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Role of hypoxia-inducible factor in postoperative 
delirium of aged patients
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Abstract 
Postoperative delirium is common, especially in older patients. Delirium is associated with prolonged hospitalization, an increased 
risk of postoperative complications, and significant mortality. The mechanism of postoperative delirium is not yet clear. Cerebral 
desaturation occurred during the maintenance period of general anesthesia and was one of the independent risk factors for 
postoperative delirium, especially in the elderly. Hypoxia stimulates the expression of hypoxia-inducible factor-1 (HIF-1), which 
controls the hypoxic response. HIF-1 may have a protective role in regulating neuron apoptosis in neonatal hypoxia-ischemia 
brain damage and may promote the repair and rebuilding process in the brain that was damaged by hypoxia and ischemia. HIF-1 
has a neuroprotective effect during cerebral hypoxia and controls the hypoxic response by regulating multiple pathways, such as 
glucose metabolism, angiogenesis, erythropoiesis, and cell survival. On the other hand, anesthetics have been reported to inhibit 
HIF activity in older patients. So, we speculate that HIF plays an important role in the pathophysiology of postoperative delirium in 
the elderly. The activity of HIF is reduced by anesthetics, leading to the inhibition of brain protection in a hypoxic state. This review 
summarizes the possible mechanism of HIF participating in postoperative delirium in elderly patients and provides ideas for finding 
targets to prevent or treat postoperative delirium in elderly patients.

Abbreviations: COMMD1 = metabolism MURR domain 1, HIF-1 = hypoxia-inducible factor-1, HIF-1α = hypoxia-inducible 
factor subtype 1α, MCAO = middle cerebral artery occlusion, PHD = prolyl hydroxylase, TNF-α = tumor necrosis factor-α, VEGF 
= vascular endothelial growth factor.
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1. Introduction
Postoperative delirium is common, especially in older patients, 
with an incidence that varies widely depending on the patient 
population and type of surgery. According to reports, the inci-
dence of delirium is 15% to 35% in patients over the age of 
65 within 2 weeks after surgery.[1] Delirium is associated with 
prolonged hospitalization, increased morbidity, and significant 
mortality. Several pathophysiological mechanisms may contrib-
ute to delirium onset, including neurotransmitter imbalance, 
systemic inflammatory response syndrome, and neuroinflam-
mation,[1–3] altered brain metabolism, and impaired neuronal 
network connectivity.[4–9] There is currently no convincing evi-
dence that any prophylactic measure prevents postoperative 
delirium because the mechanism of postoperative delirium is 
not clear.

When monitoring rSO2 in elderly patients following noncar-
diac abdominal surgery, cerebral desaturation (hypoxia) has 

been noted in more than 20% of instances as one of the inde-
pendent risk factors for postoperative delirium.[4–6]

Hypoxia stimulates the expression of hypoxia-inducible 
factor-1 (HIF-1), which controls the hypoxic response.[10–15] 
HIF-1 may have a protective role in regulating neuron apopto-
sis in neonatal hypoxia-ischemia brain damage and may pro-
mote the repair and rebuilding process in the brain that was 
damaged by hypoxia and ischemia.[10] Animal experiments 
show that neuron-specific loss of HIF-1 increases ischemic 
brain injury, and the recovery of neural function in ischemic 
rats is related to the increased expression of hypoxia-in-
ducible factor subtype 1α (HIF-1α).[10,11] And more recently, 
anesthetics and perioperative drugs have been reported to 
affect HIF-1 activity.[16–20] Research reports that the anesthet-
ics inhibit HIF-1 activation and downstream gene expres-
sion.[13–18] Hippocampal HIF-1α/vascular endothelial growth 
factor (VEGF) signaling seems to be the upstream mechanism 
of isoflurane-induced cognitive impairment and provides a 
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potential preventive and therapeutic target for postoperative 
delirium.[16]

So, we hypothesize that HIF plays an important role in the 
pathological process of postoperative delirium in the elderly. 
This review summarizes the possible mechanism of HIF partici-
pating in postoperative delirium in elderly patients and provides 
ideas for finding targets to prevent or treat postoperative delir-
ium in elderly patients.

