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Abstract: Atherosclerosis is the major cause of the development of cardiovascular disease, which, in
turn, is one of the leading causes of mortality worldwide. From the point of view of pathogenesis,
atherosclerosis is an extremely complex disease. A huge variety of processes, such as violation of
mitophagy, oxidative stress, damage to the endothelium, and others, are involved in atherogenesis;
however, the main components of atherogenesis are considered to be inflammation and alterations
of lipid metabolism. In this review, we want to focus on inflammation, and more specifically on
the cellular elements of adaptive immunity, T and B cells. It is known that various T cells are
widely represented directly in atherosclerotic plaques, while B cells can be found, for example, in
the adventitia layer. Of course, such widespread and well-studied cells have attracted attention
as potential therapeutic targets for the treatment of atherosclerosis. Various approaches have been
developed and tested for their efficacy.
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1. Introduction

Cardiovascular disease (CVD) is the most widespread cause of death. In 2013, 7.3 mil-
lion people died because of CVD, which, according to world statistics, is 31.5% of total
deaths [1]. To maintain of cardiovascular system health, it is recommended to stop smoking,
increase physical activity, control the body mass by adopting a healthy diet, monitor blood
pressure, and conserve normal levels of blood lipids and glycemia [2]. Thus, the most
important thing is the diet, which can provide a good cardiovascular health status. This
type of diet is related to a balanced energy intake. This involves product consumption
of whole-grain foods, legumes, seafood, fish, and an increased amount of vegetables and
fruits; it also involves a lower consumption of processed foods, red meat, sugar-containing
foods and drinks, and refined grains [3].

Atherosclerosis is a chronic systemic inflammatory disease that attacks artery walls
because of an altered inflammatory response. The development of atherosclerosis is often
caused by lipid metabolism impairments [4]. Cholesterol-rich lipoproteins with apolipopro-
tein B are receptive to absorption and merging into the subendothelial matrix of the arteries.
Due to oxidation, enzymatic and non-enzymatic cleavage, as well as aggregation, the
lipoproteins contained in this matrix create pro-inflammatory particles and trigger the over-
lying endothelium. Then, the monocyte-derived cells internalize the subendothelium and
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trigger the immune response. These cells turn into mononuclear phagocytes, which absorb
normal cells and altered lipoproteins, then convert into cholesterol foam cells. By remaining
in the plaque, the cholesterol foam cells absorb lipids and stimulate the progression of the
disease, developing a chronic inflammatory response [5].

Foam cells are considered a hallmark of atherosclerosis. At the same stage, when they
are formed, a series of complex inflammatory cascades are induced. This stimulates the de-
velopment of atherosclerotic lesions and leads to plaque rupture and related cardiovascular
events.

Macrophages and monocytes are part of the innate immune system, which plays an
essential role in the preservation of immune homeostasis by eliminating infectious agents
and stimulating tissue damage repair. In atherosclerosis, these cells participate in the
chronic inflammatory process, which typically occurs within the arterial wall [6].

Adaptive immunity is a very exact lifelong immune response. It is essential for dis-
tinguishing foreign- from self-antigens. The main cellular elements of adaptive immunity
are T and B cells, which recognize antigens via a specific T-cell receptor (TCR) and B-cell
receptor (BCR).

The set of membrane and intracellular markers underlies the classification of T cells.
They express the αβ or γδ TCR, CD3, and one of the coreceptors CD4 or CD8. The TCR-CD3
complex recognizes antigens presented in the context of major histocompatibility complex
molecules (MHC or human leukocyte antigen (HLA) in humans) by an antigen-presenting
cell.

B cells are classified in accordance with the expression of the cell-lineage marker
CD19, a range of surface and intracellular proteins, their distinct B cell receptors, and
their production of antibodies. B cells can also produce cytokines and, moreover, act as
antigen-presenting cells. Antigen-presenting cells can present antigens to cognate naïve
CD4+ and CD8+ T cells. Among such antigens, there are self- and non-self-antigens, for
example, HSP60 (heat shock protein 60) and modified LDL particles. Being activated, CD8+

T cells proliferate and differentiate into CD8+ cytotoxic T lymphocytes (CTL), and CD4+ T
cells proliferate and differentiate into specialized effector T helper (Th) cells. Naïve CD4+

