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ABSTRACT
The Coronavirus Disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 is an
exceptionally contagious disease that leads to global epidemics with elevated mortality and morbidity.
There are currently no efficacious drugs targeting coronavirus disease 2019, therefore, it is an urgent
requirement for the development of drugs to control this emerging disease. Owing to the importance
of nucleocapsid protein, the present study focuses on targeting the N-terminal domain of nucleocap-
sid protein from severe acute respiratory syndrome coronavirus 2 to identify the potential compounds
by computational approaches such as pharmacophore modeling, virtual screening, docking and
molecular dynamics. We found three molecules (ZINC000257324845, ZINC000005169973 and
ZINC000009913056), which adopted a similar conformation as guanosine monophosphate (GMP)
within the N-terminal domain active site and exhibiting high binding affinity (>�8.0 kcalmol�1). All
the identified compounds were stabilized by hydrogen bonding with Arg107, Tyr111 and Arg149 of N-
terminal domain. Additionally, the aromatic ring of lead molecules formed p interactions with Tyr109
of N-terminal domain. Molecular dynamics and Molecular mechanic/Poisson–Boltzmann surface area
results revealed that N-terminal domain – ligand(s) complexes are less dynamic and more stable than
N-terminal domain – GMP complex. As the identified compounds share the same corresponding
pharmacophore properties, therefore, the present results may serve as a potential lead for the devel-
opment of inhibitors against severe acute respiratory syndrome coronavirus 2.

Abbreviations: 2019-nCoV: 2019 novel coronavirus; �: degree; Å: angstrom; ADMET: absorption, distri-
bution, metabolism, excretion and toxicity; AMP: adenosine triphosphate; B3LYP: Lee–Yang–Parr correl-
ation functional; BBB: blood–brain barrier; BLAST: basic local alignment search tool; CMP: cytidine
monophosphate; CNS: central nervous system; COVID-19: coronavirus disease 2019; CoVs: coronavi-
ruses; CTD: C-terminal domain; CYP: Cytochrome P450; DFT: density functional theory; E: envelope; etc:
et cetera; GMP: guanosine monophosphate; GROMACS: groningen machine for chemical simulations;
HADDOCK: high ambiguity driven protein–protein docking; H-bond: hydrogen-bond; HCoV: human
coronavirus; HIA: human intestinal absorption; ICTV: International Committee of Taxonomy of Viruses;
kcalmol–1: kilocalorie per mole; kJmol–1: kilojoule per mole; LINCS: linear constraints solver; M: mem-
brane; MERS-CoV: middle-east respiratory syndrome coronavirus; MMPBSA: molecular mechanic/
Poisson–Boltzmann surface area; MSA: multiple sequence alignment; N: nucleocapsid; NCBI: National
Center for Biotechnology Information; nm: nanometer; NPT: number of particles, pressure and tem-
perature; ns: nanosecond; NTD: N-terminal domain; NVT: number of particles, volume and temperature;
ORF: open reading frame; PC: principal component; PCA: principal component analysis; PDB: protein
data bank; pdbqt: protein data bank, partial charge (q), & atom type (t)); PME: particle mesh Ewald;
PPB: plasma protein binding; ps: picosecond; RCSB: research collaboratory for structural bioinformatics;
Rg: radius of gyration; RMSD: root mean square deviations; RMSF: root mean square fluctuation; RNA:
ribonucleic acid; S: spike; SARS-CoV: severe acute respiratory syndrome coronavirus; SARS-CoV-2: severe
acute respiratory syndrome coronavirus-2; SASA: solvent accessible surface area; SBVS: structure-based
virtual screening; sdf: structure data file; SPC: simple point charge; SR: Ser/arg; UFF: universal force
field; UMP: uridine monophosphate; VMD: visual molecular dynamics
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1. Introduction

Coronaviruses (CoVs) belong to the family of Coronaviridae and
the order of Nidovirales, which include nonsegmented, envel-
oped, single-stranded, positive-sense RNA viruses and cause vari-
ous infectious diseases in vertebrates and humans (Cavanagh,
2007; Fehr & Perlman, 2015; Gorbalenya et al., 2006). According
to the latest International Committee of Taxonomy of Viruses
(ICTV), CoVs are classified into four genera, namely
Alphacoronaviruses, Betacoronaviruses, Gammacoronaviruses and
Deltacoronaviruses (King et al., 2018). Alphacoronaviruses and
Betacoronaviruses infect the humans and mammals mainly with
the gastrointestinal, respiratory and central nervous system,
while the gammacoronaviruses and deltacoronaviruses mainly
infect birds (Cavanagh, 2007; Fehr & Perlman, 2015; Perlman &
Netland, 2009; Woo et al., 2012). Some members of coronavi-
ruses, such as human alphacoronaviruses, 229E (HCoV-229E) and
NL63 (HCoV-NL63) and human betacoronaviruses, OC43 (HCoV-
OC43) and HKU1 (HCoV-HKU1) are commonly found worldwide
and cause mild upper respiratory diseases in most individuals.
The other two betacoronaviruses, including severe acute respira-
tory syndrome coronavirus (SARS-CoV) and middle-east respira-
tory syndrome coronavirus (MERS-CoV) have emerged in
2002–2003 and 2012, respectively, and both are highly patho-
genic to humans (Lancet, 2013; Lee et al., 2003; Marra
et al., 2003).

Recently, a novel coronavirus named as 2019 novel corona-
virus (2019-nCoV/SARS-CoV-2) has been identified as a causing
pathogen for the coronavirus disease 2019 (abbreviated as
COVID-19) (Chen et al., 2020; Zhou et al., 2020; Zhu et al.,
2020). 2019-nCoV belongs to the betacoronavirus and closely
related more to SARS-CoV than MERS-CoV (Wu et al., 2020;
Zhou et al., 2020). HCoVs genome consists of open reading
frames for five major proteins, which plays a significant role in
the virus structure assembly and viral replication, including rep-
licase complex (ORF1ab), spike (S), envelope (E), membrane (M)
and nucleocapsid (N) proteins (Forni et al., 2017). Among these,
N-protein is a major structural protein as it produces the ribo-
nucleoprotein complex upon the binding of the viral RNA gen-
ome (Hsieh et al., 2005). It plays an essential role in the
regulation of viral RNA synthesis and has functional importance
in fundamental aspects of the CoV life cycle, such as encapsida-
tion and replication of virus genomes (Schelle et al., 2005).
Moreover, it has the ability to regulate the cellular processes
during viral pathogenesis, including actin reorganization, host
cell cycle progression and apoptosis (Du et al., 2008; Surjit
et al., 2006). Besides these roles, there is less variability in the
viral N-gene sequence, and thus, it is a genetically stable pro-
tein, an essential prerequisite of an effective drug target candi-
date (Chang et al., 2014).

