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Novel osmotin attenuates glutamate-induced
synaptic dysfunction and neurodegeneration via
the JNK/PI3K/Akt pathway in postnatal rat brain

SA Shah1, HY Lee1, RA Bressan2, DJ Yun3 and MO Kim*,1

The glutamate-induced excitotoxicity pathway has been reported in several neurodegenerative diseases. Molecules that inhibit
the release of glutamate or cause the overactivation of glutamate receptors can minimize neuronal cell death in these diseases.
Osmotin, a homolog of mammalian adiponectin, is a plant protein from Nicotiana tabacum that was examined for the first time in
the present study to determine its protective effects against glutamate-induced synaptic dysfunction and neurodegeneration in
the rat brain at postnatal day 7. The results indicated that glutamate treatment induced excitotoxicity by overactivating glutamate
receptors, causing synaptic dysfunction and neuronal apoptosis after 4 h in the cortex and hippocampus of the postnatal brain.
In contrast, post-treatment with osmotin significantly reversed glutamate receptor activation, synaptic deficit and neuronal
apoptosis by stimulating the JNK/PI3K/Akt intracellular signaling pathway. Moreover, osmotin treatment abrogated glutamate-
induced DNA damage and apoptotic cell death and restored the localization and distribution of p53, p-Akt and caspase-3 in
the hippocampus of the postnatal brain. Finally, osmotin inhibited glutamate-induced PI3K-dependent ROS production in vitro
and reversed the cell viability decrease, cytotoxicity and caspase-3/7 activation induced by glutamate. Taken together, these
results suggest that osmotin might be a novel neuroprotective agent in excitotoxic diseases.
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Glutamate, a major excitatory neurotransmitter in the mam-
malian central nervous system (CNS), is one of the most
important neurotransmitters and plays a key role in neural
development, synaptic plasticity, learning and memory under
physiological conditions.1 Lucas and Newhouse2 reported the
toxic effects of glutamate in the retina of mice, and Olney3

demonstrated the concept of glutamate-induced excitotoxicity
in the mouse brain. Excitotoxicity is the consequence of
imbalances in glutamatergic neurotransmission that leads to
neuronal death. Excitotoxicity-mediated neuronal cell death
has been reported in various disorders of the CNS, including
ischemia and neurodegenerative diseases.4

Previous studies performed both in vitro and in vivo
have demonstrated that the overstimulation of NMDA- or
AMPA-type glutamate receptors induced neuronal apoptosis.5,6

An excess of glutamate and glutamatergic activity has been
demonstrated in certain neurodegenerative diseases. Choi7

reported calcium-mediated glutamate excitotoxicity in neuro-
nal cultures. The prolonged activation of NMDA receptors
triggers an increase in the intracellular calcium load, activates
catabolic enzymes and caspases and produces reactive
oxygen and nitrogen-free radicals, eventually leading to

apoptosis.8,9 The exact mechanism of glutamate-induced
excitotoxicity is not clear, and some believe that this process
may be mediated through the activation of mitogen-activated
protein kinases (MAPKs) and inhibition of the
PI3K/Akt pathway.10–13 The MAPK family comprises serine/
threonine kinases including ERK1/2, c-Jun N-terminal kinases
(JNK1/2/3) and p38 MAPK. These kinases are activated
downstream of many extracellular signals, including signals
from growth factors, cytokines and neurotransmitters, and
have key roles in the development of neurons, synaptic
plasticity, cell survival and cell death.14–17 Indeed, several
studies have reported that growth factors and neurotransmit-
ters modulate a pathway involving phosphatidylinositol
3-kinase (PI3K) and Akt (otherwise known as PKB) that is of
vital importance in cell growth, proliferation, metabolism,
neuroplasticity and cell survival.18,19

Osmotin is a 24-kDa multifunctional plant protein
from tobacco (Nicotiana tabacum) and a member of the
pathogenesis related-5 (PR-5) family of proteins that provide
osmotolerance to plants and exhibit antifungal activity.20,21 As
the structural and functional homolog of the mammalian
hormone adiponectin, osmotin is believed to have biological
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applications as an adiponectin agonist and was shown to
reduce the anti-inflammatory effect of adiponectin in a murine
colitis model.22–24 Previous studies have shown that adipo-
nectin was able to protect hippocampal neurons against
excitotoxicity induced by kainic acid.25,26

These findings led us to the present work, and the aims
of our study were to investigate the neuroprotective effect
of osmotin against glutamate-induced excitotoxicity and
neurodegeneration and to determine the mechanism involved
in this effect in the cortex and hippocampus of the postnatal
day 7 (P7) rat brain.