T cells have the potential to differentiate into various cell subsets, such as effector T cells
(T helper 1 (Th1), Th2, and Th17) and regulatory T cells (Treg). The type of antigen, T-cell
receptor signal intensity, and the local cytokine environment define the Th subsets into
which T-cell can differentiate. These factors mediate Th polarization in atherosclerotic
lesions [7]. The implication of immune cells in atherogenesis is briefly summarized in
Figure 1.
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Figure 1. Various types of T cells are attracted to the atherosclerotic lesion site by the chemokines released by the activated 
endothelial cells. IFNγ (interferon-gamma) is produced by Th1 cells and has proatherogenic features. It inhibits the pro-
liferation of smooth muscle cells, decreases collagen production, and activates macrophages. IL-4 (interleukin-4) is pro-
duced by Th2 cells and has atheroprotective effects mediated by the ability to inhibit Th1 cells. Granzyme B and perforin, 
which are released by CD4+CD28nullT-cells can damage vascular wall cells. CD8+ T-cells produce proatherogenic IFNγ or 
cause an atheroprotective effect via decreasing macrophage content in the plaque. Treg cells release TGF-β (transforming 
growth factor β), contributing to Th1 and Th17 response inhibition, as well as enhancing smooth muscle cell proliferation. 
NK-T cells are potentially involved in the destabilization of atherosclerotic plaques. No exact roles for Th17 and γδ T-cells, 
which are present in plaque, have yet been established. 

2. T-Cells 
Studies conducted in the 1980s gave rise to the assumption that adaptive immunity 

plays an important role in human atherosclerosis. These studies demonstrated broad ex-
pression of the MHC-II molecule linked with human leukocyte antigen D (HLA-DR) in 
human atheroma, alongside a multiplicity of CD3+ T cells [8]. The majority of the T cells 
found in human atherosclerotic plaques show an effector memory phenotype. Most of 
them display an activation token and approximately 2/3 are CD4+ T helper cells (Th) car-
rying the αβ T cell receptor (TCR) [9]. 

Human atherosclerotic plaques also contain a multitude of CD8+ cytotoxic T cells. 
Among others, the first cells accumulating in atheroma are T cells, which are fortified with 
unstable plaques. Since atherosclerotic plaques tend to rupture, this might lead to blood-
clotting, blood vessel blockage, and acute cardiovascular events [10]. Using monoclonal 
TCR, such as HLA-DR+ and CD28null T cells, it was found that atherosclerotic lesions in 
patients, who suffer from acute coronary syndrome (ACS), are not only subjected to mac-
rophage infiltration, but are also infiltrated by oligoclonal T cells, displaying a constant, 
antigen-driven immune response, and specific activated subsets of T cells [11]. 

It has already been noted that the identification of the corresponding antigens that are 
recognized by these cells remains the primary unanswered question. While the plaque in-
flammatory environment is able to recruit a normal heterogeneous polyclonal cell popula-
tion, most of the T cells that are insulated and cloned from human plaques react to oxidized 
low-density lipoprotein (oxLDL) or other antigens (i.e., antigenic determinant of the bacte-
rial wall, in an HLA-DR-restricted manner) [12]. In 78% of patients with acute myocardial 

Figure 1. Various types of T cells are attracted to the atherosclerotic lesion site by the chemokines released by the activated
endothelial cells. IFNγ (interferon-gamma) is produced by Th1 cells and has proatherogenic features. It inhibits the
proliferation of smooth muscle cells, decreases collagen production, and activates macrophages. IL-4 (interleukin-4) is
produced by Th2 cells and has atheroprotective effects mediated by the ability to inhibit Th1 cells. Granzyme B and perforin,
which are released by CD4+CD28nullT-cells can damage vascular wall cells. CD8+ T-cells produce proatherogenic IFNγ or
cause an atheroprotective effect via decreasing macrophage content in the plaque. Treg cells release TGF-β (transforming
growth factor β), contributing to Th1 and Th17 response inhibition, as well as enhancing smooth muscle cell proliferation.
NK-T cells are potentially involved in the destabilization of atherosclerotic plaques. No exact roles for Th17 and γδ T-cells,
which are present in plaque, have yet been established.

2. T-Cells

Studies conducted in the 1980s gave rise to the assumption that adaptive immunity
plays an important role in human atherosclerosis. These studies demonstrated broad
expression of the MHC-II molecule linked with human leukocyte antigen D (HLA-DR)
in human atheroma, alongside a multiplicity of CD3+ T cells [8]. The majority of the T
cells found in human atherosclerotic plaques show an effector memory phenotype. Most
of them display an activation token and approximately 2/3 are CD4+ T helper cells (Th)
carrying the αβ T cell receptor (TCR) [9].

Human atherosclerotic plaques also contain a multitude of CD8+ cytotoxic T cells.
Among others, the first cells accumulating in atheroma are T cells, which are fortified with
unstable plaques. Since atherosclerotic plaques tend to rupture, this might lead to blood-
clotting, blood vessel blockage, and acute cardiovascular events [10]. Using monoclonal
TCR, such as HLA-DR+ and CD28null T cells, it was found that atherosclerotic lesions
in patients, who suffer from acute coronary syndrome (ACS), are not only subjected to
macrophage infiltration, but are also infiltrated by oligoclonal T cells, displaying a constant,
antigen-driven immune response, and specific activated subsets of T cells [11].