Coronavirus N-proteins are organized into three domains,
namely an N-terminal RNA-binding domain (NTD), a poorly
structured central Ser/Arg (SR)-rich linker and a C-terminal
dimerization domain (CTD) (Chang et al., 2013; Chen et al.,
2013; Lo et al., 2013). Previous mutagenic studies showed
that CoVs NTD were linked at 30end of the viral genome via
electrostatic interactions (Chen et al., 2013; Grossoehme
et al., 2009; Keane et al., 2012; Saikatendu et al., 2007). Kang
et al. (2020) showed that native NTD has more capability to

bind the RNA in the binding pocket as compared to the
mutant NTD (Kang et al., 2020). Furthermore, complex crystal
structures of HCoV-OC43 N-NTD also provide structural clues
about the binding of ribonucleoside 50-monophosphates,
including guanosine monophosphate (GMP), uridine mono-
phosphate (UMP), cytidine monophosphate (CMP) and
adenosine monophosphate (AMP) to NTD of N-protein (Lin
et al., 2014). Specific molecules (PJ34, H3) were designed
using this knowledge against NTD of HCoV-OC43 N-protein,
which were verified by the in vitro experiments (Chang et al.,
2016; Lin et al., 2014). Due to its importance to the virus cycle
and pathogenicity to the host, N-protein of SARS-CoV-2 has
become an enticing and essential target for drug development.

Here, we report the potent molecules against NTD-N-pro-
tein of SARS-CoV-2. We have used the GMP as a pharmaco-
phore template in virtual screening for the identification of
novel potent compounds. To screen a set of molecules,
pharmacophore features of GMP were considered and fil-
tered through the ADMET profile and drug-like properties. Of
these, three pharmacokinetically hits (ZINC000257324845,
ZINC000005169973 and ZINC000009913056) have the bind-
ing affinity higher than GMP with NTD. Molecular dynamics
and Molecular mechanic/Poisson–Boltzmann Surface Area
(MMPBSA) revealed the stability of NTD–GMP and
NTD–ligand(s) complexes. The sequential work done to screen
potent molecules against NTD-N-protein of SARS-CoV-2 is repre-
sented in Figure 1. Our findings will assist in the development
of new drugs, which can interfere with the binding of viral RNA
to N-protein.

2. Material methods

2.1. Retrieving crystallographic structures

The crystal structure of N-terminal domain (NTD) of nucleo-
capsid protein (N-protein) of SARS-CoV-2 (PDB ID 6VYO) was
downloaded from the RCSB-PDB database to find its poten-
tial inhibitors. Due to the existence of this structure in native
form, the protein sequence similarity search was performed
by NCBI-BLAST server (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
against the PDB (https://www.rcsb.org/) in order to screen
the complex homologous structure (Altschul et al., 1990).
The structure of N-protein-NTD of HCoV-OC43 complexed
with its substrate GMP (PDB ID 4LM9) was considered as a
point of reference to analyse the active site (Lin et al., 2014).

2.2. Stability of RNA with NTD

Molecular docking of ssRNA with the NTD and the NTD
mutant variants was performed using HADDOCK (High
Ambiguity Driven protein-protein DOCKing), as done by
Chen et al. (2013), De Vries et al. (2010), Kang et al. (2020),
Kurkcuoglu et al. (2018), Lin et al. (2014), Saikatendu et al.
(2007), Singh et al. (2019). The 3D structure of RNA (50-
UUCGU-30) was predicted from RNA composer and
SimRNAweb (Biesiada et al., 2016; Magnus et al., 2016). NTD
mutants (R107A, Y109A and R149A) were generated using
COOT (Emsley & Cowtan, 2004). The active site residues
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(Ser51, Phe53, Ala55, Ala90, Arg107, Tyr109, Tyr111 and
Arg149) were considered as active residues in HADDOCK to
monitor the molecular interactions between RNA and NTD
and generated clusters were analyzed and inspected in
PyMOL (De Vries et al., 2010; DeLano, 2002). Further, molecu-
lar dynamics simulation was performed using amber99sb
force-field in GROningen Machine for Chemical Simulations
(GROMACS) 2019.2 to determine the stability of protein–RNA
complexes (Hornak et al., 2006; van der Spoel et al., 2005).
The protonation states of the NTD residues were generated
by Hþþ server (http://biophysics.cs.vt.edu/) at pH 7.5, and
the resulted protein was considered for molecular simulation,
as done by Anandakrishnan et al. (2012) and Kumari et al.
(2020). The systems were placed in a triclinic box with a min-
imum distance of 1.5 nm between protein and edge of the
box. The systems were solvated with TIP3P water model, and
genion tool was used to add the counterions to neutralize
the systems. The steepest descent algorithm was utilized for
50,000 steps to minimize the protein up to an energy cut of
10.0 kJmol�1. Two-phase of equilibration: constant number
of particles, volume and temperature (NVT) and a constant

number of particles, pressure and temperature (NPT) were
performed for 5,000,000 steps. The systems were kept at NVT
using the Parrinello–Rahman barostat pressure coupling
method at 300 K for 1 ns (Parrinello & Rahman, 1981). NPT
was done for 1 ns using Berendsen thermostat (Berendsen
et al., 1984). The covalent bonds were constrained by Linear
Constraints Solver (LINCS) (Hess et al., 1997). Long-range
interactions were determined using Particle Mesh Ewald
(PME) (Abraham & Gready, 2011). Radius cut-off 12 Å was
used to compute the short-range (Lennard–Jones and
Coulomb) interactions. The final molecular dynamics run was
kept for 100 ns, and trajectories were retrieved to generate
the Root mean square deviations (RMSD), radius of gyration
(Rg), solvent accessible surface area (SASA) and hydrogen
bond numbers of NTD–RNA and NTD mutants–RNA com-
plexes, as done by Malik et al. (2019).

2.3. MMPBSA binding free energy calculation

The binding energy of NTD–RNA, R107A–RNA, Y109A–RNA
and R149A–RNA complexes were calculated by Molecular

Figure 1. Schematic representation implemented to identify the lead molecules against N-terminal domain (NTD) from SARS-CoV-2 (Severe acute respiratory syn-
drome coronavirus 2).
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Mechanics/Poisson–Boltzmann Surface Area (MMPBSA) suite
in GROMACS, as done by Kumari et al. (2014) and Pandit
et al. (2018). Molecular simulation trajectories generated at
every 10 ps of protein–RNA complexes were used for
MMPBSA. In GROMACS, the g_mmpbsa tool was used to
compute the binding free energy of protein–RNA complexes
as:

DGbind ¼ DGcomplex � DGprotein þ DGligand
� �

Where, DGcomplex, DGprotein and DGligand is the total free
energy of protein–RNA complex, protein and ligand in a solv-
ent, respectively.

Here, we have used 2000 frames extracted from the last
20 ns (80–100 ns) of molecular dynamics to compute the
solvation free energy (polar and nonpolar) and molecular
mechanics potential energy (electrostatic and van der Waals
interactions) for estimation of total binding affinity of
NTD–RNA and NTD mutants–RNA complexes. Per-residue
decomposition analysis is a quantitative analysis to assess
the contribution of important residues in protein–ligand
complexes. In this study, binding energy decomposition ana-
lysis was done from the last 20 ns of molecular dynamics to
determine the binding potential of crucial important residues
of the active site (Ser51, Phe53, Ala55, Ala90, Arg107, Tyr109,
Tyr111 and Arg149) with RNA in NTD–RNA and NTD
mutants–RNA complexes.

