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Colorectal cancer (CRC), the second leading cause of cancer-related deaths according
to the World Health Organization, remains a substantial public health problem worldwide.
Even though recent advances in early detection screenings and treatment options have
reduced CRC mortality in developed nations, CRC incidence has been steadily rising
globally [1]. Recently, a growing number of CRCs have been diagnosed in patients younger
than 50 years of age [2–6]. The reasons for this alarming tendency are not well understood,
but current data suggest that dietary fat uptake and obesity may be the major factors that
contribute to the raising rate of early-onset CRC [7,8]. Multiple studies have corroborated
the association between CRC and alterations in lipids [9,10], demonstrating that lipid
metabolism has a profound impact on CRC initiation and progression and is a targetable
vulnerability in this disease.

Lipids are hydrophobic macromolecules classified into eight types based on the
presence of ketoacyl and isoprene groups: fatty acids (FAs), glycerolipids, glycerophos-
pholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids and polyketide [10].
FAs are structural components of complex lipids and play a wide range of roles in hu-
man body. FAs are important substrates for energy metabolism, essential components for
maintaining the structure and fluidity of all cell membranes, and building-blocks of more
structurally complex lipids [11]. In addition to their role as energy substrates and structural
components, lipids are also implicated in multiple functions such as signal transduction,
intracellular trafficking, cell secretion, and migration [12–14].

Dysregulation of lipid metabolism in cancer cells, which is increasingly recognized as
one of the characteristics of aggressive cancer, correlates with a poorer prognosis and shorter
disease-free survival in CRC [11,15]. Increased fatty acid synthesis in 86% of aberrant crypt
foci from patients with sporadic CRC or familial adenomatous polyposis also suggest
its importance from early stages of colonic neoplasm development [16]. The different
sphingolipid and glycerophospholipid profiles have been reported among patients with
locally advanced, unresectable or metastatic CRC compared with healthy volunteers [17].
In general, higher total levels of all phospholipid classes were observed in CRC cell lines
and in tumor cells isolated from CRC patients as compared to cells derived from normal
mucosa [18]. Association of CRC with phospholipid signatures was confirmed by analysis
of fresh frozen sections of CRC tissue and adjacent healthy mucosa from 12 patients using
MALDI mass spectrometry, a novel technique which allows simultaneous localization and
quantification of biomolecules in different histological regions [19].

FAs acquired by cancer cells, either by endogenous synthesis or by exogenous uptake,
are rapidly incorporated into cellular triglycerides [20], which are the main form of lipid
storage and major source of energy in the human organism. Excessive triglycerides and
cholesterol in cancer cells are stored in lipid droplets, and high numbers of lipid droplets
have been reported in CRC as compared to normal colonic tissues [21,22]. CRC stem
cells also contain higher amounts of lipid droplets than their differentiated counterparts,
as revealed by Raman spectroscopy imaging, and the number of lipid droplets directly
correlates with well-accepted CRC stem cell markers such as CD133 and Wnt pathway
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activity [23]. Interestingly, lipid droplets are used not only to maintain lipid homoeostasis
and prevent lipotoxicity, but also to provide a valuable source of adenosine triphosphate
(ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) during conditions of
metabolic stress [24].

Serum lipid profiling also represents an attractive avenue for novel cancer biomarker
discovery. Multiple studies have demonstrated that profiling of lipids in the blood can
distinguished CRC patients from healthy individuals and can be a diagnostic tool for
early-stage CRC [25]. Analysis of 234 serum samples from three groups of patients (66 with
CRC, 76 with polyps, and 92 healthy controls) demonstrated that CRC patients can be
distinguished from healthy controls and individuals with colorectal polyps based on their
serum levels of linoleic and α-linolenic acid [26]. In another study, CRC patients presented
with nearly 50% lower serum concentrations of γ-linolenic acid than healthy controls, which
lead the authors to proposed it as a biomarker for CRC risk [25]. Analysis of plasma from
CRC patients shows that the level of triglycerides is increased in plasma of advanced-stage
versus early-stage CRC patients [27].

Taken together, delineating the differences in lipid metabolism and lipid profiles
between CRC patients and healthy individuals can provide not only potential biomarkers
and diagnostic tools, but can also identify potential therapeutic targets for CRC.