It has already been noted that the identification of the corresponding antigens that
are recognized by these cells remains the primary unanswered question. While the plaque
inflammatory environment is able to recruit a normal heterogeneous polyclonal cell pop-
ulation, most of the T cells that are insulated and cloned from human plaques react to
oxidized low-density lipoprotein (oxLDL) or other antigens (i.e., antigenic determinant of
the bacterial wall, in an HLA-DR-restricted manner) [12]. In 78% of patients with acute
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myocardial infarction, the DNA of oral viridian streptococci was found in their blood clots.
This indicates that in acute coronary syndrome, the activation of inflammatory pathways is
not limited to coronary vessel damage and may also be contained in a thrombus [13].

A fairly large number of antigens are able to be detected systematically. Therefore,
effector T-cell reactions, in most cases, appear in secondary lymphoid organs such as
the lymph nodes and spleen. It is generally assumed that activated T cells circulate in
atherosclerotic lesions, where the putative antigens are settled. This hypothesis is confirmed
by the identification of an elevated number of chemokine receptors participating in the
mobilization of T-cell plaques. One such example is the presence of CCR5 and CXCR3 on
the surface of CD4+ T cells in patients with CAD [14]. It is noteworthy that the suppression
of chemokine receptors (CCR5 and CXCR3) participating in the recruitment of T cells,
circulating into the human plaque, weakens the development of atherosclerotic lesions
in animal models [15]. Thus, atherogenic T-cell responses are possibly characterized as
systemic. This is an argument for studying T-cells both inside the plaque and systemically,
by analyzing the profile of T-cells in peripheral blood [11].

2.1. T Cells within Plaque

Atherosclerotic plaques store plenty of CD4+ T cells. In reaction to comprehensive
stimulation with antigen, co-stimulators, and peculiar cytokines, T cells separate distinct
effector or Th subsets which are differentiated by the cytokines that they secrete [16]. The
main characteristic subsets of Th are: (1) Th1, which secretes interferon (IFN)-γ; (2) Th2,
which secretes IL-4, IL-5 and IL-13; and (3) Th17, which secretes IL-17 and IL-22. Chronic
or secondary exposure to the antigen that presents during atherosclerosis usually occurs in
a predominant subset of Treg. Significant arguments point to the importance of Th1 and
IFN-γ in atherosclerosis development and inflammation [17].

In human atherosclerotic lesions, the greatest signs of activity are shown by Th1,
which is the most common subtype of T cells [18]. For example, they secrete IFN-γ, TNF-α,
and IL-2 [19]. It is also important to note that these cells secrete IFN-γ when stimulated
by oxidized LDL and LDL. It has been detected that IFN-γ generates the progression and
enhances atherosclerotic lesion resistance in various ways, entailing changes in endothelial
function, recruitment of inflammatory cells in the lesion, and intervention in the export of
cholesterol from cells in the lesion [20]. One of the key cytokines of the Th2 subset, IL-4,
significantly suppresses Th1 differentiation and follows IFN-γ secretion, which indicates a
potential protective role against atherosclerosis. However, definitive pathological evidence
in humans is currently lacking [21].

An interaction between variants near the IL-5 gene locus and coronary artery disease
has been shown [22]. This allows us to guess the role of the Th2 subset in modulating
CAD development and promotion. A possible geroprotective effect has been proposed for
IL-5, due to its negative correlation with the density of the carotid intima medium (IMT),
a marker of subclinical atherosclerosis [23]. It is believed that subsets of Th17 are linked
with atherosclerosis [24]. However, their role is unconfirmed. Studies have also shown
that the development of IL-17A caused by damaged T cells is linked with inflammation
and plaque destabilization [25]. In humans, a subset of CD28null CD4+ T cells is enlarged
against a background of inflammatory disease, cytomegalovirus infection, and old age.
By producing anti-inflammatory cytokines, which include IFN-γ, these cells demonstrate
cytotoxicity [26].