2.4. Pharmacophore modeling

For the screening of potent compounds against NTD, GMP was
taken as a template molecule for the pharmacophore model.
The 3D structure of SARS-CoV-2 (PDB ID 6VYO) was used as a
starting model for further in silico studies. The water and the
other molecules were omitted, and the protein structure was
prepared by adding the essential hydrogen atoms and Kollman
charges (8.0) using the AutoDock Tools (Morris et al., 2009).
GMP was extracted from the PDB ID 4LM9 and processed by
adding polar hydrogens and gasteiger charges (0.5003). The
protein and ligand were saved in .pdbqt and the molecular
docking was performed using AutoDock Vina and AutoDock
Tools (Morris et al., 2009; Trott & Olson, 2010). The 50 confor-
mations of GMP were predicted using the Lamarckian genetic
algorithm in AutoDock Tools, as done by Singh et al. (2017).
The best conformation of GMP with NTD was selected on the
basis of binding energy and corresponding interactions with
NTD. The multiple sequence alignment (MSA) of NTD-N-protein
of SARS-CoV-2 with other NTD from other viruses was gener-
ated using Clustal Omega and illustrated using ESPript (Gouet
et al., 1999; Sievers et al., 2011).

Further, the structure-based pharmacophore modeling
was conducted by the Pharmit server, which directly works
on the ligand–protein complex (Sunseri & Koes, 2016). The
3D structure of NTD–GMP complex was loaded into the
Pharmit web server as a query to identify the compounds
with pharmacophore features from the ZINC library (Sterling
& Irwin, 2015). Shape filters were applied for the protein and
ligand to filter out the compounds in the database before
conducting the pharmacophore search. Further, the total

4576 compounds with RMSD less than 1.5 Å from the
pharmacophore features of query molecule were saved and
considered for virtual screening.

2.5. Virtual screening

Structure-based virtual screening (SBVS) was performed by
utilizing the AutoDock Vina in PyRx 0.8 platform (Dallakyan &
Olson, 2015; Trott & Olson, 2010). The total 4576 hit com-
pounds with the pharmacophore properties of GMP, were
considered as ligands for the virtual screening against NTD.
All the ligands were energy minimized by applying the
Universal Force Field (UFF) and converted into .pdbqt by
OpenBabel (O’Boyle et al., 2011). The grid map was centred
with a dimension of 58� 60� 57Å that covers the active site
residues of the protein. Each ligand was docked in the bind-
ing site of NTD and scored with binding affinity. Top-ranked
molecules were analyzed using PyMOL, and best conforma-
tions with high affinity were saved (DeLano, 2002).

2.6. Pharmacokinetic and ADMET analysis

The pharmacophore screened compounds were refined by
means of Lipinski’s rule of five for the drug-like criteria,
including molecular weight, log P, number of rotatable
bonds, hydrogen bond acceptors and donors (Lipinski, 2004).
Further, to evaluate the possible impact of the selected com-
pounds on humans, the ADMET (Absorption, Distribution,
Metabolism, Excretion and Toxicity) studies were performed
by the pkCSM server, as done by Dhankhar et al. (2020),
Dhankhar et al. (2020), Pires et al. (2015). The filtered com-
pounds, with Lipinski’s rule of five and ADMET properties,
were further chosen for the molecular docking to determine
the appropriate orientation and binding affinities with NTD.

2.7. Molecular docking

Molecular docking simulation studies for three lead com-
pounds (ZINC000257324845, ZINC000005169973 and
ZINC000009913056) were performed using the AutoDock
Tools. Hydrogen atoms and Kollman charges were added to
the protein receptor. Polar hydrogen atoms and Gasteiger
charges for ZINC000257324845 (0.0007), ZINC000005169973
(0.0002) and ZINC000009913056 (–0.0002) were added and
saved in .pdbqt format. The molecular grid was created around
the active site residues (Ser51, Phe53, Ala55, Ala90, Arg107,
Tyr109, Tyr111 and Arg149) of NTD-N-protein of SARS-CoV-2.
The grid box dimensions were set to be 60� 60� 60Å and
centre coordinates were �7.93� 2.48� 3.81 with 0.375Å grid
space value. All the generated 50 conformations for each lead
compound during molecular docking were analyzed, and fig-
ures were prepared in PyMOL 2.0.5 and Maestro (DeLano, 2002;
Release, 2016).

2.8. Molecular dynamics and MMPBSA

Molecular dynamics simulation of NTD with GMP,
ZINC000257324845, ZINC000005169973 and ZINC000009913056
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were performed to assess the structural and dynamics variation
at an atomistic level. Protein topologies and coordinates files
were generated using GROMACS 2019.2 along with
GROMOS96 43a1 force field, as done by Kesari et al. (2020),
Singh et al. (2018), van Gunsteren et al. (1996), van der Spoel
et al. (2005). Total four systems (NTD–GMP,
NTD–ZINC000257324845, NTD–ZINC000005169973 and
NTD–ZINC000009913056) were generated and kept for molecu-
lar simulation of 100ns. The topology of ligands (GMP,
ZINC000257324845, ZINC000005169973 and
ZINC000009913056) were predicted by PRODRG webserver, as
done by Kumar et al. (2020), Sch€uttelkopf and Van Aalten
(2004). The partial atomic charges for ligands were computed
by density functional theory (DFT) analysis using Lee–Yang–Parr
correlation functional (B3LYP) method with a 6-311G (d,p) basis
set in Gaussian 16, as done by Frisch et al. (2016), Jain et al.
(2004), Lee et al. (1988), Saini et al. (2019), Schlegel (1982). The
protein–ligand complexes were solvated using a simple point
charge (SPC) water model in a triclinic box of volume
(234.61nm3) with a minimum distance of 1.0nm between
atoms of protein and edge of the box. Three chlorides (Cl–)
ions were added using genion tool to neutralize the system.
The final production run was done for 100ns, and coordinates
were updated every 10ps, as done by Kesari et al. (2020). The
trajectories were analyzed by visual molecular dynamics (VMD)
and XMGRACE (Humphrey et al., 1996). Further details of the
molecular simulation are aforementioned section (stability of
RNA with NTD). In the present study, the binding energy calcu-
lations of protein–ligand complexes were done using MMPBSA,
as aforementioned in subsection 2.3 (MMPBSA binding free
energy calculation) (Kumari et al., 2014). We have not calculated
the entropy as it is computational expensive and we were inter-
ested in relative binding of GMP and the identified compounds
with NTD. Further, the contributions of active site residues
(Ser51, Phe53, Ala55, Ala90, Arg107, Tyr109, Tyr111 and
Arg149), per-residue decomposition analysis were determined
from the last 20ns of molecular simulation of NTD–GMP and
NTD–inhibitor(s) complexes.

