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Complex visual processing involved in perceiving the
object materials can be better elucidated by taking a
variety of research approaches. Sharing stimulus and
response data is an effective strategy to make the results
of different studies directly comparable and can assist
researchers with different backgrounds to jump into the
field. Here, we constructed a database containing

several sets of material images annotated with visual
discrimination performance. We created the material
images using physically based computer graphics
techniques and conducted psychophysical experiments
with them in both laboratory and crowdsourcing
settings. The observer’s task was to discriminate
materials on one of six dimensions (gloss contrast, gloss
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distinctness of image, translucent vs. opaque, metal vs.
plastic, metal vs. glass, and glossy vs. painted). The
illumination consistency and object geometry were also
varied. We used a nonverbal procedure (an oddity task)
applicable for diverse use cases, such as cross-cultural,
cross-species, clinical, or developmental studies. Results
showed that the material discrimination depended on
the illuminations and geometries and that the ability to
discriminate the spatial consistency of specular
highlights in glossiness perception showed larger
individual differences than in other tasks. In addition,
analysis of visual features showed that the parameters
of higher order color texture statistics can partially, but
not completely, explain task performance. The results
obtained through crowdsourcing were highly correlated
with those obtained in the laboratory, suggesting that
our database can be used even when the experimental
conditions are not strictly controlled in the laboratory.
Several projects using our dataset are underway.

Introduction

Humans can visually recognize a variety of material
properties of the objects they encounter daily.
Although material properties, such as glossiness and
wetness, substantially contribute to recognition, the
contributions of value-based decision making, motor
control, and computational and neural mechanisms
underlying material perception had been overlooked
until relatively recently—for a long time, vision science
mainly used simple artificial stimuli to elucidate the
underlying brain mechanisms. In the last two decades,
however, along with advancements in computer
graphics and machine vision, material perception has
become a major topic in vision science (Adelson, 2001;
Fleming, 2017; Nishida, 2019).

Visual material perception can be considered to be
an estimation of material-related properties from an
object image. For example, the perception of gloss
and matte entails a visual computation of the specular
and diffuse reflections of the surface, respectively.
However, psychophysical studies have shown that
human gloss perception does not have robust constancy
against changes in surface geometry and illumination
(e.g., Nishida & Shinya, 1998; Fleming, Dror, &
Adelson, 2003), the other two main factors of image
formation. Such estimation errors have provided
useful information as to what kind of image cues
humans use to estimate gloss. A significant number of
psychophysical studies have been carried out not only
on gloss but also on other optical material properties
(e.g., translucency, transparency, wetness) (Fleming
& Bulthoff, 2005; Motoyoshi, 2010; Xiao et al.,
2014; Sawayama, Adelson, & Nishida, 2017a, Liao,
Sawayama, & Xiao, 2022) and mechanical material
properties (e.g., viscosity, elasticity) (Kawabe, Maruya,
Fleming, & Nishida, 2015; Paulun et al., 2017; van

Assen, Barla & Fleming, 2018; van Assen, Nishida, &
Fleming, 2020). Neurophysiological and neuroimaging
studies have revealed various neural mechanisms
underlying material perception (Kentridge, Thomson,
& Heywood, 2012; Nishio, Goda, & Komatsu,
2012; Nishio, Shimokawa, Goda, & Komatsu, 2014;
Miyakawa et al., 2017). Some recent studies have also
focused on developmental, environmental, and clinical
factors of material processing (Yang, Kanazawa,
Yamaguchi, & Motoyoshi, 2015; Goda, Yokoi,
Tachibana, Minamimoto, & Komatsu, 2016; Ohishi
et al. 2018). For example, Goda et al. (2016) showed in
their monkey functional magnetic resonance imaging
study that the visuohaptic experience of material objects
alters the visual cortical representation. In addition,
large individual differences in the perception of colors
and materials depicted in one photo (#TheDress)
have attracted much interest and provoked intense
discussions (Brainard & Hurlbert, 2015; Gegenfurtner,
Bloj, & Toscani, 2015).

A promising strategy for a more global understanding
of material perception is to promote multidisciplinary
studies comparing behavioral and physiological
responses of humans and animals obtained under a
variety of developmental, environmental, cultural, and
clinical conditions. There are two problems, however.
One lies in the high degree of freedom in selecting
experimental stimulus parameters and task procedures.
Because the appearance of a material depends not only
on reflectance parameters but also on geometry and
illumination, all of which are high dimensional, the use
of different stimuli (and different tasks) in different
studies could impose serious limitations on direct
data comparisons. The other problem is the technical
expertise necessary for rendering realistic images, which
could discourage researchers unfamiliar with graphics
from beginning material perception studies.