Clonally expanded CD28null CD4 T-cells, which are able to cause and enhance inflam-
mation, were found in unstable coronary plaques [27]. Most of these cells uniquely identify
HSP60 and express members of the TNF receptor family. Such an example is OX40 (CD 131),
which is able to act as an alternative co-stimulating receptor [28]. Moreover, the cells are
shown to be regulatory T cells which are stable in the context of in vitro suppression [29].
They also include a number of CD4+ T cell subsets that are able to suppress immunity and
are essential in self-tolerance and patronage, despite autoimmunity.
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About 1–5% of all T cells in atherosclerotic lesions are Tregs, which is less than 25%
of their presence in other chronically inflamed tissues [30]. The results of some studies
have shown a decrease in the amount of Tregs in unstable plaques [31], implying an
atheroprotective role that utilizes their anti-inflammatory function as an immune regulator.
Other studies offer a different point of view, indicating Tregs content elevation in lesions [32].
This may be due to both an adjustment of the functional state of Tregs and its compensatory
elevation to balance the level of T-cell activity in the plaque.

According to Klingenberg and colleagues’ recent report, an elevation of the amount
of Tregs in coronary artery clot aspirate was found in 16 patients with ACS, in contrast
to circulating Treg in the same patients or healthy control groups [33]. Remarkably, the T
cells demonstrated limited TCN expression; thus, these data prove differential, antigenic
trapping of Tregs in the thrombus as a result of ACS [34].

As a rule, in human atherosclerotic plaques, CD8+ cytotoxic T cells are not as common
as CD4+. However, in severe lesions, they may comprise no more than 50% of the cells,
which indicates a possible role in plaque inflammation and instability [35].

NK-T—Natural Killer T cells—is a precise subset of T cells expressing both natu-
ral killer and T cell markers. Stimulation by lipid antigens, which is mediated via the
MHC-I-like CD1d molecule, activates NK-T; this is of additional interest in the study of
atherosclerosis [36]. The cells that are contained in the human atheroma exhibit CD1 and
NK-T cells, which indicates the proatherogenic role of this subtype of T cells [11].

2.2. Circulating T Cell Subpopulations

In patients with coronary artery disease, a lymphocyte subpopulation profile in
the thoracic lymph nodes appeared to differ from the blood profile. This includes a
higher share of B cells, a lower share of CD8+ T cells, a twice higher CD4/CD8 ratio, and
CD4+CD69+ cell saturation, as well as Tregs [37,38]. In the peripheral blood of patients
with cardiovascular diseases a higher share of effector memory T cells (TEM cells or
TEM) characterized as CD3+CD4+CD45RA−CD45RO+CCR7− were found, which relate
to the degree of atherosclerotic lesions in the coronary and brain carotid regions [39]. In
comparison with these results, other studies have demonstrated a CCR7− T cell elevation
in patients with coronary artery disease [40], and T cell memory increase in patients with
subclinical carotid atherosclerosis [41].

TEM appeared as a subset of T cells with the strongest bond with atherosclerosis in
carotid and coronary vessels at various disease phases. An essential correlation was spotted
between TEM and total plasma cholesterol, as well as LDL cholesterol. Despite the link
between TEM and carotid artery atherosclerosis, there was no dependence on the classical
cardiovascular risk factors, which proves the validity of the adaptive immune response in
cardiovascular disorders [42]. After the removal of the antigen that triggered the immune
response, TEM cells and central memory T cells (TCM) are stored in the memory pool.
They store the memory of (1) antigen specificity, (2) the whole range of cytokines they have
produced and (3) the site where their effector function is required. With repeated exposure
to the TEM antigen in inflamed peripheral tissues (in this particular case an atherosclerotic
plaque), it quickly shows effector effects. This is mainly due to the CCR5 and CXCR3
expression [43].

HLA-DR expression is a sign of effector function, and some studies have shown an
elevation in activated HLA-DR+ T cells in patients with coronary heart disease [44]. It
was found that Th1 cells are more common in the blood of patients suffering from acute
coronary syndrome [45]. However, it remains to be revealed whether this represents an
acute reaction to myocardial injury or an underlying CAD. It was also found that a subset
of INF-γ-secreting Th17 cells, specifically Th1/Th17 cells, is caused by the progression of
ACS, which proves the significance of IFN-γ in atherosclerosis [11].

Although Th17 was linked with a high-risk level of cardiovascular disease, this associ-
ation turned out to be inconsistent [24]. Recent studies have shown a negative correlation
between circulating Th2 cells, the thickness of the common medium carotid intima (IMT),
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and the cardiovascular events threat, as well as a negative bond between the number of Th1
cells and the progression of complications associated with atherosclerosis [46]. Over the
ACS period, the traditional immunological synapse mediated by antigen–TCR involvement
(signal 1) and co-stimulatory receptors such as CD28 (signal 2) is the circulation of unsound
T cells [47].