3. Results

3.1. Retrieving crystallographic structures

As mentioned earlier, NTD-N-protein CoV is a potential target
for the treatment of CoV diseases. The crystal structure of
NTD-N-protein of SARS-CoV-2 (PDB ID 6VYO) was obtained
from the PDB and used as the target sequence. NTD struc-
ture consists of antiparallel b sheets and three regions
named as: basic finger, basic palm and acidic wrist. Right-
handed (loops-b-sheet core-loops) sandwiched fold is con-
served among the NTD of CoVs (Kang et al., 2020). NTD
structure from HCoV-OC43 (PDB-ID 4LM9) complexed with
RNA substrate (GMP) reported that residues Ser64, Phe66,
Gly68, His104, Arg122, Tyr124, Tyr126 and Arg164 were note-
worthy interacting residues for the formation of NTD–GMP
complex (Lin et al., 2014). The structural superposition of
NTD-N-protein of SARS-CoV-2 (PDB ID 6VYO) with HCoV-
OC43 (PDB ID 4LM9) complexed with RNA substrate (GMP)
showed that residues (Ser51, Phe53, Ala55, Ala90, Arg107,

Tyr109, Tyr111 and Arg149) in the NTD-N-SARS-CoV-2 are the
corresponding to GMP interacting residues in NTD-HCoV-
OC43. Figure S1 Supporting Information illustrates that these
residues are conserved among all the NTD of CoV.

3.2. Stability of RNA with NTD

The predicted 3D structure of RNA was docked with the RNA
binding region (Ser51, Phe53, Ala55, Ala90, Arg107, Tyr109,
Tyr111 and Arg149) of NTD and their mutants. From the
obtained clusters, the best cluster was selected based on
their HADDOCK score, RMSD from the overall lowest energy
structure, cluster size and corresponding interactions
between protein and RNA. Table 1 represents the hydrogen-
bonding interactions and binding energy of the selected
clusters. The docking results revealed that RNA was inter-
acted with the wild-type NTD of N-protein more strongly as
compared to the mutants NTD. Wild-type NTD–RNA complex
was stabilized by the formation of hydrogen bonds with
Arg92, Arg107, Tyr109, Arg149 and Ala156 of protein with
RNA (Figure 2(A)). On the mutation of R107A, RNA was inter-
acted with Ser51, Arg88, Arg92, Tyr109, Tyr111 and Arg149
residues through hydrogen bonds (Figure 2(B)). While in the
case of Y109A, RNA was hydrogen-bonded with amino acid
residues (Ser51, Arg88, Arg107, Tyr111, Arg149 and Pro151)
of protein (Figure 2(C)). On the mutation of R149A, hydrogen
bonds were formed by the RNA with Arg88, Arg107, Tyr109
and Ala156 residues of protein (Figure 2(D)). The molecular
docking results revealed that residues (Ser51, Arg88, Arg92,
Arg107, Tyr109, Tyr111, Arg149 and Ala156) are essential for
the binding of RNA to the NTD of SARS-CoV-2.

Further, the stability of NTD–RNA and NTD mutants–RNA
complexes were assessed using molecular dynamics in tripli-
cate by amber99sb force field in GROMACS. RMSD for Ca
backbone atoms for NTD, NTD mutants, NTD–RNA and NTD
mutants–RNA complexes were determined, as shown in
Supporting Information Figure S2. NTD and NTD mutants
achieved convergence at 22 ns around 0.19 nm and remained
stable up to the end of molecular simulation, as shown in
Supporting Information Figure S2(A). While NTD
mutants–RNA complexes showed higher RMSD as compared
to NTD and NTD–RNA complexes (Supporting Information
Figure S2(B)). Average RMSD of NTD, R107A, Y109A, R149A,
NTD–RNA, R107A–RNA, Y109A–RNA and R149A–RNA com-
plexes are 0.18 ± 0.03, 0.20 ± 0.03, 0.19 ± 0.03, 0.19 ± 0.03,
0.16 ± 0.03, 0.28 ± 0.05, 0.22 ± 0.04 and 0.21 ± 0.03 nm,
respectively, as shown in Supporting Information Table S1. In
Supporting Information Figure S3(A), it can be clearly
observed that NTD and NTD mutants were compact and sta-
ble. Supporting Information Figure S3(B) shows the higher
Rg values of NTD mutants–RNA complexes than NTD and
NTD–RNA complex. NTD mutants–RNA complexes exhibit
average Rg values in the range of 1.59 ± 0.02 and
1.60 ± 0.02 nm, as shown in Supporting Information Table S1.
The Rg analysis suggested that binding of RNA to NTD
mutants form a less stable NTD mutants–RNA complex than
NTD–RNA complex.
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Less SASA value of NTD–RNA complex indicated that
binding of RNA to NTD form a stable protein–RNA complex,
as shown in Supporting Information Figure S4. SASA plot
reveals that the mutants–RNA complexes are less stable as
compared to NTD and NTD–RNA complex. Further, intrapro-
tein and intermolecular hydrogen bond plots of NTD, NTD
mutants, NTD–RNA and NTD mutants–RNA complexes are
shown in Supporting Information Figure S5. NTD–RNA com-
plex exhibit a higher number of intraprotein hydrogen bonds
as compared to NTD, NTD mutants and NTD mutants–RNA
complex, as shown in Supporting Information Figure S5(A,B).
The average number of intraprotein hydrogen bonds for
NTD, R107A, Y109A, R149A, NTD–RNA, R107A–RNA,
Y109A–RNA and R149A–RNA complexes are 77.32 ± 4.74,
76.93 ± 4.71, 76.78 ± 4.81, 77.21 ± 4.59, 79.71 ± 4.83,
72.39 ± 4.64, 71.85 ± 4.17 and 71.84 ± 4.75, respectively, as
shown in Supporting Information Table S1. Supporting
Information Figure S5(C) shows that the NTD–RNA complex
is stabilized by a higher number of intermolecular hydrogen
bonds than NTD mutants–RNA complexes. In Supporting
Information Figure S5(D), the presence of more high-affinity
intermolecular hydrogen bonds in NTD–RNA complex than

NTD mutants–RNA complexes affirms that the protein–RNA
complex is more stable than protein mutants–RNA com-
plexes. Overall, molecular docking and simulation results
confirm that active site residues (Ser51, Phe53, Ala55, Ala90,
Arg107, Tyr109, Tyr111 and Arg149) of NTD play a major role
in the formation of stable NTD–RNA complex.

