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Abstract
Background The demand for bariatric surgery is high and so is the need for training future bariatric surgeons. Bariatric surgery, as
a technically demanding surgery, imposes a learning curve that may initially induce higher morbidity. In order to limit the clinical
impact of this learning curve, a simulation preclinical training can be offered. The aim of the work was to assess the realism of a
new cadaveric model for simulated bariatric surgery (sleeve and Roux in Y gastric bypass).
Aim A face validation study of SimLife, a new dynamic cadaveric model of simulated body for acquiring operative skills by
simulation. The objectives of this study are first of all to measure the realism of this model, the satisfaction of learners, and finally
the ability of this model to facilitate a learning process.
Methods SimLife technology is based on a fresh body (frozen/thawed) given to science associated to a patented technical
module, which can provide pulsatile vascularization with simulated blood heated to 37 °C and ventilation.
Results Twenty-four residents and chief residents from 3 French University Digestive Surgery Departments were enrolled in this
study. Based on their evaluation, the overall satisfaction of the cadaveric model was rated as 8.52, realism as 8.91, anatomic
correspondence as 8.64, and the model’s ability to be learning tool as 8.78.
Conclusion The use of the SimLife model allows proposing a very realistic surgical simulation model to realistically train and
objectively evaluate the performance of young surgeons.
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Introduction

As obesity has become a worldwide public health concern,
bariatric surgery has been also recognized as an appropriate
and effective method to treat obesity and its related diseases
[1–5]. The training needs for bariatric surgeons are therefore
increasing in order to maintain a high quality of care for obese
patients.

As reported in the literature [5], 3 major factors influence
bariatric surgery care: hospital infrastructure and volume, sur-
gical team volume, and surgical skills. While it may be diffi-
cult to change the first 2 factors that are not dependent on the
surgeon, the third can be improved.

Surgical simulation provides the opportunity for super-
vised directed learning of trainees, allowing full mastering of
technical skill and increasing performances before actual prac-
tice on patients [6–9].
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For this purpose, we developed the SimLife model, based
on fresh human body given to science, dynamized by pulsatile
vascularization with simulated blood, warmed to 37 °C and
ventilation [10, 11].

The objectives of this study were to assess the realism of
this model, the satisfaction of learners, and finally the ability
of this model to facilitate the learning process.

Method

The SimLife model consists of a donated human body, which
is retrieved by the Body Donation Center of our university,
prepared for surgical simulation [10]. Bodies arrived within
24 h after death, and a traceability number (anonymity) is
established [10–12].

Exclusion criteria included all possible contaminations
such as HIV, HBV, HCV, Creutzfeldt-Jacob, and tuberculo-
sis, through analysis of a blood sample to perform serological
tests; at the time of those simulations (2019) we were unaware
of the risk of Coronavirus infection, but now we systematicaly
tested all cadavers about the COVID status at their arrival at
the Body Donation Center.

Each body was then prepared for surgical simulation
(Fig. 1): cannulas were placed in both femoral arteries and left

common carotid artery (input) and both femoral veins and left
internal jugular veins (output). The vascular axes of superior
and inferior limbs may be excluded to target the trunk’s vas-
cularization [10–12]. A tracheotomy or orotracheal tube pro-
vided ventilation, and stomach emptying was obtained via a
nasogastric tube.

Body’s arterial tree was washed with water at low pressure
(0.8 bar) and at a maximum temperature of 30 °C to eliminate
whole blood and clots. Subsequent body cleaning and disin-
fection was performed and the body was frozen at −22 °C in a
negative pressure cold room [7, 8].

When a SimLife simulation session was scheduled, before
use and according to bodies’ BMI, progressive body
defrosting (at 16 °C) over several days (3 days minimum)
was achieved. Finally, a testing procedure before starting on
SimLife model was performed to check the physiological be-
havior of the model.