2. Anesthesia causes cerebral hypoxia, resulting in 
postoperative delirium
Anesthetics can cause cerebral hypoxia, and the degree of 
cerebral hypoxia is related to the type of anesthetic. Research 
confirms that cerebral desaturation occurs during general anes-
thesia.[17] Cerebral desaturation occurs in nearly 20% of elderly 
patients undergoing major abdominal nonvascular surgery, 
resulting from a multicenter, prospective, randomized, and 
blinded study.[8] Cerebral desaturation occurred during ordinary 
general anesthesia and might be associated with the use of anes-
thetics.[12] Different anesthetics have different effects on cerebral 
oxygen metabolism; cerebral desaturation during cardiopulmo-
nary bypass was more frequent in the fentanyl group than in 
the propofol group.[19] The cause of brain hypoxia caused by 
anesthetics is related to their cardiovascular inhibition. All gen-
eral anesthetics produce cardiovascular depression that can be 
augmented in the elderly patient, potentially exposing him or 
her to inadequate brain perfusion.[20,21] Inadequate brain perfu-
sion leads to cerebral hypoxia.

Many studies have confirmed the correlation between postop-
erative delirium and cerebral oxygen metabolism. Intraoperative 
cerebral oxygen desaturation was reported to be associated with 
postoperative cognitive dysfunction[22–24] and early postoperative 
neuropsychological dysfunction[25] in elderly patients, especially 
when anesthetics and sedatives are combined.[26] However, the 
type of anesthetic used does not influence the incidence of post-
operative cognitive dysfunction.[27] Cerebral hypoxia might be 
involved in the physiopathology of cognitive decline observed 
after surgery in the elderly patient.[19]

According to relevant reports, improving cerebral oxygen 
metabolism may be beneficial to reduce postoperative delirium. 
Elderly individuals undergoing spine surgery in the prone posi-
tion may benefit from lung-protective ventilation due to a mech-
anism involving lowered inflammatory responses and enhanced 
cerebral oxygen metabolism.[28]

3. Roles of HIF in cerebral hypoxia
The brain is one of the main organs of the body that strongly 
respond to acute hypoxia.[29] Hypoxia stimulates the expression 
of many genes, and 1 key protein involved is HIF-1, which is 
a transcription factor that regulates adaptive responses to the 
lack of oxygen in mammalian cells. HIF-1 consists of 2 pro-
teins, HIF-1 alpha and HIF-1 beta. HIF-1alpha accumulates 
under hypoxic conditions, whereas HIF-1beta is constitutively 
expressed.[30] HIF-1alpha is immunologically detectable in the 
few minutes following low PO2 exposure. Besides HIF-1, HIF-2, 
and HIF-3 also play a role in the adaptive response to hypoxia. 
The difference is as follows: HIF-1 is more essential for the regu-
lation of adaptation to hypoxia in neurons, and HIF-2α is more 
important for the endothelium of microvessels.[31] HIF-3α serves 
as an endothelial cell fate executor during chronic hypoxia.[32]

The protective effects of HIF-1 in the brain have been con-
firmed by several studies. The HIF signaling pathway plays an 
important role in intrinsic neuroprotection. HIF-1α expression 
increased the brain hypoxia adaptation capability of the rat 
through the expression of genes.[33] Upregulation and main-
tenance of HIF-1α expression may attenuate vascular cogni-
tive impairment.[34] HIF-1alpha may have a protective role in 

regulating neuron apoptosis in neonatal hypoxia-ischemia brain 
damage and may promote the repair and rebuilding process in 
the brain that was damaged by hypoxia and ischemia.[35] HIF-1α 
is involved in the neurodegeneration induced by isoflurane in 
the brain of neonatal rats and has been found to regulate both 
prosurvival and prodeath pathways in the CNS.[5] Maintaining 
the HIF-1α level by inhibiting the prolyl 4-hydroxylase was 
effective in attenuating the nerve damage during hypoxia and 
postponing the incidence of Alzheimer disease.[36] Hippocampal 
apoptosis increased and cognitive function deteriorated when 
HIF-1α was inhibited. HIF-1α has a neuroprotective effect in 
subarachnoid hemorrhage.[37]

