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Peptide-based hydrogels have attracted significant interest in recent years as these soft, highly hydrated materials can be
engineered tomimic the cell niche with significant potential applications in the biomedical field. Their potential use in vivo in par-
ticular is dependent on their biocompatibility, including their potential to cause an inflammatory response. In this work, we inves-
tigated in vitro the inflammatory potential of a β-sheet forming peptide (FEFEFKFK; F: phenylalanine, E: glutamic acid; K: lysine)
hydrogel by encapsulating murine monocytes within it (3D culture) and using the production of cytokines, IL-β, IL-6 and TNFα,
as markers of inflammatory response. No statistically significant release of cytokines in our test sample (media + gel + cells)
was observed after 48 or 72h of culture showing that our hydrogels do not incite a pro-inflammatory response in vitro. These re-
sults show the potential biocompatibility of these hydrogels and therefore their potential for in vivo use. The work also
highlighted the difference in monocyte behaviour, proliferation and morphology changes when cultured in 2D vs. 3D. © 2016
The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
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Introduction

In the past two decades, significant efforts have been made to de-
velop novel biomaterials for a variety of biomedical applications
such as regenerative medicine and cell therapy. One such class of
material, which has attracted significant interest, is hydrogel as this
soft, highly hydrated material can be engineered to mimic the cell
niche to promote in vitro and in vivo tissue regeneration [1–5] or
can be used as drug and cell in vivo delivery platforms. [6–9] A va-
riety of approaches can be used to design hydrogels, one such ap-
proach is self-assembly of small molecules (low molecular weight
hydrogelators – LMWH). One such class of LMWH are short syn-
thetic peptides, which are of significant interest as they can be syn-
thesised using standard chemical routes and therefore be obtained
with high definition and high purity. In addition, being built out of
natural amino acids, they can be designed to be biocompatible and
biodegradable and can be metabolised by the body.[10–12]

A number of molecular designs have been developed for the
synthesis of self-assembling peptide LMWHs with the four main
families being amphiphilic peptides, [13–15] short peptide deriva-
tives, [16–20] α-helix/coil-coil peptides [21,22] and β-sheet pep-
tides. [4,23–29] β-sheet peptides are of particular interest as they
allow the fabrication of very stable hydrogels with properties that
can be tailored through peptide design, media properties and pro-
cessing. We have recently investigated the self-assembly and gela-
tion properties of a family of β-sheet peptides [30–34] based on the
design developed by Zhang and co-workers. [23–25,35] This
design, which is based on the alternation of hydrophilic and hydro-
phobic residues, allows the synthesis of peptides that self-assemble
into anti-parallel β-sheet rich fibres. Above a critical gelation
concentration, these fibres entangle and/or associate to
form three-dimensional networks that have the ability to trap
water, i.e.: form hydrogels (Figure 1).

Biomaterial biocompatibility covers a variety of aspects including
toxicity and biodegradability as well as inflammatory potential. In
this work, we decided to focus on the investigation in vitro of the
inflammatory properties of our hydrogel using monocytes. Mono-
cytes are inflammatory cells that circulate within the bloodstream.
In response to injury events, such as the implantation of a biomate-
rial, they migrate into the tissue/biomaterial and become macro-
phages. There are four subtypes of macrophages: M1, which have
a pro-inflammatory function; M2a, which have an anti-
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inflammatory function; M2b, which are involved in immune-
regulation and M2c, which are responsible for tissue remodelling.
[36] The presence of M1 promotes the necessary inflammatory re-
sponse to protect the body initially after surgical implantation.
[37–39] However, a prolonged M1 response ultimately leads to
failure of the biomaterial to integrate. [40,41] M1 macrophages re-
spond to the pro-inflammatory cytokine interferon-γ and lipopoly-
saccharides (LPS), an integral part of gram-negative bacterial
membranes. In the presence of these signals, macrophages pro-
duce interlukin-1β (IL-1β), 6 (IL-6), 12, 15, 18 and 23; tumour necrosis
factor-α (TNFα); chemokine ligand 15, 20 and α-chemokine ligands
9, 10, 11 and 13. Monocytes can therefore be used as a marker of
inflammatory response in vitro. Haines-Butterick et al. tested the in-
flammatory properties of a 20 amino acid peptide hydrogel in 2D
by seeding murine monocytes on the surface of the hydrogels
and quantifying the production of TNFα. [42] They found minimal
amounts of TNFα produced in response to their hydrogel scaffold.
In our study, we decided to look at cytokine production after 3D
encapsulation of monocytes in the hydrogel as this configuration
is more representative of the in vivo situation, where themonocytes
invade biomaterials. In our case, the production of three cytokines
IL-1β, IL-6 and TNFα were quantified.