The specific technical module P4P (Pulse For Practice,
patent number 1000318748 with international extension
PCT/EP2016/075819 published on 2017/05/11, WO 2017/
076717 A1) animated the body, which was perfused by
blood-mimicking fluid (patent L18217) circulating in the ar-
terial system in a pulsating manner, recoloring and warming
internal organs to 37 °C, and restoring venous turgor. Output
was guaranteed by venous output. Physiological
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Fig. 1 Schema of global vascular
and aeric accesses of SimLife and
the connections with the specific
Pulse for Practice® device
dedicated to re-vascularization
and re-ventilation in a model of
abdomino-pelvic and thoracic
surgery
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hemodynamic data were computer monitored continuously
and adapted as needed, with heart rate, blood pressure, and
respiratory rate, which could increase or decreased to mimic a
hemorrhagic shock for example.

SimLife inner organs were re-vascularized, re-colored, and
warmed by specific mimicking-blood liquid. Hemodynamic
conditions were maintained and could be continuously mod-
ified by a computer-controlled device, ensuring identical
physiological conditions of a real patient. For example, the
pulsatile pump controlled by the computer automatically ad-
justed blood pressure according to possible iatrogenic acci-
dents causing bleeding. Thus, a moderate bleeding induced
an increase in flow up to a threshold where hemodynamic
instability resulted in a complete loss of blood pressure and
systemic circulation interruption [10–12].

The learning platform on cadaveric model was covered by
previous approval of French Ministry of Health Ethics
Committee (protocol number DC-2019-3704).

Study Design and Participants

A total of 24 residents and chief residents (Table 1) consented
to this study on a total of 4 occasions. The training days were
hosted at the Medical school. Before performing each proce-
dure, all participants were given a theoretical approach, which
included lectures, videos, description of the technique, and an
overview to the reperfused cadaver model. This was followed
by hand-on training on SimLife models. We associated 2
trainees per station, with at least 1 supervising expert.

The theme of the first 2 sessions was the sleeve gastrectomy,
and the 2 following sessions were the Roux-in-Y gastric by-
pass; this sequence allowed trainees to familiarize themselves
with the SimLife model for a relatively simple procedure and
then to move to a more technically demanding gastric by-pass.

Evaluation Survey

At the end of each practical session, all surgical trainees com-
pleted an anonymous evaluation survey indicating their de-
gree of satisfaction (feedback) on a Likert scale from 0 to 10
(0 = not at all to 10 = perfectly) on 4 items:

1. Ease of learning a specific surgical procedure using
SimLife model,

2. Accuracy of anatomic landmarks of SimLife model com-
pared with clinical reality,

3. Degree of realism of SimLife model,
4. Overall satisfaction with the training model used.

Statistical Analysis

Statistical analysis was performed by means of SAS 9.3 soft-
ware. Values are reported as means and standard deviation
(SD). Results are summarized in Table 1.

Results

All participants completed and returned the evaluation survey
corresponding to a response rate of 100% from the trainees.
Participants included 20 residents and 4 chief residents from
the French Nouvelle Aquitaine area including three university
hospitals: Bordeaux, Limoges, and Poitiers. Their status and
experience in bariatric surgery are summarized on Table 2.

The evaluation survey was carried out at the end of each
session. Data were collected from the 4 training sessions. The
24 participants answered to the four survey questions. Based
on these evaluations, the overall satisfaction of the cadaveric
model had a mean score of 8.52 with SD of 0.83, realism had a
mean score of 8.91 with SD of 0.94, anatomic correspondence
had a mean score of 8.64 with SD of 0.96, and the model’s
ability to be learning tool had a mean score of 8.78 with SD of
0.85 (Table 2).

