7−11 In particular, these
methods can predict the docking pose of a known ligand
(docking) and/or predict ligands in a large library of small
molecules (virtual screening). Docking consists of searching
through plausible binding modes of a compound and scoring
each mode to distinguish a near-native binding pose from
others (docking). Virtual screening consists of performing
docking for each candidate ligand, followed by the ranking of
the candidate ligand by their best docking scores.
Although this structure-based approach has been used

successfully for the prediction of both substrates and other
types of ligands (e.g., orthosteric inhibitors and allosteric
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modulators), docking for substrate discovery is most difficult,
particularly when the enzyme may accommodate more than
one type of reaction. In addition, only ground state or
intermediate state complexes, not transition states, are typically
accessible by standard docking procedures. The resulting
complexes may or may not be directly competent for turnover
in the absence of information on the “preorganization” of the
enzyme−substrate complex required for catalysis. Despite the
difficulties involved in the docking of substrates, structure-based
methods have been used successfully for substrate discoveries
in several systems.12−17

There are two principal challenges in the de novo prediction
of the substrate preferences of enzymes in large, functionally
diverse superfamilies. The first challenge is the availability of
experimentally determined enzyme structures, which lags
behind the number of known protein sequences by a factor
of approximately 400 as of June 2013. To remedy this situation,
virtual screening has also relied on comparative models, not
only experimentally determined structures.18−25 The relative
utility of comparative models versus experimentally determined
structures has been assessed.18,26 The second challenge is that
standard docking procedures lack sufficient constraints that
efficiently define the productive geometries between the
reacting species (substrates) on the enzyme surface. This
issue is addressed here by applying a covalent bond constraint
between the sulfur of GSH and the electrophilic substrate.
Importantly, the effectiveness of covalent docking has not been
rigorously addressed yet.
The absence of a large-scale benchmarking of covalent

docking using either X-ray structures or comparative models,
and the need to predict substrates for GST enzymes, inspired
us to investigate the following questions. Can covalent docking
accurately predict docking poses of known ligands, given
experimentally determined, homologous, or modeled structures
in the GST superfamily? Can covalent docking accurately
predict ligands despite the catalytic promiscuity of many GST
enzymes? What is the difference in the utility of apo, holo,
comparative modeling, and homologous structures for virtual
screening in the GST superfamily? Can the virtual screening be
improved by consensus scoring, relying on independent
screening against multiple holo, apo, comparative modeling,
and homologous structures in the GST superfamily? If multiple
models are calculated on the basis of different templates, can
any of them outperform apo and even holo X-ray structures of
the target? If so, can one reliably identify which model will do
so, or even perform optimally among a set of modeled
structures; are there sequence and/or structural attributes (i.e.,
the overall target−template sequence identity, the binding site
target−template sequence identity, and the predicted accuracy
of a model) that reliably predict the accuracy of ligand docking?
In this report, we attempt to answer these questions with the

aid of a virtual library of compounds and 14 representative GST
enzymes of known structure and function. The virtual library
consists of known substrates for the selected GST proteins, and
a large number of compounds selected from KEGG27 and
MetaCyc.28 For each target, the entire virtual library of
compounds was docked to the known X-ray structures,
homologous structures, and comparative models of the protein.
The results are analyzed by comparing the docking poses of
native products to X-ray structures and calculating the
enrichment of known products with respect to the entire
compound library.

We begin by describing the GST catalyzed reactions, the
docking library, the selected GST proteins, the automated
modeling pipeline, the docking pipeline, and methods to
evaluate the accuracy of predicted docking poses for known
ligands and the accuracy of virtual ligand screening (Methods).
We then describe and compare the results of docking native
ligands and virtual screening using apo, holo, comparative
modeling, and homologous structures (Results). Finally, we
discuss the implications of the current approach and answer the
questions we asked previously, given our modeling, docking,
and benchmark (Discussion).

■ METHODS

We begin by listing the set of the GST catalyzed reactions used
in this study, followed by a description of the corresponding
products that comprise a virtual screening library. Next, we
describe how we selected GST targets for docking and how we
built their comparative models. Finally, we describe the
covalent docking pipeline as well as the assessment criteria
for evaluating the accuracy of docking and virtual screening.