Essentially, CD3+CD4+TCR zeta-dim, a subset of T cells with reduced levels of the
TCR zeta subunit, also referred to as CD247, binds the involved TCR-CD3 complex to
downstream intracellular signal transduction pathways. Patients with ACS have been
shown to have higher levels of CD4+CD28null T cells [48]. Notably, an association was
found between higher circulating levels of CD4+CD28null cells and a poor prognosis in ACS
relapse. TCR zeta and CD28 chain regulation lowering usually happen following antigen
involvement or in reaction to inflammatory stimuli as a feedback mechanism aimed at
setting the immune response [11].

Whereas intact TCR signaling is highly important for upholding immune homeostasis
through the generation and functioning of regulatory T cells subsets, changes in signal
pathways can lead to an increase in TCR zeta-dim T cells. These are able to weaken
modulator feedback signals, thereby potentially limiting the sensitivity of CD4+CD28null

T cells to suppression. TCR zeta-dim T cells and CD4+CD28null T cells are able to react
to stimuli isolated from the antigen-mediated TCR pathway [49]. In addition, human-
circulating or intraplaque CD4+CD28null T cells from patients with ACS exhibit IL-12
receptors even when antigen stimulation is deficient. This increases the expression of
the CCR5 chemokine receptor CD161 and the C-type lectin receptor CD161, which are
involved in the regulation of the tissue homing of effector T cells after IL-12 stimulation.
Therefore, CD4+CD28null T cells could function like NK cells with anti-inflammatory
activity, even in the irreconcilable state of enlarged tissue trafficking and homing after an
IL-12-inducing host infection connected with accrual in inflammatory lesions. Therefore, it
is generally assumed that both antigen-dependent and autonomous mechanisms are crucial
for obtaining responses in subsets of memory T cells with CD28 and/or TCR zeta-chain
defects, thus contributing to the pro-inflammatory and pro-atherosclerotic response [50].

During atherogenesis, adaptive immunity has both stimulating and suppressive effects
on plaques [51]. As for the anti-inflammatory or anti-atherosclerotic side of T-cell function,
analysis of circulating Tregs gave contrary results. ACS patients have lower levels of
CD4+CD25+forkhead box protein 3 (FoxP3+) circulating in T cells, and Tregs detached
from the blood of the same patients showed a lowered ability to suppress oxLDL-induced
CD4+CD25 proliferation [31].

However, in patients with stable CAD, no significant association with the spread of
atherosclerotic disease was detected. No link between the stable degree and progression of
CAD and the levels of circulating Tregs, designated as CD4+CD25hiCD127lo, was shown.
This proved an association between an ST-elevation myocardial infarction (STEMI) T and a
high level of Tregs [33].

More distinctly, inflammatory activation in ST-elevation myocardial infarction (STEMI),
confirmed by elevated IL-6, is able to explain the proportional compensatory balance of
Treg, similar to the observed elevation in IL-10 [52].

On the contrary, patients with acute coronary syndrome have shown a decrease in
level of Tregs circulating without elevation of ST levels [33]. Ultimately, since CCR5 not
only controls effector T cells but also directs Tregs and moves them into inflamed non-
lymphoid tissue, assuming that CCR5+ Tregs constitute a subgroup of ‘effector’ Tregs cells,
the levels of circulating CCR5+ Tregs were evaluated in both subclinical carotid artery
patients and patients with CAD. The tricky role of Tregs in atherosclerosis is currently being
studied. This is proved by new data on the atheroprotective role of this subset of T cells, as
acquired in mouse models [53].
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3. B-Cells

T cells’ role in atherosclerosis has been studied for decades, but B cells have only
recently become an object of curiosity. Hints of B cell involvement in the pathogenesis of
the atherosclerotic lesions were observed during animal studies [54]. However, lately, such
hints also began to appear in humans. Along with the whole blood gene expression profiles
of Framingham Heart Study participants, a network integrative data analysis of genome-
wide linkage studies showed the presence of B-cell immune responses as provocative
factors for coronary artery disease [55].

Unlike T cells, just a small amount of B cells are able to be found locally in atheroma.
At the same time, a multitude of B cells could be detected in the atherosclerotic vessels
adventitial layer, where they exhibit a structural organization close to the tertiary lymphoid
organ, which is associated with the presence of a chronic immune response [56].

It was found that, in atherosclerotic lesions, B cells are oligoclonal and undergo
antigenic proliferation [11]. Being Th cell-dependent, the antigen-driven B-cell response
slows down and leads to the formation of high-affinity antibodies which are exposed to
class switching.