On the evaluation form given to each trainee the final ques-
tion was as follows: would you advise a colleague to

Table 1 Numbers, status of trainees, and their previous experience in
bariatric surgery

Status Number Mean and SD

Residents 20 Number of bariatric procedure achieved 0.88 (1.87)

Number of bariatric procedure as
assistant

9.82 (5.91)

Number of bariatric procedure observed 15.84 (9.81)

Chief
residents

4 Number of bariatric procedure achieved 7.83 (5.83)

Number of bariatric procedure as
assistant

30.83 (8.79)

Number of bariatric procedure observed 50.94 (9.78)

Total 24 Number of bariatric procedure achieved 3.14 (5.97)

Number of bariatric procedure as
assistant

9.29 (7.82)

Number of bariatric procedure observed 12.15 (10.72)

Table 2 Trainees’ responses to questionnaire (on a 0–10 Likert scale)
about the quality of the model

Questions N = 24

Learning a procedure with this model 8.78 (0.85)

Anatomic correspondence 8.64 (0.96)

Realism 8.91 (0.94)

Overall satisfaction 8.52 (0.83)
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participate in a training course using the SimLife model? One
hundred percent of the trainees answered yes.

Discussion

Bariatric surgery requires, as well as other surgical subspe-
cialties, acquisition of specific skills, which may be learnt
throughout consistent practice. Corresponding at the
Halstedian model of apprenticeship “learning on the job” cre-
ates the notion of a learning curve. The relationship between
hospital volume and outcomes is well recognized; at least 100
cases annually per hospital are recommended as the minimal
requirement to achieve a low risk for serious complications
[13]. Moreover, a total experience of 500 cases was deemed
necessary to diminish the risk for adverse outcomes and meet
safety standards [13].

But an individual case report of 100 cases annually is not
always feasible, and we focused on revisional bariatric surgery,
as cited by Bonrath; in Germany an individual case volume of
300 procedures is referenced as a quality criterion [5].

The paradigm shift of training in surgery In experimental
learning, Kolb showed that strategy of the initial used in learn-
ing process influences adequate skill acquisition [14].
Concerning bariatric surgery, the value of the classical surgi-
cal cursus, residency and fellowship training, is well docu-
mented [5, 9, 15–18]. But availability of fellowship in a high
debit department of bariatric surgery is not the rule for all
young surgeons. In Germany, as reported by Bonrath, over
80% of surgeons had none or little exposure to fellowship
training [5]. While in North America a “Fellowship trained”
is the rule to independently perform bariatric surgery. So de-
signing fellowship training induced debate within the bariatric
surgery societies without finding a worldwide agreement be-
cause the means available and the modalities of evaluation
vary greatly from one country to another and sometimes from
one university to another [8, 19–21].

Other solutions have been proposed, for example, the
SAGES telementoring, which allows surgeons to reach the pla-
teau of maximum performance more quickly by “correcting”
intraoperative gestures, thanks to experts who can follow the
procedure remotely. An evaluation is proposed via this device;
unfortunately, it is only subjective since it is left to the expert’s
free appreciation [22] and always on a patient.

So in the last two decade, the surgical community stated
that mentorship should not be the method of instruction that
best prepares trainees to enter the modern world of surgery [6,
8, 17–21]. The milestone of the “new concept of training”
should consist in exposing apprentices to features of real-life
situations, without risks for living patients.

Surgical trainees may also benefit by activities performed
far from operating theaters such as surgical simulation

[23–25], coaching [26, 27], structured training programs
[28], and many others [13].

In fact, the learning curve must shift from the operating
theater to a “preclinical” model in simulation. This “natural”
evolution of training also follows the incredible technological
progress of surgery where the practitioner must master not
only his surgical technique but also the tool he uses.

Which model for surgical simulation and evaluation?
Donald Kirkpatrick [29] in the late 1950s defined a training

evaluation model based on four levels of evaluation. Each
level is built from the information of the previous levels. In
other words, a higher level is a finer and more rigorous assess-
ment of the previous level: Level 1: Assessment of reactions,
Level 2: Learning assessment, Level 3: Evaluation of transfer,
and Level 4: Outcome Evaluation.