3.3. MMPBSA binding free energy calculation

Molecular mechanic/Poisson–Boltzmann Surface Area
(MMPBSA) was used to calculate the binding free energy of
NTD–RNA and NTD mutants–RNA complexes. The binding
affinity of NTD–RNA, R107A–RNA, Y109A–RNA and
R149A–RNA complexes are �973.97 þ/– 8.92, �677.67 þ/–
9.13, �614.28 þ/– 7.16 and �690.63 þ/– 7.73 kJmol�1,
respectively, as shown in Table 2. In order to quantify the
interactions of important amino acid residues of NTD with
RNA towards binding affinity, per residue decomposition
analysis, was done using MMPBSA. We have computed the
binding affinity contributions of active site residues (Ser51,
Phe53, Ala55, Ala90, Arg107, Tyr109, Tyr111 and Arg149) of
NTD in NTD–RNA, R107A–RNA, Y109A–RNA and R149A–RNA

Table 1. Molecular docking of NTD with RNA.

S.No. Complex Native–RNA R107A–RNA Y109A–RNA R149A–RNA

1 H.S. – 60.5 þ/– 2.9 – 45.9 þ/– 3.1 – 46.4 þ/– 7.2 – 46.7 þ/– 1.2
2 RMSD 1.2 þ/– 0.2 3.3 þ/– 0.7 3.1 þ/– 0.2 3.0 þ/– 0.4
3 V.E – 31.9 þ/– 5.5 – 26.8 þ/– 3.8 – 27.3 þ/– 5.5 – 26.9 þ/– 2.5
4 E.E – 186.7 þ/– 20.0 – 133.3 þ/– 20.2 – 150.7 þ/– 21.8 – 136.9 þ/– 13.8
5 D.E 8.8 þ/– 3.0 6.7 þ/– 1.5 11.1 þ/– 2.3 5.7 þ/– 1.8
6 Hydrogen bond

interacting residue
Arg92, Arg107, Tyr109,
Arg149 and Ala156

Ser51, Arg88, Arg92,
Tyr109, Tyr111
and Arg149

Ser51, Arg88, Arg107,
Tyr111, Arg149
and Pro151

Arg88, Arg107, Tyr109
and Ala156

Molecular docking results show the Haddock score (H.S.), RMSD from overall lowest energy structure (RMSD), van der Waals energy (V.E.), Electrostatic Energy
(E.E.) and Desolvation Energy (D.E.). All the energy mentioned in the table is in kcalmol�1.

Figure 2. Molecular interaction between RNA and active site residues of SARS-CoV-2 NTD and NTD mutants. (A) Wild-type NTD, (B) NTD–R107A (C) NTD–Y109A
and (D) NTD–R149A. A single-stranded RNA (50-UUCGU-30) was predicted from RNA composer and SimRNAweb. NTD (white surface) was represented with active
site residues in green ball and sticks. Riboucleotides of RNA were displayed in ball and sticks (Uracil in yellow, cytosine in magenta and guanine in cyan color).
Hydrogen bonds were shown with black dashed lines.
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complexes. In Supporting Information Table S2, it can be
clearly seen that binding energy contribution of active site
residues of protein for RNA is decreased in NTD
mutants–RNA complexes as compared to NTD–RNA complex.
In NTD–RNA complex, Arg107 and Arg149 of NTD contrib-
uted 109.92 and 107.52 kJmol�1 for binding of RNA, which is
decreased by 97% in R109A–RNA and R149A–RNA complex,
respectively. Hence, MMPBSA analysis confirmed that active
site residues (Arg107, Tyr109 and Arg149) of NTD played a
major role in the binding of RNA to form a lower energy sta-
ble NTD–RNA complex.

3.4. Pharmacophore modeling

The GMP, a ribonucleotide, was used as a template to screen
the potent compounds against NTD of SARS-CoV-2. The
molecular docking study of GMP with NTD-N-SARS-CoV-2 dem-
onstrated that GMP was interacted with the expected residues
of NTD-N-SARS-CoV-2 with �5.0 kcalmol�1 binding energy, as
shown in Table 3. The best-docked conformation of GMP in the
respective pocket of NTD-N-SARS-CoV-2 was shown in Figure
3(A) and Supporting Information Figure S6. Further, the struc-
ture-based pharmacophore modeling was performed using the
validated complex of NTD-N-SARS-CoV-2 with GMP, where the
NTD-N-SARS-CoV-2 and GMP were used as receptor and ligand,
respectively. Total five pharmacophore properties, including
three hydrogen bond acceptors (orange), 1 aromatic group

(purple) and 1 hydrophobic feature (green), with the radius of
1.0Å were considered to screen the compounds, as shown in
Supporting Information Figure S7. ZINC database was screened
using the constructed pharmacophore model and 8192 com-
pounds were identified, which shares the pharmacophore fea-
tures. Further, these identified compounds were refined with
the Lipinski’s rule of five, RMSD and energy minimization. With
the RMSD of less than 1.5Å and binding affinity of more than
�5.0 kcalmol�1, a total of 4576 hits were eventually saved
(Supporting Information file 2).

3.5. Virtual screening

The virtual screening was performed to identify novel com-
pounds against the NTD-N-protein, using the AutoDock Vina
in PyRx 0.8. The downloaded selected compounds from the
ZINC database having a high negative score and less RMSD
values were converted from .sdf format to .pdbqt format
using Open Babel. Further, these compounds were docked
into the GMP binding site and ranked on the basis of bind-
ing energy with the NTD-N-protein. Ligands showing binding
affinity in the range of �7.5 to �8.3 kcalmol�1 were consid-
ered for further study.

3.6. Pharmacokinetic and ADMET analysis

In silico ADMET prediction was performed for the top-ranked
results using the pkCSM server to predict the overall risks of

Figure 3. Binding interaction of best-docked pose of compounds with NTD protein. (A) GMP (cyan), (B) ZINC000257324845 (orange), (C) ZINC000005169973 (yel-
low) and (D) ZINC000009913056 (grey). NTD is displayed as the cartoon, and key residues are shown in green. Hydrogen bonds are represented with gray
dashed lines.
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absorption, distribution, metabolism, excretion and toxicity.
Three hits (ZINC000257324845, ZINC000005169973 and
ZINC000009913056) were successfully fulfilled the drug-like
properties as per the Lipinski’s rule of five, including

molecular weight, Log P, hydrogen bond donor and acceptor
(Supporting Information Table S3). A promising ADMET pro-
file is required for the compounds in drug discovery (Hop
et al., 2008). For this purpose, pharmacokinetic parameters

Figure 4. Root mean square deviation (RMSD) of protein–ligand (s) complexes and ligands only. RMSD plots: (A) NTD–GMP (black), NTD–ZINC000257324845 (red),
NTD–ZINC000005169973 (green) and NTD–ZINC000009913056 (blue); (B) Ligands: GMP (black), ZINC000257324845 (red), ZINC000005169973 (green) and
ZINC000009913056 (blue) for the molecular dynamics of 100 ns at 300 K.

Figure 5. Radius of gyration (Rg) profile of NTD with GMP, ZINC000257324845, ZINC000005169973 and ZINC000009913056 from the molecular simulation of
100 ns at 300 K.

Table 2. MMPBBSA binding free energy (kJmol�1) of NTD–RNA, R107A–RNA, Y109A–RNA and R149A–RNA calculated by MMPBSA from
the last 20 ns (80–100 ns) of molecular simulation.