In mammalian cells, FAs can either be obtained from diet or synthesized de novo
from carbohydrate precursors. In contrast to normal epithelial cells, the majority of FAs
in malignant cells are derived from de novo lipogenesis regardless of the availability of
extracellular lipids [11,28]. Fatty acid synthase (FASN), a key enzyme of lipid biosynthesis,
catalyzes the synthesis of palmitoyl-CoA from acetyl-CoA, malonyl-CoA and NADPH [29].
Palmitate can be elongated and desaturated through the activity of stearoyl-CoA desaturase
and elongation of very long chain fatty acid proteins to produce additional FA species
including stearate and oleate which can subsequently be used for production of more
complex lipids [24]. FASN is significantly upregulated in CRC and is associated with
advanced stages of CRC and CRC metastasis [15,30,31]. Upregulation of FASN promotes
tumorigenic properties of CRC cells via upregulation of multiple oncogenic pathways
such as Wnt, HER2, PI3K/Akt, AMPK/mTOR, and cMET [15,31–34]. The increased
reliance of cancer cells on FAs not only sustains their rapid proliferative rate and enhances
migration and invasion, but also provides an essential energy source during conditions
of metabolic stress [10]. Indeed, increased activity of FASN is associated with β-oxidation
of endogenous lipids and promotion of cellular respiration in CRC cells [22]. De novo
lipogenesis is also associated with enhanced saturation of membrane lipids in CRC cells,
making the cells less susceptible to free radicals and penetration of chemotherapeutic
agents [35]. Preclinical studies have shown that inhibition of FASN and de novo palmitate
synthesis induces apoptosis in tumor cells by remodeling cell membranes, inhibiting
oncogenic signaling pathways, and reprogramming gene expression [33,36]. In vivo studies
show that shRNA-mediated inhibition of FASN significantly reduces lung and hepatic
metastases in nude mice and inhibits angiogenesis in an orthotopic CRC model [15,30].
Consistently, pharmacological inhibition of FASN suppresses liver metastasis in mice [37].
Targeting other enzymes within the de novo FA synthesis pathway has also been evaluated,
including ATP citrate lyase (ACLY) and acetyl-CoA carboxylase (ACC). ACLY, a first-step
rate-limiting enzyme for de novo lipogenesis, is upregulated and promotes metastasis
and mediates drug resistance in CRC [38,39]. Inhibition of ACC induces apoptosis in
CRC cells [40]. Taken together, current data strongly support that de novo lipogenesis
significantly contributes to progression of CRC and CRC metastasis and targeting this
pathway is a promising therapeutic strategy in CRC.

While most tumors exhibit a shift toward FA synthesis, cancer cells can also scavenge
lipids from their environment by upregulating various FA-uptake mechanisms including
FA transporters [11]. The most characterized of FA transporters include CD36, also known
as fatty acid translocase, fatty acid transport protein families (FATPs), and plasma mem-
brane fatty acid-binding proteins (FABPs). The reports on CD36 in CRC are inconsistent
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and its role in this disease requires further clarification [41–44]. Interestingly, upregulation
of CD36 has been shown to be a potential compensatory mechanism that drives resistance
to TVB-3664, a novel inhibitor of FASN, which potentially suggests that simultaneous inhi-
bition of FA uptake and synthesis would be required to achieve a desirable anticancer effect
in CRC [43]. Alongside CD36, FATPs and FABPs regulate long- and very long-chain FA
uptake and transport to the various compartments within the cell. FABP4 overexpression
increases FA transport to enhance energy and lipid metabolism, and activates the AKT
pathway and epithelial-mesenchymal transition to promote migration and invasion of CRC
cells [45]. High expression of FABP5 is also associated with cell growth and metastatic
potential of CRC cells [46]. Interestingly, the expression of FABP6 is also higher in primary
CRC and adenomas than in normal epithelium, but is dramatically decreased in lymph
node metastases, suggesting that FABP6 may play an important role in early carcinogene-
sis [47]. Taken together, the uptake and scavenging of extracellular FAs not only allows
metabolic flexibility, but also provides an important compensatory mechanism for cancer
cells to sustain their lipid demands under conditions of metabolic stress.

The relationship between obesity and colorectal cancer risk is well established [48–52].
Epidemiological studies demonstrate that high fat diet and obesity increase the risk of
CRC by 1.5–2.0-fold, with obesity-associated colon cancer accounting for 14–35% of the
total incidence [53]. In the cohort study that followed 121,050 adults for 26 years, intake of
proinflammatory diets including high fat diet was associated with a significantly higher
risk of developing CRC in both men and women [54]. Furthermore, abdominal visceral
adipose tissue volume contributes to the development and growth of colorectal adenomas,
and it is a better predictor for risk of colorectal adenomas than body mass index or waist
circumference in both sexes [55]. The interconnection between adipose tissue and devel-
opment of CRC can be explained if adipose tissue functions as an endocrine system that
secretes growth factors, cytokines and free FAs following lipolysis [24]. Also, adipose tissue
is the main reservoir of triglycerides, capable of releasing them into the bloodstream, and
thus, it may influence the lipid profiles of various tissues [10]. Interactions between adipose
compartment and tumorigenesis have growing interest among researchers. Delineating
the mechanisms driving interactions between CRC cells and adipocytes has provided
fundamental insights into how obesity contributes to tumor initiation and progression [24].

Our understanding of the precise role of lipid metabolism in CRC is still very limited.
Given that lipids regulate very diverse cellular processes and influence a wide range of
tumorigenic steps in cancer development, progression and metastasis, there is substantial
clinical interest in developing therapies to target FA metabolism. Even though no lipid
metabolism therapies are currently used in clinic for CRC, analysis of lipid metabolism in
preclinical models and cancer patients strongly supports lipid metabolism as a targetable
vulnerability in CRC and better insight into FA-mediated metabolic disturbances can define
new directions in diagnosis and treatment of this disease. Improvements in conventional
methods of lipid detection and quantification, as well as development of new spectroscopic,
imaging and data processing methods have greatly advanced our ability to delineate the
differences in lipid profiles and lipid metabolism [55] and have opened new opportunities
for drug development.
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