Level 1 with assessment of learners’ reactions in front of
the simulation model is fundamental. If we try to compare the
simulation training of pilots and surgeons: a crucial element
emerges. While computer models can perfectly simulate a
long-distance flight with all possible anomalies, the same can-
not be said for computerized surgical simulation. The root of
surgical simulation should be the realism of the model to ob-
tain the most immersive environment to the learners [30, 31].

A wide number of surgical simulators are available for the
benefit of trainees [6, 7, 9, 10, 30, 32–41]. They can be divided
into synthetic and organic simulators [7, 9]. Within the first
group we have plastic, rubber, or latex-based simulator as well
as virtual reality (VR) and computer-based simulation. Those
simulators have the advantage to allow repetition of practice
without any risk (no living being used), but these tools may
sometimes present a lack of reality compared with human
patients [7]. It is necessary to adapt simulation models to an-
atomical and/or physiological variations that cannot be per-
fectly programmed in a computerized scenario [42–44].

Organic type simulators provide high-fidelity environment
and may be divided into animal-based and human-based. The
first type is mainly represented by canine, baboons, or porcine
model [7]. Nevertheless, some ethical restriction applied as
living animal models are forbid in the UK and open discussion
exist in some other European countries [7, 44].

The second organic model is represented by human cadaver,
the historical model for practical training in surgery or interven-
tional medicine [45, 46]. Indeed, fresh or embalmed human
cadavers have been used for centuries as a learning tool in
clinical anatomy [33, 34]. The major pitfall of human corpse
is represented by the fact that this is a static model, which could
not simulate actual condition of surgery like bleeding and he-
modynamic instability, one of the most critical conditions that a
surgeon may face, especially during laparoscopy [35–38].

To overcome this problem few teams introduced model of
perfused cadaveric material, mainly in neurosurgery,
reporting higher satisfaction of trainees and increased fidelity,
similar to a living patient [6, 40–42]. These late reports
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particularly highlight the increased degree of reality represent-
ed by a perfused cadaveric model, which allowed training in
hyper-realistic environment [39–41].

Furthermore, the use of cadavers is also a source of ethical
reflection and emotional and psychological analysis for
learners in their surgical behavioral training [47, 48].

Training on a cadaveric model (Figs. 2 and 3) seems to be
the best compromise between learning in the operating room,
the animal model, and/or virtual simulators [35].

Surgical apprenticeship on SimLife is performed safely and
achieved a high satisfaction score among trainees, as shown
previously. This last point is truly important as apprentice
appreciation of simulators is the key to provide successful
training as it allows gaining of confidence, increasing of ex-
perience, and mastering of surgical techniques, which may be
lately translated into proficient medical practice [29, 41].

Limitations of SimLife Model

First, the SimLife model revascularization by a blood-
mimicking fluid–limited coagulation, platelet activation, and

thrombin-derived products could not be achieved as in a real
standard patient. So the environment is closer to an extra-
corporeal circulation model.

Second, body availability and moreover overall mean cost
per procedure limited the access to this model. This simula-
tions’ device cannot be reserved as initial training for junior
residents, but it has to be implemented at the end of basic skills
learning, which may be achieved on simpler models. Thus,
SimLife should ideally be used for training in the last period of
residency or during fellowship program to ensure skills mas-
tering just before practicing on clinical theater. To also limit
the cost, it is possible to set up SimLife training sessions with
several specialties: on day one, orthopedic surgery; on day 2,
bariatric and/or endocrine surgery (thyroidectomy with lymph
node dissection for example, in this case it is necessary to
adapt the body preparation without neck dissection: cannulas
placement can be modified as required); and on day 3, cardiac
surgery (heart valve surgery). To look further, this model can
be implemented in other universities and countries.

Conclusion

SimLife introduced a realistic bariatric surgery simulation
model. It represents a relevant tool that can have a positive
impact on the acquisition and mastery of advanced technical
skills for young surgeons. The next step in this work will be
the evaluation of performance acquisition over several ses-
sions using specific evaluation scales.
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