Construction of the Virtual Screening Library. GSTs
catalyze a range of different reactions. Here, we considered 11
different kinds of GST catalyzed reactions, each with a different
substrate motif (Figure 1). For each substrate motif, we found
all matching molecules in the KEGG and MetaCyc compound
databases. The search was performed with the OECHEM
tools29 by matching a SMILES30 string of a database molecule
to the SMARTS30 strings representing the substrate motifs. We
found 4,149 and 3,259 in KEGG and MetaCyc, respectively.
We also added 64 substrates from the literature,31−52 for the
total of 6,738 unique substrates.
Next, each of the substrates was converted to one or more

products, as follows. The conversions corresponding to the 11
reactions were carried out using OECHEM’s library generation
function29 with explicit hydrogens. The reactive functional
groups in the substrate were identified by comparing the
substrate SMILES string with the SMARTS string representing
the substrate motif undergoing conversion to a product motif,
for each reaction. Each match was then used to convert the
substrate to a product that was added to the virtual screening
library.
Finally, we prepared products for docking. For products with

undefined stereocenters, we first enumerated the stereoisomers
using OECHEM,29 with the maximum number of stereo-
isomers retained arbitrarily set to 16 for computational
efficiency. Second, protonation states of each stereoisomer
was enumerated within pH range 6−8, followed by generating a
conformation for each protonation state, using Epik53,54 and
LigPrep.55 Finally, force field parameters for each product were
generated using the hetgrp_ffgen utility (Schrödinger, LCC).

Selection of the GST Targets for Docking. A subset of
GST structures was selected from the Protein Data Bank
(PDB) for retrospective docking by maximizing the sequence
and functional coverage of the GST superfamily (Figure 2),
following three steps: First, all GST structures with a
cocrystallized GSH-substrate conjugate were extracted from
the PDB. Second, structures for the same protein were grouped
together, resulting in 14 groups with unique sets of ligands.
Finally, for each group, the structure with the highest
resolution, the lowest Rfree,, and a unique ligand was selected,
resulting in 14 target holo X-ray structures (Supporting
Information Table S1).
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Because GSTs function as dimers, we used for docking the
biological dimer unit from the PDB. The substrate part of the
GSH-substrate conjugate in holo structures was removed,
resulting in GST holo X-ray structures with only GSH bound.
Each dimer was then prepared for docking using the Protein
Preparation Wizard (Schrödinger, LCC) by designating each of
the two GSHs as the reactive cofactor, resulting in two receptor
binding sites (with the exception of 1GWC, which has only one
site occupied by GSH); in most cases, the two binding sites are

slightly different because symmetry is generally not imposed
during crystallographic structure refinement.

Comparative Modeling of the GST Targets. Compara-
tive models for each target were built by selecting template
dimer structures from the PDB with either an unmodified GSH
(apo) or a conjugate form (product) of GSH (holo). For each
target, we aimed to include one holo and one apo template
structure for each of the four sequence identity ranges: 25−
40%, 40−55%, 55−70%, and 70−85%. The target−template
sequence alignments were generated using HHalign,57 which in
turn relied on target and template profile hidden Markov
models (HMMs) generated using HHblits57 with the
UniProt20 database.58 Five-hundred models were built for
each target−template alignment, using the automodel protocol
in MODELLER-9v10.59 The coordinates for GSH atoms in the

Figure 1. Partial list of chemical reactions catalyzed by GSTs. Each
row defines a type of reaction based on the reactive functional group.
X indicates a leaving group in the nucleophilic substitution reactions.
EWG indicates an electron-withdrawing group.

Figure 2. Representative network view of the GST superfamily
showing where docking targets fall in this superfamily. In this view,
2,190 50% sequence identity filtered nodes (“ID50 node”)
representing 13,493 sequences are shown as dots, and each sequence
similarity relationship with a BLAST E-value ≤ 1 × 10−13 is shown as a
line or edge between representative nodes. The largest clusters are
labeled by their subgroup in the structure−function linkage database
(SFLD).37 The 13,493 sequences for cytosolic GSTs (“cytGSTs”) are
based on Pfam (v26.0)34 sequences that were at least 100 residues in
length and had scores above the gathering threshold for at least one
Pfam hidden Markov model (HMM) corresponding to the cytGST N-
terminal domain (“GST_N,” “GST_N2″, or “GST_N3”; collectively
referred to here as “GST_N*”). Also included in the data set were 58
proteins that lacked matches to a GST_N* HMM but were chosen as
Enzyme Function Initiative (EFI)56 targets for experimental character-
ization because of their sequence similarities to cytGSTs. Sequence
similarity was detected with an all-by-all BLAST search using blastp
(v2.2.24).35 The data were viewed with Cytoscape (v2.8.3). Sequence
identities are calculated using CD-HIT36 (“ID50” set). The edges are
shown using the organic layout where nodes that are more highly
interconnected are clustered more tightly together. PDB structures
associated with cytGST sequences (95% or more sequence identity to
the PDB sequence) were identified using the SFLD37 interface. An
ID50 node is shown as a blue dot if any member sequence of the node
was associated with a PDB structure. Representative nodes where only
an EFI structure was associated with its member sequences are shown
as red dots. Retrospective docking targets are marked using dark blue
borders; only 10 targets are shown because the rest are more than 50%
identical to these 10 representatives shown.
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template structure were then copied to the target models, using
the BLK function of MODELLER. Models were then assessed
by the discrete optimized protein energy (DOPE)60 function of
MODELLER. Finally, the model with the lowest normalized
DOPE score was used for docking.
To compare different comparative models and compare the