Results

Osmotin attenuated the glutamate-induced excitotoxicity
in the cortex and hippocampus of the developing rat
brain. AMPARs are ligand-gated ion channels that consist

of combinations of four different subunits: GluR1–4.
Glutamate receptor overexpression can lead to excitotoxicity
and ultimately neuronal degeneration. A single subcutaneous
injection of glutamate significantly induced the overexpres-
sion of glutamate receptor (AMPAR, Glu2/3/4) protein levels
4 h after the injection in the cortex and hippocampus of P7 rat
brains. A significant decrease was observed in the protein
levels of AMPARs in the group of animals treated with
osmotin following glutamate treatment (Figure 1a). We also
examined the phosphorylation of AMPARs (Glu1) at
serine845, as this modification has been reported to be
involved in excitotoxic insult and long-term potentiation
(LTP). A marked increase in p-AMPAR was observed in
glutamate-treated animals in both areas of the developing
brain, whereas, as expected, osmotin reversed the glutamate-
induced changes in the p-AMPARs in the cortex and
hippocampus of the developing brain.
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Figure 1 The effect of osmotin on glutamate-induced expression of AMPARs, p-AMPARs, CaMKII, synaptophysin and p-CREB protein. Representative western blots and
densitometry histograms depicting (a) AMPARs, p-AMPARs, CaMKII, (b) synaptophysin and p-CREB expression in the cortex and hippocampus of 7-day-old rats after
glutamate and osmotin treatment are shown. Sigma Gel software was used for quantifying the protein bands. b-Actin was used as a loading control. All the related
experimental details are provided in the Materials and Methods section. The density values are expressed in arbitrary units (AUs) as the mean±S.E.M. for the indicated
proteins (n¼ 5 rats/group). *Significantly different from the control; #significantly different from glutamate. Significance¼ Po0.05
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Mitochondrial Ca2þ loading is a critical step in acute
glutamate excitotoxicity. Excitotoxicity is associated with
marked increases in free intracellular calcium levels.2

Calmodulin-dependent protein kinase-II (CaMKII) is an
important regulator of biochemical events that lead to
neuronal cell death because of acute excitotoxicity, and
inhibition of this kinase by an antagonist has been shown to
reduce excitotoxic neuronal cell death.27 The expression level
of CaMKII after 4 h of glutamate treatment in the developing
brains was examined using western blotting. A marked
increase was observed in the expression of the CaMKII
protein in both regions of the developing brain. Osmotin
treatment after glutamate treatment significantly reversed this
elevated level of CaMKII in these regions of the developing
brain, suggesting that osmotin has a neuroprotective effect
against glutamate-induced acute excitotoxicity (Figure 1a).

Osmotin reversed glutamate-induced synaptic
dysfunction in the cortex and hippocampus of the
developing rat brain. Several studies have correlated the
plasticities of synaptic morphological structures and con-
vective function in neurons at the synapse with changes in
proteins, neurotransmitters, receptors and secondary mes-
sengers.28,29 Elevations in glutamate-induced CaMKII and
Caþ 2 concentrations have adverse effects on neuronal
synapses. To analyze the effect of elevated glutamate and
the possible reversal effect of osmotin on synaptic plasticity,
the expression of synaptophysin in both regions of the
developing brain was measured by western blot. Glutamate
significantly decreased the number of neuronal synapses
(shown in Figure 1b), as demonstrated by the decrease in
synaptophysin protein expression, that is widely accepted as
a marker for neuronal synapses. However, pups that
received osmotin post treatment showed a significantly
increased level of synaptophysin compared with the gluta-
mate-treated group, revealing that osmotin reversed the
adverse effects of glutamate-induced synaptic plasticity in
the cortex and hippocampus of the developing brain.