Materials and Methods

Monocyte Culture

Frozen murine monocytes (J774.2 Cell Line, Sigma–Aldrich, Dorset,
UK) were cultured in DMEM (D6546, Sigma–Aldrich, Dorset, UK)
containing 2mML-glutamine (GE Healthcare Life Sciences,
Buckinghamshire, UK) and 10% fetal bovine serum (FBS) (GE
Healthcare Life Sciences, Buckinghamshire, UK). All cells were
grown in an atmosphere of 5% CO2/95% air at 37 °C. Cells were
dislodged into the media using a cell scraper prior to passaging.
Cells were used at passage 5 in all experiments.

Hydrogel Preparation

Hydrogels were prepared by dissolving ultraviolet sterilised
FEFEFKFK peptide (Biomatik, Ontario, Canada; Purity 95% TFA
salt) to a concentration of 20mgml�1 using a 30 : 70 mixture
of sterile phosphate buffered saline solution (GE Healthcare Life
Sciences, Buckinghamshire, UK) and sterile distilled water. After
vortexing and overnight incubation at 80 °C, the peptide
solution (pH 2–3) formed a hydrogel upon cooling at room
temperature.

Cell Encapsulation

To form the hydrogel within a ThinCert well, insert with 1.0-μmpore
size (Greiner Bio-One Ltd, Gloucestershire, UK), 0.5ml of hydrogel,
prepared as described previously, was pipetted into the insert
and placed within a 12-well plate (Greiner Bio-One Ltd,
Gloucestershire, UK). The hydrogel pH was adjusted to 7 by adding
50μl of a 0.5M NaOH solution to the top of the hydrogel drop by
drop and then gently mixing the NaOH in with the pipette tip
(shear modulus of hydrogel after pH adjustment ~10kPa.[2]). Cells
were added to the top of the gel in 100μl of cell suspension and
mixed into the gel using the tip of the pipette to give a final
encapsulated cell concentration of 2× 105 cells ml�1. Finally, 1ml
of complete media was added to the well plate around the insert
containing the hydrogel before being placed in the incubator.

Study Design

Table 1 describes the composition of the samples used in our study.
The third negative control (NC3) was prepared as described
previously, but media alone was added to the gel compared with
media with cells in the test sample (TEST). For the positive controls,
100μl of a 20μgml�1 LPS (Sigma–Aldrich) solution was mixed with
the cells prior to plating the cells (PC1) or encapsulating the cells in
the hydrogel (PC2). At 48 and 72h samples’ supernatant was

Figure 1. Schematic representation of the self-assembly and gelation process of β-sheet forming peptides.

Table 1. Sample composition

Sample Abbreviation Cell number Gel volume (ml) Amount of LPS
added (μg)

Volume of media
added (ml)

Media only Negative control NC1 No cells No gel 0 1

Media + cell Negative control NC2 2 × 105 a No gel 0 1

Media + gel Negative control NC3 No cells 0.5 0 1

Media + cell + LPS Positive control PC1 2 × 105 a No gel 2 1

Media + gel + LPS Positive control PC2 2 × 105 b 0.5 2 1

Media + gel + cells Test sample TEST 2 × 105 b 0.5 0 1

aper 0.5ml of hydrogel;
badded to well surface.
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removed and frozen at�80 °C for further analysis. The supernatant
that was removed was replaced with an equivalent amount of
complete media.