models against X-ray structures, we calculated the binding site
sequence identity of the templates to the X-ray structures, and
the binding site non-hydrogen atom root-mean-square
deviation (RMSD) between a comparative model and X-ray
structure. The binding site was defined to contain atoms in all
residues with at least one atom within 6 Å of any ligand atom in
the X-ray structure. As expected, strong correlations were
observed between the overall target−template sequence
identity and the target−template binding site sequence identity,
and between the target−template binding site sequence identity
and the model’s non-hydrogen atom RMSD error (Figure
4A,B).
As designed by the choice of the template structures, the

distribution of the non-hydrogen atom RMSD error of the
binding site confirms that there is a range of accuracy across the
set of modeled structures. The models with subangstrom non-
hydrogen atom RMSD error tend to be those based on
templates with over 80% sequence identity in the binding site
residues to the target sequence. Over a third of models had a
binding site RMSD error over 4 Å. Thus, homology models
cover a range of sequence identities and a range of accuracy.
Protocol for Covalent Docking. Covalent docking of a

potential product to a receptor was started by placing it in the
binding site. More specifically, the coordinates of the GSH part
of the potential product were matched to the GSH molecule in
the receptor, and the coordinates of the remaining atoms of the
product were then built using OMEGA.61 Up to 20 initial
configurations were generated for each product molecule.
For each initial configuration, we then used PLOP’s tether

pred (Academic version 25.6) function62 to rotate the rotatable
bonds in the GSH-substrate conjugate. The rotatable bonds
were identified using OECHEM. We sampled all of the
rotatable bonds in the substrate part of the GSH-substrate
conjugate as well as the CA−CB and CB−SG bonds in the
cysteine residue of GSH. Up to 50 configurations were
generated by PLOP starting from each initial configuration.
These configurations were then scored by calculating the total
potential energy of the product−receptor complex by PLOP
(in the units of kilocalories per mole), which in turn relies on
the OPLS force field with a variable-dielectric generalized Born
model.63 The product−receptor distances alone were also
scored by the atomic statistical potential PoseScore (in arbitrary
units).64 While the PLOP potential energy does not contain the
entropic contributions to the binding free energy, the
PoseScore term does approximate the contribution of the
interface to the binding free energy.65

Finally, for virtual screening, a substrate was ranked using the
median PLOP energy of its products’ different stereoisomers
and protonation states. The PLOP energy of a product in a
specific stereoisomer form and protonation state was the
median PLOP energy of its different configurations.
Assessment of Docking and Virtual Screening. When a

native product was docked (Supporting Information Table S2),
the docking pose of the product was assessed for accuracy
based on its non-hydrogen atom RMSD from the native
configuration, after superposition of the receptor used for

docking on the native structure of the receptor; GSH was
excluded, except for the cysteine sulfur atom.
The accuracy of virtual screening was evaluated by the

enrichment for the known products (Supporting Information
Table S3) among the top scoring potential products. The
enrichment curve was obtained by plotting the percentage of
actual products found (y-axis) within the top ranked subset of
all database compounds (x-axis on logarithmic scale). logAUC,
the area under the curve of the enrichment plot, was also
calculated to indicate the accuracy of enrichment; random
selection has a logAUC of 14.5.

■ RESULTS

We begin by evaluating the docking pose of the native ligands
using holo and apo structures, followed by evaluating the
docking pose of the native ligands using comparative models
and homologous structures. Next, enrichment of the known
ligands using X-ray structures is benchmarked and analyzed.
Finally, we analyze the enrichment of the known ligands using
comparative models.

Docking of Products into X-ray Structures. As the
easiest test, we first applied covalent docking by PLOP to
reconstruct binding poses of the crystallographic products in
the corresponding holo X-ray structures (Supporting Informa-
tion Table S1). In all 14 cases, a docking pose within 3 Å of the
native structure was sampled (within 2 Å for 13 cases), though
not necessarily recognized as such by the scoring function
(Supporting Information Table S4); the 3 Å threshold on the
all-atom RMSD subjectively distinguishes near-native and
nonnative poses. However, the top 3 ranked structure was
within 3 Å to the native structure in 9 out of 14 cases using the
PLOP energy function, and in 11 out of 14 cases using
PoseScore (Figure 3).
Next, we performed a slightly more difficult, but still easy,