Next, western blot analysis was used to measure the effect
of glutamate treatment on phospho-CREB in the cortex and
hippocampus of the developing brain. Compared with the
saline-treated group, glutamate-treated animals showed a
significant decrease in the levels of p-CREB protein in the
cortex and hippocampus of the developing brain (Figure 1b).
A significant increase in the expression of the p-CREB protein
was observed following the treatment with osmotin after
glutamate treatment, suggesting that osmotin might be
involved in minimizing LTP in the cortex and hippocampus
of the developing brain.

Osmotin attenuated the glutamate-induced neurodegen-
eration and DNA fragmentation in the cortex and
hippocampus of the developing rat brain. A previous
study reported that glutamate excitotoxicity insult can induce
widespread p53-mediated neurodegeneration.30 For this
reason, the levels of different apoptotic markers were
examined via western blotting to determine whether 4 h of
glutamate treatment (10 mg/kg) induced neuronal degenera-
tion in the cortex and hippocampus of the developing brain.
The data in Figure 2a indicate that glutamate induced toxicity

by increasing the expression level of proapoptotic p53, the
ratio of proapoptotic Bax to antiapoptotic Bcl-2, the translo-
cation of mitochondrial cytochrome c into the cytosol and the
activation of caspase-3 and PARP-1 (Figure 2b) in both the
cortex and hippocampus of the developing brain. In contrast,
osmotin treatment significantly reversed the changes
induced by glutamate (i.e., decreased the protein expression
of p53 and the ratio of Bax/Bcl-2 in the cortex and
hippocampus of the developing brain). Osmotin also reduced
the translocation of mitochondrial cytochrome c and the
levels of activated caspase-3 and PARP-1 in the developing
brain.

Glutamate-induced apoptosis involves the cleavage of
PARP-1. DNA damage is one of the hallmarks of apoptosis.
Thus, we used TUNEL (terminal deoxynucleotidyl transferase
dUTP nick-end labeling) staining (an assay that identifies DNA
breaks based on the enzymatic labeling of free 30 DNA ends)
to visualize damaged DNA. Compared with the control-treated
pups, glutamate significantly induced nuclear fragmentation
and apoptotic bodies in three regions of the hippocampus,
CA1, CA3 and DG, as shown in Figure 3. The treatment with
osmotin following glutamate treatment significantly reduced
nuclear fragmentation and apoptotic bodies (fewer TUNEL-
positive cells) in these three hippocampal regions of the
developing brain (Figure 3).

Effect of osmotin on glutamate-induced neurotoxicity
in vitro. To further evaluate the neuroprotective role of
osmotin against glutamate in vitro, we measured neuronal
HT22 cell viability/cytotoxicity and apoptosis (using the
apoptotic marker caspase-3/7) with an Apo-Tox Glo assay.
Glutamate treatment resulted in a significant reduction in the
number of viable HT22 cells, whereas the cell toxicity and
activation of caspase-3/7 significantly increased compared
with the control. In contrast, the treatment with osmotin
significantly reduced the effects of glutamate, thereby
increasing cell viability and decreasing cytotoxicity and
caspase-3/7 activation, indicating that osmotin reduced
glutamate-induced neurotoxicity (Figure 3Ba–c).

Osmotin protected the developing brain from glutamate-
induced neurodegeneration via the JNK/PI3K/Akt
intracellular signaling pathways. To further explore the
signaling pathways involved in the effects of glutamate and
osmotin, western blot analysis was performed to measure
phospho-JNK (c-Jun N-terminal kinases) in both glutamate-
treated animals and animals that received osmotin after
glutamate treatment. Glutamate induced a significant
increase in the p-JNK levels in the cortex and hippocampus
that was reversed in animals treated with osmotin after
glutamate treatment (Figure 4a). The phospho-JNK expres-
sion in the hippocampus of developing brains was also
examined using immunofluorescence. Interestingly, these
immunofluorescence results were consistent with our wes-
tern blot results. Glutamate increased the expression of
p-JNK in the CA1 region of the hippocampus in the
developing brain, whereas osmotin treatment decreased
p-JNK expression in this region (Figure 4b).