Detection of IL-1β, TNFα and IL6 by Enzyme-linked
Immunoabsorbent Assay

Samples were tested for the presence of pro-inflammatory
cytokines with enzyme-linked immunoabsorbent assay (ELISA). All
ELISA components were purchased from R&D systems (Abingdon,
UK). Details are collated in Table 2. A seven-point standard curve
was generated for each cytokine tested using the supplied recom-
binant mouse cytokine in twofold serial dilutions and a standard
blank of phosphate buffered saline.

Statistical Analysis

A one-way analysis of variance to determine statistical significance
with a 95% (p< 0.05) and 99.5% (p< 0.005) confidence interval and
post hoc Tukey tests were performed using ezANOVA software.

Results and Discussion

In Figure 2, the experimental design used for this study is
presented. In order to confirm the validity of the approach, a set
of two negative (media and media + cells) and one positive (media
+ cells + LPS) controls with no hydrogels were prepared. These
samples allowed us to confirm that the monocytes did respond to
the presence of LPS. For the testing of the hydrogel in addition to
the test sample (gel + media + cells), a negative (gel + media)
control and a positive (gel + media + cells + LPS) control were
prepared.

When dealing with hydrogels, ingress and egress via diffusion of
largemolecules such as LPS and proteins needs to be carefully con-
sidered. Diffusion of large molecules will depend on the hydrogel
network properties (e.g. mesh size and charge) and the molecules’
properties (e.g. aggregation propensity and hydrodynamic radius).

In previous work, we have shown that the mesh size of our hydro-
gel is in the range of 20–30nm.[31] LPS are amphipathic molecules
(~10–20 kDa), which in solution aggregate to form large structures
(spherical and/or cylindrical micelles) with large hydrodynamic radii
(~60–100nm). [43,44] On the other hand, interleukins and TNFα are
found in solution in mono, di and/or trimeric states (~10–50 kDa)
[45] and adopt compact conformations resulting in small hydrody-
namic radii (~2–10nm). We therefore expected LPS to be unable to
diffuse into the hydrogels, while interleukins and TNFα were
expected to be able to diffuse out. Preliminary tests indeed
confirmed these assumptions. Neither interleukins nor TNFα were
detected when LPS was simply added to the surrounding media
of a hydrogel with monocytes encapsulated suggesting that the
monocytes did not come into contact with LPS. On the other hand,
when LPS was added to the cell solution prior to encapsulation into
the hydrogels, interleukins and TNFα were detected in the sur-
rounding media from 48h onwards showing that the interleukins
and TNFα were indeed able to diffuse out of the hydrogels. As a
consequence of these findings, LPS was mixed into the hydrogels
with the cells for the positive control sample, PC2. The production
of interleukins and TNFα was measured by collecting the surround-
ing media and subsequently using ELISA as described in the
Materials and Methods section. The detailed diffusive properties
of these hydrogels have been the subject of a number of articles
from our previous work[8,34] and work of other groups[6,46] and
are beyond the scope of this article.
In Figure 3, light microscopy images obtained immediately after

seeding themonocytes and after 48 and 72h of cell culture are pre-
sented. As can be seen for the samples prepared without gel (2D
culture), significant differences were observed between the nega-
tive control, NC2 (cell + media), and the positive control, PC1 (cell
+ media + LPS). For NC2, the monocytes were seen to proliferate
rapidly, and after 48 h, they were already confluent, covering the
full surface of the culture well. When LPSwas added (PC1), the num-
ber ofmonocytes visibly decreased after 48 and 72h of culture, and
their morphology changed. Cells appeared larger and more ex-
tended suggesting that the monocytes responded to the LPS and

Figure 2. Experimental design. NC1: negative control 1 (media); NC2: negative control 2 (media + cells); PC1: positive control 1 (media + cells + LPS); NC3:
negative control 3 (gel + media); TEST: test sample (gel + media + cells); PC2: positive control 2 (gel + media + cells + LPS).