test. For targets with more than one crystallographic product,
we docked each product to the nonnative holo X-ray structure
of the target (cross-docking; Supporting Information Table
S5). In all 12 cases, a docking pose within 3 Å to the native
structure was sampled (within 2 Å for 11 cases). The top 3
ranked complex was within 3 Å to the native structure in 7 out
of 12 cases for the PLOP energy function, and in 8 out of 12
cases for PoseScore. To test whether combining the two
scoring functions can further improve the result, we considered
an optimal linear combination of the PoseScore and the PLOP
potential energy, using the average all-atom RMSD of the top
ranked docking poses as the optimization criterion; the optimal
linear combination has zero weight for the PLOP potential
energy.
Finally, to test whether or not apo structures can be used for

predicting the native product docking pose, we docked the two
products of GSTM1_HUMAN (GDN and GTD) to its two
available apo structures (1XW6 and 1YJ6). The results were
comparable to those from cross-docking (Supporting Informa-
tion Table S6).

Docking of Native Products into Comparative Models
and Homologous Crystallographic Structures. To test
whether or not comparative models can be used for docking
pose prediction of native products, a total of 62 homology
models were generated for the 14 GST targets (Supporting
Information Table S7). We performed native product docking
against these models as well as some of their template
structures.
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To find out to what degree the success of docking pose
prediction was limited by sampling versus scoring, we plotted
the RMSD error of the top ranked docking pose versus the
RMSD error of the best sampled docking pose (Figure 4C). As
expected there was a significant correlation between these two
RMSDs; the RMSD error of the best sampled pose is a lower
bound of the RMSD error of the top ranked pose. Even when
accurate poses were sampled, the scoring function often did not
recognize them (Figure 4C). In 56 out of 62 cases, a docking
pose within 3 Å was sampled, but only in 22 out of 62 cases, it
was ranked in the top 3. Therefore, the limiting factor for
docking pose prediction is the accuracy of the scoring function
used. In this application, the inaccuracy of the scoring function
may be exacerbated by errors in the model of the binding site
(Figure 6). Despite the difficulties in ranking a near-native pose
in the context of comparative model, for 6 of the 14 targets
(1GWC, 2AB6, 3LJR, 3O76, 2C4J, and 1BYE; Figure 5), the
RMSD errors of the top ranked poses by PoseScore were
comparable to those against holo X-ray structures.
We then asked the question whether or not there were

model properties that predict the best model for docking pose
prediction, among multiple models based on different template
structures. We found no such predictors. There was essentially
no correlation between a model’s binding site RMSD error and
the RMSD error of the top ranked docking pose (Figure 4D).
There were only weak correlations between the target−
template sequence identity and the RMSD error of the best-
sampled docking pose (Figure 4F; R = −0.19 for apo
tempalates, and R = −0.20 for holo templates). We also
calculated the correlation between the RMSD errors of the
model binding site and the best-sampled docking pose. There
was no significant correlation between these two RMSD errors.
We also investigated whether or not holo and apo structures

performed differently for docking pose prediction. On average,
models based on holo template structures were not noticeably
better for docking pose prediction than models from apo
template structures.
Finally, we tested the accuracy of docking pose prediction

using a homologous structure itself, instead of a comparative
target model based on it. The test was performed with the two
known products of GSTM1_HUMAN (GDN and GTD) and
its homologous structure (2C4J). The docking pose of GTD
had the RMSD error of 2.2 Å, and the docking pose of GDN
had the RMSD error of 4.7 Å, on average not significantly
different from that using the corresponding comparative model
(3.0 Å for GTD and 3.5 Å for GDN, binding site RMSD error).

Enrichment for Known Products by Virtual Screening
against X-ray Structures. We now address the question
whether or not holo and apo X-ray structures can be used for
virtual product screening by covalent docking.
We first applied PLOP to virtual substrate discovery by

docking the whole product library against holo structures of 11
GSTs with more than 3 known substrates; this is the minimal
number of known ligands needed for computing an enrichment
curve. We docked the products onto each chain of the GST
dimers independently and analyzed the docking results
separately for each chain as well as collectively for all chains,
by relying on our consensus scoring scheme;26 consensus
scoring combines docking scores from independent virtual
screen against multiple chains/structures/models of the same
target. In all 11 cases, the enrichment result was better than that
from random selection (Figure 7). In 7 of the 11 cases, logAUC
was better than 25. In contrast to the noncovalent docking
benchmark,26 consensus scoring did not improve logAUC for
any target.
Next, we tested the enrichment of known ligands using two

apo structures of GSTM1_HUMAN (1YJ6 and 1XW6;
Supporting Information Figure S2). The averaging logAUC
(32.6) is slightly worse than that using the corresponding holo
structure (33.3).
Finally, we tested whether or not consensus scoring using

multiple structures could improve enrichment for known
products by combining virtual screening results from either
two apo or two holo structures of GSTM1_HUMAN. Using
the two apo structures (1YJ6 and 1XW6), the logAUC for
consensus scoring was 34.5. Similarly, using holo structures
(2F3M and 1XWK) resulted in a logAUC value of 33.6. In both
cases, logAUC for consensus scoring was between the best and
worst logAUC values of individual virtual screening runs.