Cantrell31 indicated in his report that the PI3-K/Akt pathway
is one of the main prosurvival pathways in neurons.
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Accordingly, we examined the possible involvement of this
pathway following 4 h of glutamate treatment in the cortex and
hippocampus of the developing brain. As expected, glutamate
significantly decreased the expression of phospho-PI3K and
phospho-Akt in both regions of the developing brain as
measured by western blot, whereas osmotin significantly
reversed this reduction (Figure 4a). Furthermore, the expres-
sion of p-PI3K in the hippocampus of the developing brain was
examined using immunofluorescence. Confocal microscopy
revealed that osmotin reversed the effect of glutamate in the
CA1 region of the hippocampus of the developing brain
(Figure 4b).

To confirm the involvement of PI3K in this pathway, the
PI3K inhibitor LY294002 was administered in vivo to examine
its effects on glutamate-induced neurotoxicity. The results
showed that LY294002 not only blocked the effects
of glutamate on p-PI3K and p-AKT, but also blocked the

glutamate-induced expression changes in caspase-3 and
PARP-1 (Figure 4c).

The effect of osmotin on glutamate-induced generation
of reactive oxygen species (ROS) is PI3K dependent
in vitro. To further examine whether the effect of osmotin
was mediated via its antioxidant ability, we measured ROS
levels in neuronal HT22 cells in vitro. The exposure of cells to
glutamate led to a significant increase in ROS levels
compared with the control cells, whereas osmotin markedly
reduced the ROS level, indicating that osmotin is a potent
antioxidant. We then used the PI3K inhibitor LY294002 to
confirm that glutamate-induced ROS are PI3K dependent.
Our results revealed that glutamate fails to induce ROS after
LY294002 treatment, suggesting that the glutamate-induced
ROS increase and the osmotin-induced inhibition of ROS
are PI3K dependent (Figure 4d).
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Figure 2 The effect of osmotin on glutamate-induced neurodegeneration in the cortex and hippocampus of the developing brain. Representative western blots and
densitometry histograms showing (a) p53, the Bax/Bcl-2 ratio, (b) cytochrome c, caspase-3 and PARP-1 in the cortex and hippocampus of 7-day-old rats after glutamate and
osmotin treatment are shown. Sigma Gel software was used for the quantification of the protein bands. b-Actin was used as a loading control. The density values are
expressed in arbitrary units (AUs) as the mean±S.E.M. for the indicated proteins (n¼ 5 rats/group). *Significantly different from the control; #significantly different from
glutamate. Significance¼Po0.05
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Osmotin abrogated glutamate-induced distributional
changes and colocalization of p53, p-Akt and caspase-3
in the hippocampus of the developing brain. To confirm
our western blot results and the proposed mechanism of
osmotin-induced neuroprotective effects against glutamate-
induced neurodegeneration via p-Akt and p53, we performed
experiments to measure the colocalization of p-Akt and
p53 and observed their distributional changes in the
hippocampus (CA1) of the developing brain. Our results
(Figure 5a) indicated that p-Akt was largely colocalized
with p53. Compared with the control, the glutamate treatment
inhibited phosphorylated Akt (red) and increased the level of
p53 (green) in the hippocampal CA1 region of the developing
brain. In contrast, osmotin administration reversed the
distributional changes in p-Akt (red) and p53 (green) induced
by glutamate in the CA1 region of the hippocampus.

We also examined the colocalization of p53 and caspase-3
and observed the distributional changes of these proteins in
the hippocampus following drug treatment. Compared with
the results observed in the saline-treated group, the sub-
cutaneous injection of glutamate into P7 animals resulted in
high levels of p53 (green) and caspase-3 (red) protein
expression, suggesting that these proteins are mainly
colocalized. Osmotin-treated animals displayed reduced
expression levels of p53 and caspase-3, and colocalization
of these proteins was not observed in the hippocampus of the
developing brain (Figure 5b).