Table 2. Specification of ELISA tests used

Cytokine Capture antibody Detection antibody High standard (pgml�1)

IL-1β Rat anti-mouse IL-1β Biotinylated goat anti-mouse IL-1β 1 000

TNFα Goat anti-mouse TNFα Biotinylated goat anti-mouse TNFα 2 000

IL6 Rat anti-mouse IL-6 Biotinylated goat anti-mouse IL-6 1 000
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differentiated into macrophages. When the monocytes were
seeded in the hydrogel, the difference in morphology between
the sample with LPS (PC2) and without LPS (TEST) was less obvious.
Close inspection of the images seems to suggest a slight decrease
in monocyte number, but no significant change in cell morphology
was observed. As will be discussed next, for PC1 and PC2, a signifi-
cant increase in cytokine level was detected suggesting that the
monocytes were activated by the LPS in PC2 sample too. The differ-
ence observed in cell morphologies between 2D and 3D culture is
not unexpected, indeed significant work in the literature has shown
that cell behaviour and morphology can differ substantially when
cultured in 2D or 3D. In our case, although the monocytes
responded to the supplemented LPS even in the hydrogel, as will
be shown next, there was no significant change in cell morphology

probably because of the cells being encapsulated within a 3D
matrix.

In Figure 4, the amount of IL-1β, TNFα and IL-6 detected for each
sample after 48 and 72h of culture are shown. For IL-6 and TNFα,
significant and statistically meaningful levels of cytokines were
detected only for the positive controls, PC1 and PC2. For IL-1β, no
statistical difference in interleukin produced between NC1 and
NC3, and the TEST sample were observed. As NC1 and NC3 did
not contain cells, this suggests that no statistically significant
production of IL-1β was detected in the TEST sample. On the other
hand, a statistically significant amount of IL-1β was detected in the
two positive controls, PC1 and PC2. In this case though, statistically
significant amounts of IL-1β were detected in the negative control
NC2, which contained cells. The increase of detectable IL-1β in this

Figure 3. Light microscope images of samples at the time of seeding and after 48 and 72 h of culture. Scale bar represents 50μm.
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sample can be explained by the rapid growth of these cells in a lim-
ited space, as shown by the light microscopy images, causing cell
death and release of IL-1β. This effect has been noted in another
study where a lower seeding density was used. [42] Similar results
to those seen for IL-1β were observed for IL-6 and TNFα. There
was significantly more cytokine production in the two positive con-
trol samples, PC1 and PC2. There was no significant cytokine pro-
duction detected in any of the negative controls; NC1, NC2 or
NC3, or TEST samples. The lack of cytokines detected when the

monocytes were encapsulated within our hydrogels suggests that
they do not incite a pro-inflammatory response in vitro making
them a good candidate for use in vivo.

Conclusions

We investigated in vitro the inflammatory potential of our peptide
hydrogels by encapsulating murine monocytes within them (3D

Figure 4. Amount of (A) IL-1β, (B) TNFα, (C) IL-6 detected in the different samples (see Figure 2 for details) in response to octapeptide hydrogel at 48 (white
bars) and 72 h (black bars). Data points are mean of 6 replicates. Error bars represent standard deviation. U = undetectable; * p< 0.05; **p< 0.005.
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culture) and using the production of cytokines, IL-β, IL-6 and TNFα,
as markers of inflammatory response. No statistically significant
release of cytokines in our test sample was observed after 48 or
72h of culture showing that our hydrogels do not incite a
pro-inflammatory response in vitro. These results show the
potential biocompatibility of these hydrogels and therefore their
potential for use in vivo. Our work also showed that 2D and 3D
culture of monocytes in the presence or absence of LPS yielded
very different cell behaviour. In the absence of LPS, the monocytes
were found to proliferate rapidly in 2D while in 3D limited prolifer-
ation was observed. In both cases, the cell morphology remained
unchanged. When LPS was added in 2D, limited cell proliferation
and significant changes in cell morphology were observed, while
in 3D, no significant changes in cell behaviour could be observed;
although in both cases, an increase in cytokine production was
observed confirming that in both cases, the monocytes were
responding to the presence of LPS.
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