4. Potential mechanisms by which HIF-1 protects 
brain neurons
As mentioned above, HIF-1 plays a protective role in brain 
injury. How does HIF-1 participate in the pathological pro-
cess of postoperative delirium? In this section, we reviewed 
the potential regulatory mechanisms of HIF-1 in postoperative 
delirium.

4.1. HIF-1 and inflammatory mediators

Several pathophysiological mechanisms may contribute to delir-
ium onset. As a key hallmark of neurological complications, 
inflammation plays a key pathogenic role in the development of 
postoperative delirium,[5,36–41] including neuroinflammation and 
the immune-inflammatory response system.[38] Following hip 
fracture and surgery, delirium and psychomotor problems may 
be brought on by immune-inflammatory and oxidative stress 
pathways, most often as a result of an aseptic inflammatory pro-
cess.[39] The release of pro-inflammatory cytokines and chemo-
kines by activated glial cells, astrocytes, and microglia plays 
an important role in the neuroinflammatory process. Research 
shows patients who suffer from delirium are accompanied by 
significantly increased numbers of white blood cells, neutrophil 
percentage, neutrophil/lymphocyte ratio, and lower mean plate-
let volume.[40] IL-6 seems to be a consistent predictor of delir-
ium in surgical samples.[41] The elevated plasma IL-6 levels are 
signatures of poststroke delirium.[41] IL-8 levels are associated 
with delirium onset, and underlying depression or dementia 
influences IL-8 levels.[42] In patients with delirium, higher lev-
els of pro-inflammatory cytokines and cortisol were identified 
in plasma and cerebrospinal fluid.[43] Perioperative cortisol and 
inflammatory alterations observed in mild cognitive impairment 
may provide a physiological explanation for this increased risk 
of mild cognitive impairment.[44] Mild cognitive impairment is 
associated with a higher risk of postoperative delirium.

HIF-1α has a prominent anti-inflammatory role in the acute 
inflammatory processes of multiple diseases.[45] Many genes 
could be involved in HIF-1α regulation, including MAPKs, miR-
155-5p, and so on.[46] Research shows miR-155-5p directly tar-
gets HIF-1α and negatively regulates its expression. Inhibition 
of miR-155-5p enhanced cell viability and prevented cell apop-
tosis, significantly decreased infarct volume, improved neurobe-
havioral outcomes in middle cerebral artery occlusion (MCAO) 
rats, inhibited inflammation and oxidative stress, and resulted 
in enhanced protection against cerebral infarction after NSC 
transplant.[46] HIF-1α can sufficiently control the progression of 
neurological symptoms after an ischemic stroke owing to the 
actions associated with its downstream genes.[46]