Discussion

This study demonstrated that osmotin, a homolog of
mammalian adiponectin, protected against glutamate-
induced neuronal degeneration both in vivo and in vitro.
Osmotin, a plant protein from Nicotiana tabacum, not only
reversed glutamate-induced synaptic dysfunction and neuro-
degeneration in the cortex and hippocampus of the develop-
ing brain but also inhibited glutamate-induced ROS
production and toxicity in HT22 cells via a mechanism
involving the PI3K/Akt pathway.

Glutamate receptors play an important physiological role in
synaptic plasticity, growth and differentiation; however, their

overstimulation induces excitotoxicity. Consistent with pre-

vious studies, we observed that glutamate treatment

increased the intracellular calcium level and AMPAR expres-

sion that further affected the neuronal synapses in the brain of

developing rats. We also reported that osmotin treatment not

only reversed the glutamate-induced increases in the intra-

cellular calcium level (CaMKII), AMPAR expression and

AMPA phosphorylation (Ser845), but also enhanced the

expression of the synaptic marker synaptophysin in P7 rat

brains (Figures 1a and b). The phosphorylation of AMPARs at

serine residues is very important for determining the levels of

these receptors at the synaptic membrane. Previous studies

have shown that the phosphorylation of GluR1 at Ser845 and

Ser831 contributes to LTP and increases cell surface and
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synaptic AMPAR levels and excitability.32 The serine phos-
phorylation of AMPARs is presumed to contribute to the
hyperexcitability observed in epilepsy, as confirmed by
Rakhade et al.33 following experiments with Ser831 and
Ser845 knockout mice. After injecting PTZ into P7 mice, these
authors observed an increase in AMPAR phosphorylation at
Ser831 and Ser845 sites and a significant increase in the
postsynaptic scaffolding protein PSD-95, indicating that the
phosphorylation of AMPARs at serine residues is involved in
synaptic alterations during neonatal seizures. Shepherd and
Huganir34 have shown that excitability and LTP can be
reduced by blocking these post-translational changes in
AMPARs. Our results showing that osmotin upregulated the

expression of glutamate-inhibited phospho-CREB in the
brain of developing rats also suggest the neuroprotective role
of osmotin against glutamate, as numerous studies
have shown that phosphorylated CREB can protect against
hypoxic ischemic brain insult and influence LTP in the
hippocampus.35–37

The exact mechanisms of glutamate-induced excitotoxic
apoptosis are not completely understood; however, the
excessive production of ROS, mitochondrial membrane
dysfunction and activation of different kinases and apoptotic
markers are assumed to play roles in the process.38 Several
studies have revealed that G-protein-coupled receptors and
group I and II subtypes of metabotropic glutamate receptors
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Figure 5 The effect of osmotin on glutamate-induced intracellular distribution and colocalization of p-Akt, p53 and caspase-3 in the hippocampus of the developing brain.
Intracellular distribution and colocalization of (a) p-Akt and p53 and (b) p53 and caspase-3 in the hippocampus (CA1) of 7-day-old rats after glutamate and osmotin treatment.
Images are representative of the staining observed in each section (n¼ 5 animals/group). The immunofluorescence images indicate the localization of p-Akt, caspase-3 (red)
and p53 (green). A confocal image of p-Akt and p53 immunofluorescence, showing colocalization in the same neuron. Magnification: � 400, Scale bar: 50mm. *Significantly
different from control; #significantly different from glutamate. Significance¼Po0.05
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can activate the MAPK or PI3K pathways and play key roles in
cell proliferation, cell differentiation and cell survival both
in vivo and in vitro.39–41 In addition, the activation of PI3K via
numerous neurotransmitters and growth factors has been
shown to be followed by Akt phosphorylation at Thr308 and
Ser473.42,43 Several lines of evidence have shown that Akt
promotes cell survival and provides protection against
glutamate-induced neurotoxicity via the PI3K/Akt/GSK3b
(Ser9) pathway.44 Our results have shown that glutamate
was mainly involved in the production of ROS and the
stimulation of the PI3K/Akt pathway, resulting in neuronal
apoptosis. Similarly, glutamate-induced excitotoxicity has
been reported to trigger PI3K/Akt activation, whereas drugs
capable of reversing PI3K/Akt activation are neuroprotec-
tive.45 The current study also demonstrates that osmotin,
a plant defense protein and a homolog of human adiponectin,
reduced the production of ROS and rescued the cells and
developing brain against glutamate through the PI3K/Akt
pathway, which was also confirmed using a specific
inhibitor of PI3K in vivo and in vitro. The role of osmotin in
the reduction of glutamate-induced ROS may be similar to
that of adiponectin, which has antioxidant capabilities, as
demonstrated by many recent studies.46–48