Enrichment for Known Products by Virtual Screening
against Comparative Models and Homologous Crystal-
lographic Structures. To evaluate the utility of homology
models for discovering substrates of GSTs, the enrichment of
known products was determined and compared to that for the
crystal structures.
We first tested whether or not there was an apparent

correlation between the enrichment and the target−template
sequence identity by virtual screening against the 6 comparative
models of the target 2F3M. No correlation was observed
between logAUC and the target−template sequence identity
(Figure 8). The absence of such a correlation was also observed
in an extensive noncovalent docking benchmark.26

Given the absence of a correlation between the enrichment
and the target−template sequence identity, we next bench-
marked the utility of the best comparative models for virtual
screening, for the 11 targets with more than 3 known

Figure 3. Comparison of the predicted complex between the native
product and its holo X-ray structure with the native pose: (A) 1F3B
with GBX; (B) 2F3M with GTD; (C) 2GST with GPS; (D) 1M9B
with IBG. The surface of the receptor is shown, with red and blue
corresponding to oxygen and nitrogen atoms. The product is shown in
the native configuration (gray), the most accurate sampled
configuration (yellow), and the top ranked configuration by the
PLOP energy function (light blue) and PoseScore (green).
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substrates; the best comparative model is that based on the
highest target−template sequence identity. We docked the
products onto each chain of the GST dimers independently,
and analyzed the docking results separately for each chain as
well as collectively for all chains, by relying on our consensus
scoring scheme.26 In all cases, the enrichment result was better
than that from random selection (Figure 9). In 5 of the 11
cases, logAUC was better than 25. Again, the consensus scoring
did not improve logAUC for any target.
We further tested whether or not consensus docking using

multiple comparative models can improve the enrichment by
combining the docking results from the 6 comparative models

for target 2F3M (Figure 8). Consensus scoring resulted in a
logAUC of 40.4, which was slightly better than the best
logAUC value for individual models (40.3) and was better than
logAUC for the holo X-ray structure.
Finally, we tested whether or not homologous X-ray

structures could be used in place of comparative models for
virtual screening, using a homologue of GSTM1_HUMAN
(2C4J). The corresponding logAUC is 30.9 for chain A, 31.6
for chain B, and 31.5 for consensus scoring using chains A and
B, which is significantly worse than that for the comparative
model based on 2C4J (34.9 for chain A, 35.8 for chain B, and

Figure 4. Comparison of comparative model properties and the RMSD errors of the docked poses. Each point represents the property of a single
comparative model and/or the RMSD error of the docked pose of its corresponding crystallographic product against this model. Results for models
built based on apo and holo template structures are shown in red and blue, respectively, with the least-squares linear fits shown as dashed lines. The
Pearson correlation coefficients R are also shown. The gray dashed line indicates the lower bound of the RMSD of the top 3 ranked poses.
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38.7 for consensus scoring). A similar finding was obtained in
the noncovalent docking benchmark.26

■ DISCUSSION
We developed a comparative modeling and covalent docking
pipeline for predicting docking poses of known products and
for the virtual discovery of substrates, as well as benchmarked it
on the GST enzymes. Either a holo or apo structure can be
used for predicting docking poses relatively accurately in a
majority of cases. While using homology models for predicting
docking poses is more difficult, a homology model can also be
useful. Specifically, for native holo X-ray structures as receptors,
one of the top 3 ranked models is within 3 Å all-atom RMSD of
the native complex in 11 of the 14 test cases (in 8 of 12 cases
for cross-docking in which a product from another holo
structure of the same enzyme is docked; Supporting
Information Tables S4 and S5). For comparative models
based on more than 30% sequence identity, one of the top 3
ranked models is within 3 Å all-atom RMSD of the native
complex in 22 of the 62 test cases (Figure 5). For virtual
screening against holo X-ray structures, the enrichment
logAUC value is better than random (14.5) in all cases and
better than 25 in 7 of 11 cases (Figure 7). For models based on

templates with the highest sequence identity (approximately
30−85%), the logAUC is better than 25 in 5 of 11 cases (Figure
9), not significantly different from the crystal structures. In
conclusion, we show that covalent docking can be a useful tool
for substrate discovery.
Next, we discuss three points in turn. First, we assess to what

degree the accuracy of the docking poses and ranking of
alternative products is limited by the degree of structure
sampling and the accuracy of scoring. Second, we discuss the
utility of comparative models for docking and virtual screening.
Third, we conclude by commenting on docking transition state
conformations of ligands.