The whole process happens in structures of special purpose inside the lymphoid
organs—the germinal centers. It has been shown that a specific subset of Th cells or T-
follicular helper cells (Tfh) is responsible for the location of the germ center, as well as
for supplying B cells with the assistance necessary for the proliferation and maturation of
affinity [57]. It was established that the Tfh cells do not express fewer cytokines; they also
provide a diversity of surface receptors, such as CD40L (CD154) or OX-40, in comparison
to other subsets of Th cells [14]. Research on the subject of Tfh cells and their role in
atherosclerosis is still ongoing. The B cells liable for this type of response emerge from
the bone marrow and are referred to as B2 cells [58]. The antibodies secreted by B cells
include all classes of human immunoglobulins (Ig), i.e., IgM, IgG, IgE, and IgA. In the blood
serum of patients with atherosclerosis, IgG antibodies directed against oxidation-specific
epitopes can easily be found (in particular, the aldehyde-modified peptide sequences of
apolipoprotein B-100) [59]. It has also been revealed that self-reactive IgG against transhelin
(TAGLN), a cytoskeletal protein, is secreted by B2 cells located in carotid artery plaques [60].
It is noteworthy that these antibodies cross-react with the antigenic determinants of the
bacterial wall of gram-negative bacteria related to the Enterobacteriaceae family, which
again indicates the infection’s possible role in atherosclerosis promotion [61]. Obviously,
additional studies are being conducted to further understand the role of the connection
with the cardiovascular risk of IgG and IgM against oxidation-specific epitopes (OSEs) and
other antigens that can be detected in atherosclerotic plaques. Experimental studies have
revealed that, in addition to the production of atherogenic antibodies in B2 cells, they can
aggravate atherogenesis. This is due to antibody-independent mechanisms that enhance
the effect of pro-inflammatory cytokines [62].

Immunoglobulin IgA is able to be detected on mucous membrane surfaces, where it
contributes to the major defense line against pathogens at reduced levels of concentration
within the circulation. Despite the lack of data regarding the role of IgA in atherosclerosis,
there may be a link between high serum IgA titers and progressive vascular diseases,
as well as myocardial infarction. So far, no mechanism has been proposed to clarify
this relationship. However, the latest information on the role of the gut microbiome in
cardiovascular diseases provides new insights into the role of IgA in atherosclerosis [63].

In addition to B2 cells, a small subset of B1 cells also exist. It consists of long-lived,
non-circulating cells that are mostly detected in the spleen, peritoneum, or pleural cav-
ity [64]. These cells secrete poorly specific natural IgM antibodies, creating a rapid and
T-cell-independent humoral response. Secreted B1 antibodies are polyreactive and are
the main defense against pathogens. Natural IgM antibodies represent an essential ratio
of IgM in noninfected humans, and up to 30% of them are targeted particularly against
OSEs [65]. Some clinical studies have demonstrated that the titers of such naturally oc-
curring oxidation-specific antibody IgMs correlate, on the contrary, with atherosclerotic
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load, which is estimated by carotid BMI [66], as well as with the risk of stroke and acute
myocardial infarction. The atheroprotective mechanism of natural IgMs has yet to be
determined. However, some experimental studies have demonstrated that these antibodies
inhibit the internalization of oxLDL by macrophages and restrain the storage of apoptotic
cells by enhancing efferocytosis.

4. T-Cell Based Therapy

Various compounds have been shown to regulate Tregs and thus to have an efficacy in
the treatment of atherosclerosis in animal models. Data on several of the most investigated
drugs are summarized in Table 1. Therefore, pharmacological regulation of the numbers
and immunosuppressive activity of Tregs may provide valuable treatment options for
atherosclerotic diseases.

Table 1. Effects of several well-known drugs on Tregs.

Drug Name Effects Mechanisms Reference

Mycophenolate mofetil Atherosclerosis suppression

Enhancing the number of Tregs
Decreasing the activation of T cells, NKs,

macrophages and DCs
Decreasing the MMP and cathepsin

generation
Stimulating the expression of lipid

metabolism-associated genes

[67,68]

Rapamycin Immunotherapy in T
cell-mediated CVD

Immunosuppressive activity
Triggering Treg expansion and lowering T

effector cells
[69]

Orally activated vitamin D3 Atherosclerosis suppression

Enhancing Treg levels
Triggering tolerogenic DCs

Lowering IL-12 expression, and enhancing
IL-10 expression in mice

[70,71]

Pioglitazone Atherosclerosis suppression

Modulating the of Th1/Th2 cells balance
Increasing Treg response

Enhancing the SMC level and collagen
content in ApoE-deficient mice

[72]

Simvastatin Beneficial in ACS patients

Enhancing Treg levels
Stimulating TGFβ, IL-10, and FOXP3

expression in the atherosclerotic plaques of
ApoE−/− mice

Inducing Treg expansion in ACS patients

[73]

Atorvastatin Beneficial in ACS patients
TriggeringTreg expansion

Inducing FOXP3 expression in humans but
not in C57BL/6 mice

[73]