A large body of evidence indicates that glutamate treatment
induces different apoptotic proteins that play critical roles in
neuronal degeneration. Qin et al.49 reported that glutamate
receptor overexpression induced the activation of proapopto-
tic proteins, such as p53, and triggered neuronal injury
and death. Furthermore, p53 upregulates the proapoptotic
protein Bax and downregulates the antiapoptotic protein
Bcl-2, subsequently increasing the release of cytochrome c
from mitochondria and triggering caspase-3 activation.49,50

Our work demonstrated that osmotin attenuated both the
glutamate-induced activation of different apoptotic markers
and the fragmentation of DNA in the developing brain. These
results are also in agreement with other early studies
suggesting a neuroprotective role for adiponectin. Nishimura
et al.51 reported that adiponectin-deficient mice had enlarged
brain infarctions and increased neurological deficits after
ischemia/reperfusion compared with wild-type mice, whereas
adiponectin treatment increased the protective effects in
wild-type mice. An increased adiponectin level in the plasma
has also been reported to protect against cardiac ischemia/
reperfusion damage in mice.52,53

In conclusion, our data suggest (Figure 6) that the Nicotiana
tabacum protein osmotin has novel neuroprotective effects
against glutamate-induced synaptic dysfunction, excitotoxi-
city and neurodegeneration in the developing brain and
that it also reduces the ROS produced by glutamate in vitro.
Thus, osmotin may be beneficial in the treatment of
neurodegenerative diseases.

Materials and Methods
Animals and drug treatment. Postnatal P7 Sprague–Dawley rats
(18 g average body weight) were divided into six groups (n¼ 5 rats per group)
that were treated with 0.9% saline (control (C)), 10 mg/kg glutamate (Glu), 15 mg/g
osmotin (Os), 10 mg/kg glutamate plus 15 mg/g osmotin (GluþOs), 10 mg/kg
glutamate plus 10 mM LY294002 (Gluþ YL) and 10 mg/kg glutamate plus 10 mM
LY294002 plus 15mg/g osmotin (GluþYLþOs). LY294002 was administered
15 min before the drug treatments, and the animals received this treatment
subcutaneously.

For post-treatment, osmotin was given 1 and 2 h after glutamate treatment.
The animals were killed after 4 to 12 h of treatment. Great care was taken
in handling to minimize the suffering of the animals. All experimental and ethical
procedures were followed according to the local animal ethics committee of the
Division of Applied Life Sciences of the Department of Biology at Gyeongsang
National University, South Korea.

Chemicals. Glutamate, the PI3K inhibitor LY294002 and 20,70-dichlorofluorescein
diacetate (DCFDA) were purchased from Sigma-Aldrich (Saint Louis, MO, USA)
and osmotin was purified from salt-adapted cultured tobacco cells as previously
described.54 The endotoxin content of the osmotin was o0.03 EU/mg protein.