Sampling versus Scoring. To predict an accurate docking
pose, two conditions need to be satisfied: (i) a near-native
structure needs to be generated by the sampling procedure and
(ii) an accurate sample structure needs to be scored better than
the inaccurate structures by the scoring function. Using X-ray
structures as receptors, a near-native docking pose (<3 Å) was
sampled in all cases (Supporting Information Tables S4 and
S5); thus, the degree of sampling does not limit the prediction
accuracy. But, in 21% of the native docking cases and in 33% of
the cross-docking cases, a near-native model was not ranked in
top 3 by PoseScore. Using homology models as receptors, a

Figure 5. Non-hydrogen atom RMSD error of the docked poses, for the crystallographic product against its corresponding comparative models with
different sequence identities. For each target, the RMSD errors of the best-sampled poses using apo templates (stripped red bar), the RMSD errors
of the top-ranked poses by PoseScore using apo templates (stripped blue bar), the RMSD errors of the best-sampled poses using holo templates (red
bar), and the RMSD errors of the top ranked pose by PoseScore using apo templates (blue bar) are shown. For comparison, the RMSD errors of the
docked poses using holo X-ray structures are shown as horizontal lines (blue solid line for the top ranked pose by PoseScore, red dashed line for the
best-sampled pose).
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Figure 6. Docking of native products against comparative models. (A) Successful docking of GBX onto a model of 3CSH, based on 85% sequence
identity to the template 3O76 (chain A). The ribbon representation of the crystal structure is shown in light gray and that for the model in orange.
The C-α RMSD error of the model is 0.64 Å, and the non-hydrogen atom RMSD error of the binding site is 0.71 Å. The ligand is shown in the stick
representation. The native pose is shown in light gray, the best-sampled pose (RMSD of 0.90 Å) is shown in yellow, the pose top ranked by PLOP
(0.92 Å) is shown in cyan, and the pose top ranked by POSESCORE (0.92 Å) is shown in green (not visible because it is hidden behind the cyan
structure). (B) Failed docking of GPS onto a model of 1F3B, based on 76% sequence identity to the template 1YDK (chain B). The ribbon
representation of the crystal structure is shown in light gray and that for the model in orange. The C-α RMSD error of the model is 2.42 Å, and the
non-hydrogen atom RMSD error of the binding site is 2.47 Å. The ligand is shown in the stick representation. The native pose is shown in light gray,
the best-sampled pose (RMSD of 5.38 Å) is shown in yellow, the pose top ranked by PLOP (6.58 Å) is shown in cyan, and the pose top ranked by
POSESCORE (0.92 Å) is shown in green.

Figure 7. Enrichment curves for the 11 GST targets with 3 or more known products, using holo X-ray structures. For each target, the enrichment
curves for the individual chains (blue, green, yellow, and cyan lines), the consensus scoring for multiple chains (red line), and random selection
(black dashed line) are shown.
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Figure 8. Enrichment curves for target 2F3M using its 6 comparative models based on different apo and holo templates. For each model, the
enrichment curves for the individual chains (blue, green, yellow, and cyan lines), the consensus scoring for multiple chains (red line), and random
selection (black dashed line) are shown. Target−template sequence identities are as follows: The 2F3M-3T2U and 2F3M-2FHE sequence identities
are 33% and 50%, respectively (apo templates). Target−template sequence identities are as follows: 33% (2F3M-3T2U, apo), 50% (2F3M-2FHE),
33% (2F3M-2GSR, holo), 42% (2F3M-1M99, holo), 66% (2F3M-1GSU, holo), and 85% (2F3M-2C4J, holo). Binding site RMSD errors are as
follows: 5.9 Å (2F3M-3T2U, apo), 3.1 Å (2F3M-2FHE), 7.4 Å (2F3M-2GSR, holo), 3.1 Å (2F3M-1M99, holo), 1.4 Å (2F3M-1GSU, holo), and 1.1
Å (2F3M-2C4J, holo).

Figure 9. Enrichment curves for the 11 GST targets with 3 or more known products, using their comparative models based on templates with the
highest sequence identities. For each target, the enrichment curves for the individual chains (blue, green, yellow, and cyan lines), the consensus
scoring for multiple chains (red line), and the random selection (black dashed line) are shown. Target−template sequence identities are as follows:
85% (2F3M-2C4J), 85% (3CSH-2C4J), 77% (2C4J-6GSV), 54% (3LJR-2C3Q), 33% (2GSQ-2GSR), 28% (3GX0-1PN9), 76% (2GST-2C4J), 44%
(1M9B-2C4J), 64% (1VF3-3KTL), 76% (2AB6-6GSV), and 46% (1GWC-2VO4).
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near-native docking pose was sampled in 56 of 62 cases but was
only ranked in top 3 in 22 of 62 cases (Figure 5). The reason is
that our scoring function is not always accurate enough to
differentiate between accurate and inaccurate docking poses.
To rank different substrates, we used the median PLOP