And more, HIF-1α with a decline in iNOS, tumor necro-
sis factor-α (TNF-α), and NF-kB levels, implying the anti-in-
flammatory role of HIF-1α activator following stroke.[47] 
Intraperitoneal injection of the HIF inhibitor, acriflavine 
hydrochloride, abolished the protection of RIPC with respect 
to infarct size and neurological functions and neutralized the 
downregulation of pro-inflammatory IL-1, IL-6, and IFN-γ.[48] 
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DEX-regulated HDAC2 may play an inhibitory role in mice 
with POCD through regulation of the HIF-1α/PFKFB3 axis.[49] 
HIF-1α activated in diabetic retina is likely to play a role in reg-
ulating pathophysiological processes via IL-6 and TNF-α mech-
anisms. This has pharmacological implications to target specific 
HIF-1, IL-6, and TNF-α signaling pathways for dysfunction and 
vulnerability related to DR.[50] Dex promotes the recovery of 
renal function and reduces the inflammatory level in RIRI rats 
through the PI3K/Akt/HIF-1α signaling pathway.[51] HIF-1α 
was overexpressed in COPD, which upregulated expressions 
of inflammatory factors via activating the EGFR/PI3K/AKT 
pathway. The activated EGFR/PI3K/AKT pathway induced by 
pulmonary inflammation further upregulated HIF-1α expres-
sion in a feedback loop, thus aggravating COPD pathological 
changes.[52] HIF-1α participates in the inflammatory response 
process caused by Ang II and downregulation of HIF-1α may be 
able to partially protect or reverse inflammatory injury in podo-
cytes.[53] The increased activity of HIF-α isoforms regulates Th1/
Th17 mediated inflammation in sarcoidosis.[54] Inflammatory 
responses of endothelial cells to hypoxia with concurrent 
acidosis are dynamically regulated by the combined actions 
of hypoxia, miR-126, and HIF-1α on the master regulator 
high-mobility group box-1.[55] There are 3 classical inflammatory 
pathways: p38 MAPK, IL-6/JAK/STAT3, and PI3K; and a non-
classical inflammatory pathway, the Hippo. Recently, the Hippo 
pathway has been linked to various inflammatory modulators 
such as FoxO1/3, TNFα, IL-6, COX2, HIF-1α, AP-1, JAK, and 
STAT.[56] Troxerutin could regulate HIF-1α by activating JAK2/
STAT3 signaling to inhibit oxidative stress, inflammation, and 
apoptosis of cardiomyocytes induced by H2O2.

[57]HIF-1 reduced 
inflammation in spinal cord injury via miR-380-3p/ NLRP3 by 
Circ 0001723.[58] prolyl hydroxylase (PHD)-1 downregulation 
skews the hypoxic response toward enhanced protective HIF-1α 
stabilization in the inflamed mucosa of UC patients.[59]

Cytokines also influence HIF signaling. Malkov et al[60] 
report extensive evidence for TNF-α and interleukin-1β directly 
impacting HIF signaling through the regulation of HIF at tran-
scriptional and posttranslational levels. The pathophysiology of 
delirium in older adults is complex, and inflammation is a rele-
vant precipitant factor in this syndrome. The release of pro-in-
flammatory cytokines and chemokines by activated glial cells, 
astrocytes, and microglia plays an important role in the neuroin-
flammatory process. HIF-1α reduces the level of inflammatory 
factors through the regulation of signal pathways and plays an 
anti-inflammatory role. The inhibition of HIF-1 may increase 
the inflammatory response and cause postoperative delirium.

5. HIF-1 and oxidative stress
Abnormally activated oxidative stress might be involved in 
the underlying mechanisms of postoperative delirium.[61–64] 
Disturbed serotonergic neurotransmission and an increased sta-
tus of oxidative stress in patients with delirium.[63] Patients with 
low preoperative catalase levels appeared to be more susceptible 
to delirium than patients with higher catalase levels.[64]

Several studies have reported that HIF-1α affects the oxidative 
stress response through different mechanisms. HIF-1α protects 
against oxidative stress by directly targeting mitochondria.[59] 
Mitochondrial ferritin (a protein [FtMt]) can alleviate hypox-
ia-induced brain cell death by sequestering uncommitted iron 
and preventing oxygen-derived redox damage.[65] HIF-1α can 
upregulate FtMt expression to prevent oxygen-derived redox 
damage.[66] During cerebral ischemia/reperfusion injury-induced 
lung injury, the body may upregulate antioxidative stress activ-
ities and promote angiogenesis to repair the endothelial barrier 
through the Nrf2/HO-1 and HIF-1α/VEGF signaling pathways, 
enabling self-protection.[67] One of the proteins induced by HIF, 
EPO, has the properties of being antiapoptotic, antioxidant, and 
protective for neurons, astrocytes, and oligodendrocytes.[16] A 

novel HIF stabilizer, FG4592 (Roxadustat), enhanced renal vas-
cular regeneration, possibly via activating the HIF-1α/VEGFA/
VEGF receptor 1 (VEGFR1) signaling pathway and driving the 
expression of the endogenous antioxidant superoxide dismutase 
2 (SOD2).[68–70]