Amygdalin (vitamin B17) Atherosclerosis suppression

Modulating the lipid metabolism by
lowering plasma total cholesterol (TC),

triglyceride (TG), and LDL levels
Triggering Treg expansion and upregulating

IL-10 and TGF-β expression in ApoE−/−

mice

[74]

Atherosclerosis treatment options involving antibodies and cytokines are of particular
interest. IL-2 stimulates the proliferation and differentiation of T cells and Treg effectors.
However, low doses of IL-2 give a strong result in the atherosclerosis treatment, due to the
selective expansion of Tregs with essential sensitivity to IL-2. This method was, for example,
used in the clinical treatment of systemic lupus erythematosus [75]. Administration of
antibodies (both oral and intravenous) against CD3 suppresses atherogenesis and the
possible development of atherosclerotic plaques, causing Tregs expansion and decreases
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the number of CD4+ T cells in mice [76]. Successful suppression of atherosclerosis is also
possible with treatment using anti-CD3 antibodies and the IL-2 complex [76]. Integrin
αvβ8 mediates TGF-β activation. Thereby, manipulation of the avß8 integrin is able to
modulate Trg function to interrupt atherosclerotic disease mediated by effector T cells [77].
G-CSF (granulocyte colony-stimulating factor) modifies immunity and enhances immune
diseases in animals, elevates the amount of Tregs and IL-10, and lowers IFN-γ levels in
ApoE−/− mice [78].

In atherosclerosis, physical therapy is able to play a protective role. As an illustration,
ultraviolet B radiation weakens the development of atherosclerosis in mice that are inclined
to atherosclerosis, due to the increased function of Tregs and the regulation of the effector
response of T cells [79].

5. B-Cell Based Therapy
5.1. Rituximab

It is widely thought that rituximab eliminates B-lymphocytes; potentially through
complement-dependent and antibody-dependent cell cytotoxicity and induction of B-cell
apoptosis. Recent studies examining the influence of rituximab on the cardiovascular
system are not extensive. Hypothetically, selective suppression of the effect of B2 cells on
the vascular wall of patients with rheumatoid arthritis can be the endpoint of endothelial
dysfunction and atherosclerosis prevention. A couple of experimental reports have been
published on the positive effect of rituximab on the lipid profile and early markers of
atherosclerosis (enhancement of endothelial function) in patients with atherosclerosis [80].

Therefore, several findings suggest that, in incidents of productive lowering of rheuma-
toid arthritis activity, a lower index of atherogenicity and improved endothelial function
are found. However, the rituximab effect on the promotion of atherosclerosis, and the
corresponding cardiovascular events in patients with rheumatoid arthritis, requires further
study [81,82].

It is assumed that statin therapy is a long-term strategy for primary and secondary
prevention of cardiovascular diseases [83]. A five year follow-up showed that the high-dose
administration of statins, such as atorvastatin and simvastatin, is able to cause commensu-
rable cardioprotective and hypolipidemic effects both in patients with rheumatoid arthritis
and in the general population. Even though, at the initial stage, patients with rheumatoid
arthritis had a lower total cholesterol level, it has been established that statin usage sus-
pension for more than three months in patients with rheumatoid arthritis is caused by an
elevated risk of myocardial infarction by 67% [84].

DREAM—the Dutch Rheumatoid Arthritis Monitoring study, provided evidence of
a reduction in the effect of antiretroviral therapy while using concomitantly with statins.
After six months, patients with rheumatoid arthritis who received combined statins and
rituximab (n = 23) had a higher DAS28 score, in contrast to patients who did not take
statins (control group, n = 64), adjusted for gender, baseline DAS28 level, and rheumatoid
factor positivity [85]. Compared to the control group, the period of usefulness of rituximab
in patients receiving statins was shorter—seven months as opposed to nine months. This
study points to the need for limiting the concomitant treatment with statins and rituximab
in patients with rheumatoid arthritis. Treatment of patients suffering from lymphoma
gave the opposite results. For almost four years, the use of antiretroviral therapy and
statins equally did not have a negative impact on clinical outcomes. Statins’ influence
on the effectiveness of rituximab is a clinical problem, and confirmation of its prognostic
importance requires further studies [86].