energy of their product−enzyme complexes. We chose the
median instead of the lowest PLOP energy because it resulted
in a significantly higher average logAUC (27.3 vs 18.9). A likely
reason is that the energy estimate of a single configuration is
noisier than the median, compensating for the lack of
accounting for the proper physics of the problem. In the
future, other functions such as the Boltzmann average of the
sampled energies will be explored.
Although PoseScore reranking of the docking poses

generated by optimizing the PLOP energy further improved
the accuracy of the top scoring docked poses, this result does
not imply that PoseScore is more accurate than the PLOP
energy. It is possible that reranking by PLOP would also
improve the accuracy of the poses generated by optimizing
PoseScore; for technical reasons, it is not straightforward to
actually make this test. Our result indicates merely that the two
scoring functions are different and imperfect and that
PoseScore contains helpful information not present in PLOP,
while being silent on whether or not PLOP also contains
information not present in PoseScore.
In contrast to noncovalent docking,26 on average, consensus

scoring did not improve virtual screening accuracy. A
combination of the following two assumptions explains this
finding: (i) covalent docking is limited more by scoring than by
sampling compared to noncovalent docking; and (ii) consensus
scoring works best when sampling is a limiting factor in
docking. A major difference between noncovalent and covalent
docking is that the latter is constrained by a covalent bond,
resulting in an easier sampling problem all other things
considered equal. Using multiple receptor structures to mimic
receptor flexibility was already shown to lead to more accurate
sampled docking poses in noncovalent docking.26 Thus, the
disadvantage of a larger number of decoys produced by using
multiple templates, which increases the burden on the scoring
function for identifying the most accurate pose, is outweighed
by the more accurately sampled poses that are more likely to be
ranked highly by the scoring function. In contrast, if scoring is
limiting and sampling is not, as is the case in covalent docking
(cf. our native docking and cross-docking tests), considering
poses from multiple receptor structures is not likely to improve
the results, as observed.”
Given the demonstrated limitations of current scoring, the

accuracy of ranking ligand poses and ligands can be improved
by more accurate scoring functions. On the one hand, the
ability of the PLOP potential energy to rank the native state (or
at least a near-native state) may be improved by estimating the
free energy of the native state.66 On the other hand, the
accuracy of the statistical potential could be improved by
applying the Bayesian framework for inferring statistically
optimized atomic potentials (SOAP).67 This framework (1)
uses multiple data-driven “recovery” functions based on
probability theory, without recourse to questionable statistical
mechanical assumptions about statistical potentials; (2)
restrains the relative orientation between two covalent bonds
instead of a simple distance between two atoms, in an effort to
capture orientation-dependent interactions such as hydrogen
bonds; (3) performs Bayesian smoothing for estimating the
underlying smooth distributions from noisy observations; (4)

applies Bayesian inference for calculating parameter values that
maximize the posteriori probability; and (5) benefits from
Bayesian model selection based on Bayesian predictive
densities, in an effort to improve the generalizability of the
derived statistical potentials.

Comparative Models for Docking and Virtual Screen-
ing. Using comparative models for predicting docking poses
often produces inaccurate models (Figures 4 and 5). One
possible reason is that covalent docking is sensitive to minor
changes in the binding site, especially for residues close to the
GSH sulfur atom due to the substrate−receptor covalent bond
constraint (Figure 6). Another possible reason is that the active
sites of GST enzymes are often defined in part by the C-
terminus, which is often flexible or missing in a template
structure (Figure 6). Moreover, there was no significant
correlation between the binding site non-hydrogen atom
RMSD and the docking pose RMSD (Figure 4). The lack of
this correlation may also result from the disproportionate
impact of residues close to the GSH sulfur atom on the docking
pose.
Virtual screening using comparative models generated results

comparable to the X-ray structures (average logAUC of 28.2
versus 27.3, better than 25 in 5 versus 7 out of 11 cases),
consistent with what has been observed when using
comparative models for virtual screening by noncovalent
docking (average logAUC of 28.7 versus 30.6),26 even though
comparative models performed much worse than X-ray
structures for docking pose prediction (average non-hydrogen
atom RMSD of 3.98 Å versus 1.83 Å). This finding may be
rationalized by comparatively worse scoring of both true and
decoy products (average PoseScore of −4.2 and 4.1 versus
−60.0 and −52.2) when docking against inaccurate binding
sites in comparative models.
In prospective applications, if some substrates for the target

of interest are known, virtual screening using comparative
models can be improved by selecting the most enriching model
for known substrates.68−70 If no substrates are known for the
target of interest, it might be advantageous to build and dock
into multiple structurally diverse models and analyze the virtual
screening results by hand.14 An experienced user may be able to
identify an accurate docking result based on the totality of their
knowledge about the proteins of interest.