Energy (kJmol-1) NTD–RNA R107A–RNA Y109A–RNA R149A–RNA

van der Waals energy �158.52 þ/– 1.93 �121.12 þ/– 3.38 �102.38 þ/– 5.62 �106.71 þ/– 3.85
Electrostatic energy –1570.49 þ/– 7.86 –1512.59 þ/– 7.82 –1421.19 þ/– 9.27 –1352.85 þ/– 8.63
Polar solvation energy 780.86 þ/– 8.78 972.46 þ/– 9.92 929.56 þ/– 8.86 792.17 þ/– 7.35
SASA energy �25.82 þ/– 0.61 �16.42 þ/– 0.46 �22.27 þ/– 0.32 �23.24 þ/– 0.28
Binding energy �973.97 þ/– 8.92 �677.67 þ/– 9.13 �616.28 þ/– 7.16 �690.63 þ/– 7.73
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such as aqueous solubility (log S), skin permeability coeffi-
cient (log Kp), log BB, CNS permeability, number of meta-
bolic reactions, and so forth were calculated and enlisted in
Supporting Information Table S4. The results indicated that
all three compounds were soluble in water, and the aqueous
solubility (S) of a compound substantially affects its absorp-
tion and distribution properties. All compounds showed skin
permeability and also absorbed by the human intestine. In
addition, they were able to penetrate the BBB and CNS after
oral administration. CYP enzymes, various CYP450 substrates
and inhibitors played a fundamental role in the metabolism
of the drug. Further, metabolism analysis revealed that none
of the compounds were substrates of CYP2D6 substrate.
Toxicity assessment has shown that all compounds are non-
toxic in nature to humans.

3.7. Molecular docking

The molecular docking study of all three pharmacokinetically
screened compounds with NTD revealed that all compounds
showed higher binding energy than GMP with NTD and pre-
sented in Table 3. ZINC000257324845 was found stable at
the active site of NTD by forming H-bonds (Ser51, Ala55,
Tyr111 and Arg149), p-p (Tyr109) and p-alkyl (Tyr109 and
Ala156), as shown in Figure 3(B) and Supporting Information
S6(B). ZINC000005169973 was able to make H-bond (Ser51,
Arg107, Tyr111 and Arg149), p- donor (Tyr109, Arg107 and
Arg149), p- sigma (Ala156) and p-alkyl (Ala50 and Ala90)
(Figure 3(C) and Supporting Information Figure S6(C)).
ZINC000009913056 was able to form H-bond (Thr57, Arg107,
Tyr109, Tyr111 and Arg149), p- stacked (Tyr109) and p-alkyl

(Ala50 and Ala90) (Figure 3(D) and Supporting Information
Figure S6(D)).

3.8. Molecular dynamics and MMPBSA

Molecular dynamics simulation was carried out in tripli-
cates to assess the flexibility and stability of NTD with
identified inhibitor(s). Therefore, in this study, molecular
dynamics were employed to evaluate the stable and static
interactions of protein–ligand complexes by examining the
various molecular simulation results like RMSD, Root mean
square fluctuation (RMSF), Rg, SASA, hydrogen bond for-
mation and PCA.

3.8.1. Root mean square deviation
The atomistic dynamics movements and conformational var-
iations of Ca backbone atoms of NTD–GMP and
NTD–inhibitor(s) complexes were calculated by RMSD. In
Figure 4(A), it is clearly seen that all the protein–ligand com-
plexes showed an initial sharp in RMSD values during
5–10 ns and attained equilibrium at 30 ns, and systems
remained stable throughout the molecular simulation of
100 ns. NTD–inhibitor(s) complexes exhibited an RMSD in the
range of 0.22 to 0.34 nm, which is lesser than NTD–GMP
(0.37 nm) complex. The average RMSD values of NTD–GMP
and NTD–inhibitor(s) complexes are shown in Supporting
Information Table S5. Ligand RMSD of GMP and inhibitors
are represented in Figure 4(B). The average ligand RMSD for
GMP, ZINC000257324845, ZINC000005169973 and
ZINC000009913056 are 0.10 ± 0.02, 0.04 ± 0.02, 0.06 ± 0.01
and 0.07 ± 0.01 nm, as shown in Supporting Information
Table S5. Overall, RMSD results illustrated that the binding of
identified inhibitor(s) at the active site of NTD is stable and
formed more stable NTD–inhibitor(s) complexes as compared
to NTD–GMP complex.

3.8.2. Root mean square fluctuation
The RMSF profile of NTD–inhibitor(s) complexes is almost
comparable to NTD–GMP, as shown in Supporting
Information Figure S8. The average RMSF values for

Table 3. The binding affinities (kcalmol�1) and molecular interactions of the
selected compounds with active site residues of NTD.

S. No. Compound

Binding energy (kcalmol–1)

AutoDock VINA AutoDock Tool

1 GMP �5.5 �2.6
2 ZINC000257324845 �8.3 �7.4
3 ZINC000005169973 �8.1 �6.4
4 ZINC000009913056 �8.0 �5.6

Figure 6. Solvent accessible surface area (SASA) graph for protein–ligand (NTD–GMP, NTD–ZINC000257324845, NTD–ZINC000005169973 and
NTD–ZINC000009913056) complexes.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 9

https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968
https://doi.org/10.1080/07391102.2020.1852968


NTD–GMP, NTD–ZINC000257324845, NTD–ZINC000005169973
and NTD–ZINC000009913056 are 0.17 ± 0.07, 0.15 ± 0.06,
0.15 ± 0.07 and 0.16 ± 0.07 nm, respectively, as shown in

Supporting Information Table S5. RMSF analysis suggested
that inhibitor(s) were well fitted at the active site of NTD and
form a stable NTD–inhibitor(s) complex.

Figure 7. Hydrogen bond numbers and distribution patterns of NTD–GMP (black), NTD–ZINC000257324845 (red), NTD–ZINC000005169973 (green) and
NTD–ZINC000009913056 (blue) for molecular dynamics of 100 ns at 300 K. The number of hydrogen bonds analysis: (A) Intraprotein hydrogen bonds and (B) inter-
molecular hydrogen bonds. Hydrogen bonds distribution pattern: (C) Intraprotein hydrogen bonds and (D) intermolecular hydrogen bonds.
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3.8.3. Radius of gyration
NTD–inhibitor(s) complex showed a lesser Rg value than
NTD–GMP complex, as shown in Figure 5. NTD–inhibitor(s)
complexes showed average Rg values in the range of
1.46 ± 0.01 to 1.47 ± 0.01 nm, which was lesser than
NTD–GMP (1.50 ± 0.01 nm) complex, as shown in Supporting
Information Table S5. Rg results indicated that the binding of
inhibitor(s) to NTD form a higher stable NTD–inhibitor(s)
complex as compared to NTD–GMP complex.