5.2. Modulating B-Cell Receptor Signaling

BCR signaling plays a significant role in the control of B cell activation, proliferation,
and differentiation. Therefore, strict regulation by costimulatory receptors is required.
Ibrutinib is used for cancer therapy and suppresses Bruton tyrosine kinase (Btk) below
the BCR. As another option, BCR signaling can be negatively regulated by using mAb
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epratuzumab, which activates the CD22 inhibitory receptor. Originally, Epratuzumab
was created to treat systemic red lupus [87]. Currently, there is no preclinical data on the
significance of these factors in the formation of atherosclerosis. Since the specificity of BCR
and the power of the BCR signal are crucial for determining decisions about the fate of B
cell development, drugs modulating the BCR signal are able to affect the distribution of
subsets of B cells, which in turn is able to affect atherogenesis. We recently demonstrated
that low-dose treatment with ibrutinib leads to margin zone lowering and is linked with an
increase in the number of FOB cells [88]. Therefore, it seems that powerful BCR signaling
promotes the development of marginal zone (MZ) B cells. Therapeutic modulation of
BCR signaling is able to guide the differentiation of B2 cells towards the atheroprotective
B cell fate. It has also recently been reported that MZB cells have thermal protective
activity. Using a genetic model of MZB cell deficiency, it has been shown that the role of
MZB in the negative regulation of proatherogenic TFH cells, via the PDL1 (programmed
cell death ligand 1) axis, programmes cell death 1 [89]. Before this, it was assumed
that a potential atheroprotective role might appear through the secretion of OSE-specific
antibodies. However, the contribution of B cells could not be excluded. It is interesting
to study the additional effect of BSR signaling on subsets of B cells and atherosclerosis in
patients undergoing BSR-modulating therapy. Clinically, ibrutinib is linked with a high
risk of atrial fibrillation and hypertension [90].

5.3. Targeting B-Cell Costimulation and Immune Checkpoint Inhibitors

The synergy between B and T cells is vital for adaptive immunity. B cells provide
antigens and send costimulatory signals to T cells. The two most notable methods have
been extensively investigated in experimental atherosclerosis: CD40-CD40L dyad and
CD80/CD86-CD28/ CTLA4 system (cytotoxic T-lymphocyte associated protein). Preclini-
cal studies of CD40 or CD40L deficiency indicate predominantly proatherogenic functions
of this dyad [91]. However, it has been hypothesized that T-cell and CD40-dependent B-cell
responses are proatherogenic circulating CD40+ B cells correlated with a reduced risk of
stroke, which may be related to the importance of CD40 in Breg differentiation. Although
CD40/CD40L inhibitors have a powerful anti-inflammatory effect in preclinical studies,
their clinical use has been complicated by severe side effects. CD80 and CD86 on B cells
interact with both the CD28 costimulatory receptor and the CTLA4 inhibitory receptor on
T cells [92].

Since CD86 generates the induction of Th1 immunity, experimental studies suggest a
predominantly proatherogenic function of CD80/CD86,75,76. At the same time, CD86+

B cell levels correlate with the degree of stenosis and the frequency of stroke in humans.
However, CD80/CD86 signaling is also potentially required for the induction of athero-
protective regulatory T cells. For the treatment of rheumatoid arthritis, the CTLA4Ig
(abatacept) design was approved, preventing CD80/CD86 from interacting with CD28
and activating T cells. Despite the positive effect of CVD on cardiovascular parameters in
preclinical studies, cardiovascular parameters have not been evaluated in clinical trials [93].

In contrast, many cell types, which include antigen-presenting cells and tumor cells,
express T-cell-inhibiting ligands. They target immune checkpoint inhibitors (ICIs), which
are often used in cancer therapy. ISCs are clinically approved; they target programmed cell
death 1 (nivolumab, pembrolizumab), PD L1 (atezolizumab, durvalumab, and avelumab),
and CTLA4 (ipilimumab). However, they have potentially detrimental effects on cardio-
vascular disease, and cardiovascular adverse events have been reported [94].

Interestingly, high T cell activity after checkpoint suppression could also contribute to
T cell-mediated effects on B cells. Elevated B cell activation and plasmablast levels have
been reported in patients treated with immune checkpoint inhibition (ICI), which carries an
increased risk of immune-related side effects. Even though ICI has possible proatherogenic
effects, most likely through its effect on T cells, consequential effects on B cells should not
be missed [95].
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6. Conclusions

Atherosclerosis is the leading contributor to mortality rates worldwide. The most
important components of the pathogenesis of atherosclerosis are, without doubt, lipid
metabolism alterations and inflammation. When considering inflammation, the crucial role
is played by immune cells, of which T and B cells must be noted. The impact of T cells is
well-studied, especially in contrast to B cells, which became a topic of interest relatively
recently. This may be explained by the low level of B cells in the atheroma itself—T cells
are presented there in all their diversity.

A special research interest lies in the scope of therapeutic targeting. Various ap-
proaches have proven their effectiveness in atheroprotection via T cells, especially Tregs
regulation. Such approaches include the use of well-known drugs, antibody and cytokine
treatment, as well as ultraviolet B radiation. When considering B cells as a target, rituximab
seems both interesting and promising.
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