Reactant, Product, Intermediate, and Transition
States. Generally, a substrate of an enzyme is required to
have a sufficiently high kcat/Km; a typical threshold is 104 (mol/
L)−1 s−1. An enzymatic reaction involves interconversions
between pairs of stable states, separated by a transition state;
the stable states include the enzyme and substrate without
interaction (E + S), an enzyme−substrate complex inter-
mediate (ES), an enzyme−product intermediate (EP), and the
enzyme and product without interaction (E + P).71 In general,
kcat/Km depends on the free energies of all states. Thus, virtual
ligand screening should in principle consider all states, which is
generally not the case.
When conversion from ES to EP is the rate-limiting step, kcat

is mostly determined by the transition state energy barrier for
this step. Enzymes lower this barrier by creating a binding site
that is complementary to the transition state of the substrate.
Thus, docking a substrate (or a product) in its transition state
conformation may be more appropriate than docking a
substrate (or a product) in its ground state. Although quantum
mechanics calculations can model the transition state and
estimate the activation energy barrier, running these calcu-
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lations for the entire virtual screening library is not computa-
tionally feasible.72 Instead, we docked here the reaction product
states and achieved relative success. However, the enrichment
results could possibly be greatly improved if we can dock the
transition state, or a transition state like structure, without
recourse to quantum mechanics. For GST substrate discovery,
compounds similar to the high-energy intermediates used for
docking to amidohydrolases73 could be constructed, provided
some technical challenges are solved (e.g., building C atoms
with 2 partial bonds for a total of 5 bonds). Although enzymes
presumably maximize complementarity to the transition state,
other states during the reaction must also be compatible with
the potentially flexible binding site of the enzyme. Thus,
substrate discovery might also be improved by consideration of
docking of all ligand states to the corresponding state(s) of the
enzyme.

■ CONCLUSION
Can covalent docking accurately predict docking poses of
known ligands, given experimentally determined, homolo-
gous or modeled structures in the GST superfamily? Yes,
either a holo or apo structure can be used for predicting
docking poses accurately in a majority of cases, while using
homology models is less successful. Specifically, for native holo
X-ray structures as receptors, one of the top 3 ranked models is
within 3 Å all-atom RMSD of the native complex in 11 of the
14 cases (in 8 of 12 cases for cross-docking). For comparative
models as receptors, one of the top 3 ranked models is within 3
Å all-atom RMSD of the native complex in 22 of the 62 test
cases.
Can covalent docking accurately predict ligands despite

the catalytically promiscuity of many GST enzymes? Often.
What is the difference in the utility of apo, holo,

comparative modeling, and homologous structures for
virtual screening in the GST superfamily? Holo and apo
structures, homologous structures, and comparative models can
all enrich for known products. For virtual screening against
holo X-ray structures, the enrichment logAUC value is better
than random in all cases, and better than 25 in 7 of 11 cases
(average logAUC 27.3; Figure 7). Using apo X-ray structures of
2F3M, the average logAUC (32.6) is slightly worse than that
using the corresponding holo structure (33.3). For models
based on templates with the highest sequence identity
(approximately 30−85%), the logAUC is better than 25 in 5
of 11 cases (average logAUC 28.2; Figure 9), which is
comparable to that for X-ray structure. Using the homologous
structure of 2F3M, the logAUC (31.3) is significantly worse
than that using comparative models (36.5).
Can the virtual screening be improved by consensus

scoring, relying on independent screening against multiple
holo, apo, comparative modeling, and homologous struc-
tures in the GST superfamily? Rarely. Consensus scoring
using multiple chains from the same structure/model or
multiple structures/models of the same target often does not
improve the virtual screening accuracy. Although consensus
scoring improves logAUC in comparison to using a single
receptor in some cases, it makes it worse in others.
If multiple models are calculated on the basis of different

templates, can any of them outperform apo and even holo X-
ray structures of the target? If so, can one reliably identify
which model will do so, or even perform optimally among a
set of modeled structures; are there sequence and/or
structural attributes (i.e., the overall target−template

sequence identity, the binding site target−template sequence
identity, and the predicted accuracy of a model) that reliably
predict the accuracy of ligand docking? For docking pose
prediction, there are a few cases where comparative models
outperformed the corresponding holo X-ray structure (Figure
5). However, we did not find a predictor that could reliably
predict the accuracy of the docked pose. For virtual screening,
some models also outperform the corresponding holo X-ray
structure (Figures 8 and 9), but we did not find a correlation
between logAUC and the binding site sequence identity or the
binding site RMSD errors.
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