5.1. HIF-1 and energy metabolism

Brain functioning and high-order cognitive functions critically 
rely on glucose as a metabolic substrate. Acutely reduced glu-
cose metabolism impairs cognition selectively in the vulnerable 
brain.[69]Disrupted brain energy metabolism may be associated 
with postoperative delirium.[70–74]

HIF-1 plays a very important role in energy metabolism. 
Research shows that under conditions of hypoxia, most eukary-
otic cells can shift their primary metabolic strategy from predom-
inantly mitochondrial respiration towards increased glycolysis 
to maintain ATP levels. Aerobic glycolysis is also a key regulator 
of synaptic plasticity in the brain that may positively influence 
cognition.[72] HIF-1a activation represents a well-characterized 
mechanism by which the cell can quickly respond to hypoxic 
environments by upregulating glycolysis and inhibiting mito-
chondrial respiration in order to meet cellular energy demands 
and contribute to cell survival in hypoxic tissues.[73–77] Hif-1α 
transcription was upregulated via the mTORC1/eIF4E pathway 
to drive glycolysis.[78–80] The increase of glucose transport activ-
ity is achieved by inducing GLUT1 and GLUT3 expression and 
upregulating HIF-1α expression.[81]

6. Anesthetics affect HIF-1 activity in elderly 
patients.
Intraoperative cerebral oxygen desaturation occurred during 
general anesthesia and was associated with postoperative cogni-
tive dysfunction.[20,21,79–81] Cerebral cellular responses to hypoxia 
are associated with a family of transcription factors called HIFs, 
which induce the expression of a wide range of genes that help 
cells adapt to a hypoxic environment. HIF-1 is a heterodimer 
comprising α and β subunits.[80] Under normoxic conditions, the 
β subunit is constitutively expressed in the cell, while the α-sub-
unit undergoes rapid ubiquitin-dependent proteasome degrada-
tion due to the action of oxygen dependent HIF PHD.[81] Under 
hypoxic conditions, PHD is inactivated, leading to the stabiliza-
tion of HIF-1α, followed by its translocation into the nucleus, 
where it forms a heterodimeric complex with HIF-1β.[20] This 
complex interacts with DNA and activates the expression of 
multiple target genes encoding proteins that influence neu-
roinflammation, the immune-inflammatory response system, 
oxidative stress, and enzyme metabolism. The HIF-1 signaling 
pathway protects brain tissue through the above mechanisms. 
In adults, even when intraoperative cerebral oxygen desatura-
tion occurs during general anesthesia, HIF complex activation 
initiates a neuroprotective response, resulting in the restoration 
of cellular functions that are affected by hypoxia.