3.8.4. Solvent accessible surface area
SASA plot reveals that values of NTD–inhibitor(s) complexes
are smaller than NTD–GMP complex, as shown in Figure 6.
Average SASA of NTD–GMP, NTD–ZINC000257324845,
NTD–ZINC000005169973 and NTD–ZINC000009913056
complexes were 73.24 ± 1.82, 69.41 ± 2.26, 69.68 ± 2.31 and
68.77 ± 2.12 nm2, respectively, as shown in Supporting
Information Table S5. SASA analysis implied that
NTD–inhibitor(s) complexes were more stable and compact
than NTD–GMP complex.

3.8.5. Hydrogen bond analysis
Intraprotein and intermolecular hydrogen bond plots of
NTD–GMP and NTD–inhibitor(s) complexes are shown in
Figure 7. NTD–inhibitor(s) complexes have higher intrapro-
tein hydrogen bonds as compared to NTD–GMP as shown in
Figure 7(A). The average number of intraprotein hydrogen
bonds between protein–ligand(s) complexes were in a range
of 63.59 ± 5.41 to 72.11 ± 5.71, as shown in Supporting
Information Table S5. As shown in Figure 7(B), intermolecular
hydrogen bonds between NTD and inhibitor(s) were sus-
tained during the course of molecular simulation. The aver-
age number of intermolecular hydrogen bonds between
NTD–GMP and NTD–inhibitor(s) complexes are shown in
Supporting Information Table S5. The hydrogen bonding
affinity of NTD–inhibitor(s) complexes were similar to
NTD–GMP complex, as shown in Figure 7(C,D). Overall,
hydrogen bond results affirmed that binding of inhibitor(s)
to NTD form stable NTD–inhibitor(s) complexes.

3.8.6. Principal component analysis
Principal component analysis (PCA) reveals the overall expan-
sion of protein during the molecular simulation. The dynam-
ical differences of 372 eigenvectors were generated and
framed in a covariance matrix. Figure 8(A) shows the first 20
eigenvectors vs. eigenvalues for NTD–GMP and
NTD–inhibitor(s) complexes. It can be clearly observed that
first ten eigenvectors contributed 81.48%, 75.72%, 79.62%

and 80.17% for NTD–GMP, NTD–ZINC000257324845,
NTD–ZINC000005169973 and NTD–ZINC000009913056 com-
plexes, respectively. The NTD–inhibitor(s) complexes showed
very few motions as compared to NTD–GMP complex while
NTD–ZINC000257324845 complex exhibit least motion
among NTD–inhibitor(s) complexes.

First two eigenvectors contributed 53.61%, 42.75%,
48.86% and 51.75% for NTD–GMP, NTD–ZINC000257324845,
NTD–ZINC000005169973 and NTD–ZINC000009913056 com-
plexes, respectively. Directional movements contributed by
the first eigenvector (PC1) and second eigenvector (PC2)
were represented in a two-dimensional projection, as shown
in Figure 8(B). The two-dimensional projection PCA results
showed that binding of inhibitor(s) to NTD results in the for-
mation of stable NTD–inhibitor(s) complexes. Further, the
superposition of NTD–GMP and NTD–inhibitor(s) complexes
before and after MD confirmed that key interactions between
NTD and ligands remained stable during the MD simulation
and binding of inhibitor(s) to NTD form the stable complexes
(Supporting Information Figure S9).

3.8.7. MMPBSA binding free energy calculation
The molecular dynamics trajectory from last 20ns (2000 frames)
were used to generate the binding affinity of NTD–GMP and
NTD–inhibitors(s) complexes. The binding affinity of NTD–GMP,
NTD–ZINC000257324845, NTD–ZINC000005169973 and
NTD–ZINC000009913056 complexes were �98.67 þ/– 1.84,
�172.07 þ/– 1.65, �159.94 þ/– 1.42 and �142.61 þ/– 1.96
kJmol�1, respectively, as shown in Table 4.

Per residue interactions, binding energy was calculated to
determine the participation of important residues in a protein–li-
gand complex. Here, the per residues interaction profile of Ser51,
Phe53, Ala55, Ala90, Arg107, Tyr109, Tyr111 and Arg149 were
computed using MMPBSA, as shown in Supporting Information
Table S6. The binding affinity of active site residues of NTD for
inhibitor(s) was higher as compared to GMP. Therefore, the
MMPBSA results confirmed that the identified potent molecules
bind at the active site of NTD with a higher affinity as compared
to GMP and results in the formation of a higher stable
NTD–inhibitor(s) complex than NTD–GMP complex.

4. Discussion

Currently, the global pandemic disease called coronavirus
disease 2019 (COVID-19) is posing serious survival threats to
the world population (Wu et al., 2020). COVID-19 is a zoo-
notic disease and caused by a third highly pathogenic
human betacoronavirus named severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) (Wu et al., 2020; Zhou

Table 4. Binding free energy calculations of NTD–GMP and NTD–inhibitor(s) complexes computed from the last 20 ns (80–100 ns) from
molecular dynamics. van der Waal, electrostatic, polar solvation, SASA and binding energy in kJmol�1 of NTD–GMP,
NTD–ZINC000257324845, NTD–ZINC000005169973 and NTD–ZINC000009913056 complexes predicted by MMPBSA.

Energy (kJmol–1) GMP ZINC000257324845 ZINC000005169973 ZINC000009913056

van der Waals energy –162.58 þ/– 2.32 –195.39 þ/– 1.64 –173.86 þ/– 1.72 –158.72 þ/– 1.92
Electrostatic energy �67.21 þ/– 2.30 �62.36 þ/– 1.27 �57.29 þ/– 1.29 �51.12 þ/– 1.36
Polar solvation energy 143.53 þ/– 3.13 104.54 þ/– 1.72 88.73 þ/– 1.13 82.49 þ/– 1.52
SASA energy �12.41 þ/– 0.19 �18.86 þ/– 0.42 �17.52 þ/– 0.34 �15.26 þ/– 0.25
Binding energy �98.67 þ/– 1.84 –172.07 þ/– 1.65 –159.94 þ/– 1.42 –142.61 þ/– 1.96
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et al., 2020). There is no effective treatment or medicine for
this disease. Therefore, it is imperative to deploy new anti-
viral drugs for SARS-CoV-2.

Previous studies have shown that N-protein can be used
as a target for the development of an antiviral drug against
viral infections (Chenavas et al., 2013; Lin et al., 2014; Lo
et al., 2013; Monod et al., 2015). To inhibit the function of N-
protein, two strategies were reported: one target the RNA
binding site of NTD while another to inhibit the oligomeriza-
tion of C-terminal domain (Cianci et al., 2013).