ApoTox-Glo triplex assay. The ApoTox-Glo Triplex Assay (Promega) was
performed to assess viability, cytotoxicity and caspase-3/7 activation within a
single assay well. The assay consists of two parts: in the first part, the activities of
two proteases, which are markers of cell viability and cytotoxicity, were measured
simultaneously. Mouse hippocampal neuronal HT22 cells (2� 104 cells)
were cultured in 96-well assay plates. Each well contained a final volume
of 200 ml of DMEM containing 10% FBS and 1% penicillin/streptomycin. After 48 h
of incubation at 37 1C in a humidified 5% CO2 incubator, the cells were treated
with glutamate (100mM) and osmotin (0.2mM). For the assay, 20ml of the viability/
cytotoxicity reagent containing both GF-AFC substrate and bis-AAF-R110
substrate was added to all the wells, briefly mixed via orbital shaking
(500 r.p.m. for 30 s) and incubated for 1 h at 37 1C. The fluorescence was
measured at two wavelengths: 400 nm/505 nm (viability) and 485 nm/520 nm
(cytotoxicity). The GF-AFC substrate enters live cells and is cleaved by a live-cell
protease to release AFC. The bis-AAF-R110 substrate does not enter live
cells but rather is cleaved by a dead-cell protease to release R110. The live-cell
protease activity is restricted to intact viable cells and is measured using a
fluorogenic, cell-permeant peptide substrate (glycyl-phenylalanyl-aminofluo
rocoumarin (GFAFC)). A second fluorogenic, cell-impermeant peptide substrate
(bis-alanylalanylphenylalanyl-rhodamine 110 (bis-AAF-R110)) was used to
measure the activity of dead-cell proteases that are released from cells that
have lost membrane integrity.

The second part of the assay uses a luminogenic caspase-3 substrate,
containing the tetrapeptide sequence DEVD, to measure caspase activity,
luciferase activity and cell lysis. The caspase-Glo3/7 reagent was added (100ml)
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Figure 6 A schematic diagram illustrating the proposed mechanism by which
osmotin protects against glutamate-induced synaptic plasticity and neurodegenera-
tion in the brain of postnatal rats. Glutamate-induced neurodegeneration is caused
by the overactivation of glutamate receptors, followed by the increased release
of intracellular Ca2þ that stimulates the JNK/PI3K/Akt pathway, resulting in
widespread neurodegeneration via p53 activation. This activated p53 causes an
increase in the Bax/Bcl-2 ratio, leading to the translocation of cytochrome c that then
activates caspase-3 and PARP-1 expression, inducing DNA fragmentation and cell
apoptosis. However, successively treating with osmotin after glutamate successfully
enhances synaptic plasticity and inhibits glutamate receptor activation and
neurodegeneration through the JNK/PI3K/Akt pathway
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to all the wells and briefly mixed using orbital shaking (500 r.p.m. for 30 s).
After incubation for 30 min at room temperature, the luminescence was measured to
determine caspase activation.

Oxidative stress (ROS) detection. Mouse hippocampal neuronal HT22
cells were cultured in 96-well plates. Each well contained a final volume of 200ml
of DMEM medium containing 10% FBS and 1% penicillin/streptomycin. After a
48-h incubation at 37 1C in a humidified 5% CO2 incubator, the cells were treated
with fresh media containing glutamate (100mM), glutamate plus osmotin
(100þ 0.2mM), glutamate plus LY294002 (100þ 20mM) or glutamate plus
LY294002 plus osmotin (100þ 20þ 0.2mM) for a total of 20 min. The PI3K
inhibitor LY294002 was added to the cells 5 min before the glutamate and osmotin
treatments. A 600mM solution of DCFDA (20,70-dichlorofluorescein diacetate)
dissolved in DMSO/PBS was added to each well and incubated for 30 min.
The plates were then read in ApoTox-Glo (Promega) at 488/530 nm.

Tissue collection and sample preparation. Brain sections from
saline-, glutamate- or glutamate-plus-osmotin-treated rat pups (n¼ 5 rats per
group) were analyzed after 12 h of drug treatment. Transcardial perfusion was
performed with 1X phosphate-buffered saline (PBS) followed by 4% ice-cold
paraformaldehyde. The brain tissues were post-fixed overnight in 4%
paraformaldehyde and subsequently transferred to 20% sucrose until they sank
to the bottom of the tube. The brains were frozen in OCT (Tissue-Tek O.C.T.
compound medium, Sakura Finetek USA, Inc., Torrance, CA, USA) and then
sectioned into 14mm sections in the coronal plane with a CM 3050S cryostat
(Leica, Wetzlar, Germany). The sections were thaw-mounted on Probe-On
positively charged slides (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Western blot analysis. To measure the expression levels of different
proteins using western blot analysis, the animals were killed after 4 h of drug
treatment. The brains were rapidly removed, and the cortex and hippocampus
were dissected and frozen on dry ice. Both regions of the brain were homogenized
in 0.2 M PBS including a protease inhibitor cocktail. A Bio-Rad protein assay kit
(Bio-Rad Laboratories, Hercules, CA, USA) was used to measure the
concentration of proteins in the homogenates. Equal amounts of total protein
(30mg per sample) were electrophoresed through a 10–15% SDS-PAGE gel
under reducing conditions and transferred to a polyvinylidene difluoride (PVDF)
membrane (Santa Cruz Biotechnology, Santa Cruz, CA, USA).