However, an age-dependent decline in cortical HIF-1α 
accumulation and activation of HIF target genes in response 
to hypoxia.[21,22] Thus, HIF-1α levels and recovery speed 
are much lower in the elderly when responding to hypoxia 
than in the young. Several articles have confirmed this idea. 
Under hypoxic stimulation, HIF binding to DNA increased 
in the young and middle-aged rats but not in the old rats.[82] 
HIF-1α and fetal liver kinase 1 levels were lower in old 
rats than in young rats.[83] Inhibition of HIF-1 transactiva-
tion of gene expression in the young brain recovering from 
MCAO. Furthermore, a copper metabolism MURR domain 
1 (COMMD1) was significantly elevated after MCAO only 
in the brains of aged rats, and suppression of COMMD1 by 
siRNA targeting COMMD1 restored HIF-1 transactivation 
and improved recovery from MCAO-induced damage in the 
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aged brain. Ndubuizu OI[84] reported that HIF-1α accumula-
tion and transcriptional activation of HIF target genes in aged 
rats are significantly attenuated during acute hypoxic expo-
sure. Cortical HIF-1α accumulation and HIF-1 activation 
remain absent during chronic hypoxic exposure in the aged 
rat brain. A paper suggests a compensatory HIF-1-independent 
preservation of hypoxic-induced microvascular angiogenesis 
in the aged rat brain.[85] HIF-1α accumulation was attenuated, 
and VEGF expression was decreased in the cerebral cortex of 
aged mice. The HIF-1 response to hypoxia is greatly atten-
uated, leading to an initial delay in the cerebral angiogenic 
response in aged mice in the first week of hypoxia. The delayed 
adaptive response, however, may result in decreased survival in 
the older cohort.[86] Following injury, in the aged animals, the 
increase in HIF-1alpha and VEGF in response to injury was 
much lower than in the adult injured animals. These results 
support the hypothesis that reduced expression of genes in the 
HIF-1alpha neuroprotective pathway in aging may contrib-
ute to poor prognosis in the elderly following traumatic brain 
injury.[87] Impaired HIF-1 transcription activity is associated 
with defective cerebral recovery from ischemic stroke in aged 
rats.[88] Impaired HIF-α may contribute to age-associated cog-
nitive decline during hypoxic events.[85]

Anesthetics and perioperative drugs have been reported to 
affect HIF-1 activity (Fig. 1). Research reports that the anesthet-
ics inhibited lipopolysaccharide-induced HIF-1alpha expression. 
HIFalpha-hydroxylases activity and HIF-1alpha stability were 
not affected, but the HIF-1alpha protein synthesis was inhibited 
by the anesthetics.[89] The intravenous anesthetic propofol inhib-
ited HIF-1α activation induced by hypoxia or CoCl2. Propofol 
also prevented isoflurane-induced HIF-1α activation, and par-
tially reduced cancer cell malignant activities.[14,90] Sevoflurane 
can reduce the content of inflammatory factors, inhibit apop-
tosis, and reduce the expressions of HIF-1 and HSP70 in the 
case of cerebral ischemia/reperfusion injury ischemia/reperfu-
sion injury.[90] In addition, propofol, a general anesthetic, was 
found to significantly reduce the LPS-induced upregulation of 
HIF-1α and ROS in a dose-dependent manner.[91] Results from 
the Transwell assay confirmed that propofol also suppressed cell 

invasion by decreasing HIF-1α expression in the LPS-treated 
NSCLC cells.[92] Further, propofol suppressed Hif-1α expression 
by inhibiting the upregulation of NF-κB p65 after exposure to 
hypoxia in BV2 microglia. Propofol attenuates hypoxia-induced 
neuroinflammation, at least in part by inhibiting oxidative stress 
and NF-κB/ Hif-1α

signaling.[93] Propofol but not sevoflurane limits HIF-1α 
activation in hepatic ischemia/ reperfusion injury.[94] Propofol 
attenuates intracellular Ca2+ concentration, CaMKII and AKT 
phosphorylation, and HIF-1α expression, probably via inhibit-
ing the NMDA receptor, thus inhibiting glycolysis and adhesion 
of tumor and endothelial cells.[95]

7. Conclusion
From the above studies, we speculate that during general 
anesthesia, anesthetics inhibited HIF-1α protein neosynthe-
sis and HIF-1α activation in the aged patient’s brain, further 
aggravating the HIF-1 response to hypoxia, which is greatly 
attenuated and delayed in the brain of the elderly. Impaired 
HIF-α induced by anesthetics in the elderly may contribute to 
postoperative delirium. It is possible to provide a new mech-
anism of neuronal injury induced by anesthetics and postop-
erative delirium.
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