Here, NTD-N-protein from SARS-CoV-2 was used as a tar-
get to inhibit the viral cycle of SARS-CoV-2 by finding poten-
tial lead molecules. Molecular docking of RNA with NTD and
NTD mutants (R107A, Y109A and R149A) reveal that RNA
bind with a good binding affinity at the active site of NTD.
Molecular dynamics analysis like RMSD, Rg, SASA and hydro-
gen bond results of NTD, NTD mutants, NTD–RNA and NTD
mutants–RNA complexes affirm that NTD mutants are stable.
However, NTD mutants–RNA complexes are less stable than
NTD–RNA complex due to devoid of side chains of corre-
sponding important residues like Arg107, Tyr109 or Arg149

in mutants. MMPBSA binding energy confirms that RNA is
stabilized by interactions contributed by active site residues
of NTD in NTD–RNA complex. A recent study on SARS-CoV-2
revealed that mutation of Tyr109 affects the RNA-binding
affinity (Kang et al., 2020). Lin et al. (2014) also reported that
R122A, Y124A and R164A in HCoV-OC43, which corresponds
to Arg107, Tyr109 or Arg149 in SARS-CoV-2 play significant
importance in the RNA binding (Lin et al., 2014). Our results
showed the binding mode of RNA via important residues of
NTD to make a stable protein–RNA complex.

Further molecular docking and dynamics results of nucleoti-
des (AMP, CMP, GMP and UMP) with NTD revealed that GMP
showed a higher binding affinity as compared to other (AMP,
CMP and UMP) nucleotides. GMP at the active site of NTD-N-pro-
tein from SARS-CoV-2 confirms that identified residues are
involved in holding the GMP at this site via hydrogen and hydro-
phobic interactions. In addition, molecular dynamics simulation
confirms the stability of complexed NTD-N-protein with GMP.
Following the validation of GMP interactions with NTD-N-protein,
GMP was used by the ligand structure-based strategy of pharma-
cophore modeling to build a pharmacophore model.

Figure 8. Principal component analysis (PCA) of protein–ligand complexes for molecular dynamics of 100 ns. (A) Plot of eigenvector index versus eigenvalues for
the first 20 eigenvectors. (B) Projection of motion of NTD–GMP and NTD–inhibitor(s) complexes along PC1 and PC2. The color code for NTD–GMP,
NTD–ZINC000257324845, NTD–ZINC000005169973 and NTD–ZINC000009913056 is black, red, green and blue color, respectively.
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The final hits from pharmacophore screening were utilized for
virtual screening using the crystal structure of NTD-N-protein.
Virtual screening, molecular docking and dynamics have been
widely used techniques to identify the potent lead molecules
and assess the stability of protein–ligand complexes (Dalal et al.,
2019; Dhankhar, Dalal, Mahto, et al., 2020; Gau et al., 2018; Meng
et al., 2015). Out of the top 50 molecules, three molecules
(ZINC000257324845, ZINC000005169973 and ZINC000009913056)
were successfully passed the ADMET filters and also having drug-
like properties, which were analysed by Lipinski’s rule of five. The
docking analysis for all three pharmacokinetically screened com-
pounds indicated that all molecules were bound to the active site
with high binding energy in the range of �5.6 to �7.4 kcalmol�1,
which was higher than the binding energy (–2.6 kcalmol�1) of
GMP. All three compounds and GMP form a stable protein–ligand
complex by establishing a network of molecular interactions,
including hydrogen bonds and the hydrophobic interactions with
the key-residues (Ser51, Phe53, Ala55, Ala90, Arg107, Tyr109,
Tyr111 and Arg149) of NTD as shown in Figure 3 and Supporting
Information Figure S6. Several small molecules such as
ZINC00003118440, ZINC0000146942, 6-chloro-7-(2-morpholin-4-yl-
ethylamino) quinoxaline-5,8-dione, Hydroxychloroquine,
chloroquine, 5817, 6797, 6799, 37542 (ribavirin), 72187
(zidovudine),135413535 (valganciclovir), PJ34 (N-(6-oxo-5,6-
dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide
hydrochloride), H3 (6-chloro-7-(2-morpholin-4-yl-ethyla-
mino) quinoxaline-5,8-dione), P1 (Benzyl-2-(hydroxymethyl)-1-
indolinecarboxylate) and P3 (5-benzyloxygramine) have been
reported against NTD (Amin & Abbas, 2020; Chang et al., 2016;
Lin et al., 2014, 2020; Sarma et al., 2020; Yadav et al., 2020). The
details of the molecular docking of these molecules with NTD, is
shown in Table S7. All three (ZINC000257324845,
ZINC000005169973 and ZINC000009913056) identified com-
pounds showed a higher binding affinity than earlier reported mol-
ecules, as shown in Table 3 and Supporting Information Table S7.
Henceforth, we speculate that these compounds may bind specif-
ically to the NTD protein to inhibit its viral cycle activity.

RMSD and RMSF results indicated that binding of identified
molecules (ZINC000257324845, ZINC000005169973 and
ZINC000009913056) to NTD tends to form the higher stable
NTD–inhibitor(s) complexes than NTD–GMP complex. The
smaller Rg and SASA values of NTD–inhibitor(s) complex as
compared to NTD–GMP complex revealed that identified com-
pounds result in the formation of a higher stable protein–ligand
complex than NTD–GMP complex. Further hydrogen bonding
and PCA results affirmed that binding of identified molecules
with NTD forms the stable and compact protein–ligand com-
plex. MMPBSA results confirmed that binding of identified mol-
ecules to NTD is stabilized by interactions contributed by active
site residues (Ser51, Phe53, Ala55, Ala90, Arg107, Tyr109, Tyr111
and Arg149) for the formation of lower energy NTD–inhibitor(s)
complex as compared to NTD–GMP complex. Overall molecular
dynamics and MMPBSA results concluded that all the identified
compounds are potent molecules and might be used to inhibit
the binding of viral RNA genome to the RNA binding region of
NTD, and it may ultimately stop the essential functions of NTD,
including ribonucleoprotein formation, viral cycle, which are
required for the survival of virus into the host.

5. Conclusion

This study utilized molecular docking and dynamics analysis
to analyze the interactions involved in the binding of RNA
with NTD of N-protein of SARS-CoV-2. Various computational
approaches, including pharmacophore-based virtual screen-
ing, molecular docking, molecular dynamics and MMPBSA,
have been used for the identification of the potent mole-
cules that can interact with RNA binding region named NTD
of N-protein of SARS-CoV-2 to inhibit its function. Based on
the NTD-N-GMP complexed structure, the pharmacophore
model of GMP was generated by considering the features
of GMP, including one aromatic ring of GMP, three hydro-
gen bond acceptors, one hydrophobic and one aromatic
group. After the virtual screening against ZINC database,
three molecules (ZINC000257324845, ZINC000005169973
and ZINC000009913056) were screened, which follow the
Lipinski’s rule of five and fulfill the ADMET properties.
Further, molecular docking results revealed that these
molecules interact with the NTD-N-protein via hydrogen
bonding and hydrophobic interactions. These molecules
have higher binding affinities than earlier reported com-
pounds for NTD. The molecular dynamics and MMPBSA
study verified that the selected compounds efficiently
bind to NTD and form stable NTD–ligand complexes.
These lead molecules can be further investigated their
importance through in vitro studies and can be used for
the development of antiviral compounds against SARS-
CoV-2 in the future.
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