Prestained protein ladders (GangNam-STAIN, iNtRon Biotechnology, Inc.,
Kyungki-Do, Republic of Korea) covering a broad range of molecular weights
(10–245 kDa) were run in parallel and used to determine the molecular weights of
the detected proteins. To block the membrane and minimize nonspecific binding,
the membranes were incubated with 5% (w/v) skim milk. Antibodies used in
immunoblotting for detecting proteins included rabbit-derived anti-actin, anti-Bcl-2,
anti-Bax and anti-caspase-3; goat-derived anti-cytochrome c and anti-p53; and
mouse-derived polyclonal p-JNK, and anti-PARP-1 polyclonal antibodies from
Santa Cruz Biotechnology. We also used rabbit-derived anti-p-CREB (Ser133), anti-
CaMKII, anti-p-Akt (Ser473), anti-p-PI3K (Y458/Y199), anti-p-JNK (Thr183/Tyr185),
anti-AMPA, anti-p-AMPA (Ser845) and anti-synaptophysin from Cell Signaling
Technology, Inc. (Danvers, MA, USA). Membrane-bound secondary antibodies
were visualized using the ECL detection reagent according to the manufacturer’s
instructions (Amersham Pharmacia Biotech, Uppsala, Sweden). The X-ray films
were scanned, and the optical densities of the bands were analyzed by
densitometry using the computer-based Sigma Gel program, version 1.0 (SPSS,
Chicago, IL, USA).

Immunofluorescence assays. Tissue-containing slides were washed
twice for 15 min in 0.01 M PBS and proteinase K solution was then added to
the tissue and incubated for 5 min at 37 1C. Subsequently, the tissues were
incubated for 90 min in blocking solution containing normal swine serum and 0.3%
Triton X-100 in PBS. Primary antibodies (rabbit polyclonal p-Akt, p-PI3K and
caspase-3 from Cell Signaling Technology and goat polyclonal IgG p53 and
mouse polyclonal p-JNK from Santa Cruz Biotechnology; all 1 : 100 in PBS) were
applied at 4 1C overnight. On the following day, secondary antibodies (swine
anti-rabbit TRITC from Dako Denmark A/S (Glostrup, Denmark) and rabbit
anti-goat and goat anti-mouse FITC from Santa Cruz Biotechnology; both 1 : 50 in
PBS) were applied at room temperature for 90 min. The slides were washed twice
with PBS for 5 min. For double staining, the incubations were performed in
parallel. Glass coverslips were mounted on glass slides with mounting medium.

Images were captured using a confocal microscope (FluoView FV 1000; Olympus,
Tokyo, Japan).

TUNEL staining. For the detection of glutamate-induced apoptosis,
nuclear DNA was stained with TUNEL (GenScript USA Inc., Piscataway, NJ,
USA) and counterstained using PI. TUNEL staining was performed according to
the recommendations of the In Situ Cell Death Detection Kit Fluorescein
(GenScript). Glass coverslips were mounted onto the glass slides with mounting
medium. The FITC filter was used was to detect TUNEL staining (green). TUNEL-
positive staining patterns were acquired with a confocal laser scanning microscope
(FluoView FV 1000; Olympus). TUNEL-positive cells in the different regions of
each section were counted using a computer-based program.

Data analysis and statistics. Bands on the western blots were scanned
and analyzed by densitometry using the Sigma Gel System (SPSS Inc.).
A computer-based program was used to measure the integrated densities of
immunofluorescence images. The density values are expressed as the mean±
S.E.M. A one-way analysis of variance (ANOVA) was used to determine significant
differences, and Student’s t-test was used to determine significant differences
between relevant treatment groups. The P-values of o0.05 were considered
significant.
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