Aiming at removing these obstacles, we attempted
to build a database that can be shared among
multidisciplinary material studies. We rendered several
sets of material images. The images in each set were
changed in one of material dimensions in addition to
illumination and viewing conditions. We then measured
the behavioral performance for those image sets using a
large number of “standard” observers. We used a simple
task that can be used in a variety of human, animal,
and computational studies. By using our database,
one would be able to efficiently begin a new study,
shortening the time for stimulus preparation, as well as
time for control data collection with standard human
observers.

Specifically, we selected six dimensions of material
property (Figure 1). These dimensions have been
extensively studied in the past material perception
studies. Most of them can be unambiguously
manipulated by changing the corresponding rendering
parameters. Although we attempted to cover a wide
range of optical material topics, we do not believe that
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Figure 1. Schematic overview of six tasks recorded in the
database.

we have assembled an exclusive list of critical material
properties that vision science should challenge. Our
intention is not to build the standard database for
all material recognition research, but to establish one
primitive test set that promotes further examination of
the previous findings on material recognition in more
diverse research contexts (see Discussion).

Three of these dimensions are related to gloss
(Figure 1, tasks 1, 2, and 6), the most widely investigated
material attribute (Pellacini, Ferwerda, & Greenberg,
2000; Fleming et al., 2003; Motoyoshi, Nishida,
Sharan, & Adelson, 2007; Olkkonen & Brainard, 2010;
Doerschner, Fleming, Yilmaz, Schrater, Hartung,
& Kersten, 2011; Kim, Marlow, & Anderson, 2011;
Marlow, Kim, & Anderson, 2011; Kentridge et al.,
2012; Marlow et al., 2012; Nishio et al., 2014; Sun,
Ban, Di Luca, & Welchman, 2015; Adams, Kerrigan, &
Graf, 2016; Miyakawa, Banno, Abe, Tani, Suzuki, &
Ichinohe, 2017; Schmid, Barla, & Doerschner, 2021;
Storrs, Anderson, & Fleming, 2021). We controlled the
contrast gloss and gloss distinctness of image (DOI)
as in previous studies (Pellacini et al., 2000; Fleming
et al., 2003; Nishio et al., 2014). For example, Nishio
et al. (2014) found neurons in the inferior temporal
cortex of monkeys that selectively and parametrically
respond to gloss changes in these two dimensions.
We also controlled the spatial consistency of specular
highlights, which is another stimulus manipulation of
gloss perception (Figure 1, task 6). By breaking the
spatial consistency, some highlights look like albedo
changes by white paint (Beck & Prazdny, 1981; Kim
et al., 2011; Marlow et al., 2011; Sawayama & Nishida,
2018). In addition to gloss perception, translucency
perception has also been widely investigated (Fleming
& Bülthoff, 2005; Motoyoshi, 2010; Gkioulekas, Xiao,
Zhao, Adelson, Zickler, & Bala, 2013; Nagai, Ono,
Tani, Koida, Kitazaki, & Nakauchi, 2013; Xiao et al.,
2014; Chadwick, Cox, Smithson, & Kentridge, 2018;

Figure 2. (a) Illumination conditions. Object images were
rendered with six global illumination environments and were
presented to observers under three illumination conditions.
Under illumination condition 1, a stimulus display consisted of
four objects (same shape, different poses) rendered with the
same illumination environment. Under illumination condition 2,
a stimulus display consisted of three objects (same shape, same
pose) rendered with slightly different (in terms of their pixel
histograms) light probes. Under illumination condition 3, a
stimulus display consisted of three objects (same shape, same
pose) rendered with largely different illumination
environments. (b) Geometrical conditions. We used five
different object shapes for each material task under each
illumination condition. The stimulus condition is also
summarized in Table 1.

Gigilashvili, Thomas, Hardeberg, & Pedersen, 2021).
We adopted the task of discriminating opaque from
translucent objects by controlling the thickness of the
translucent media (Figure 1, task 3). Furthermore, we
adopted the task of plastic-yellow/gold discrimination
(task 4, MP) (Okazawa, Koida, & Komatsu, 2011)
and glass/silver discrimination (task 5, MG) (Kim &
Marlow, 2016; Tamura, Prokott, & Fleming, 2019).

We used an oddity task (Figure 3) to evaluate the
capability of discriminating each material dimension.
We chose this task because it requires neither complex
verbal instruction nor verbal responses by the observer.
Therefore, it can be applied to a wide variety of
observers including infants, animals, and machine
vision algorithms, and their task performances can be
directly compared. Indeed, several research projects
using our dataset are underway (see the Discussion
section).

To control the task difficulty, we varied the value
of the parameter of each material dimension. In
addition, we manipulated the stimulus in two ways
that affected the task difficulty. First, we set three
illumination conditions. One set of stimuli included
images of different poses taken in identical illumination
environments (Figure 2a, illumination condition 1); the
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Illumination Task 1 (GC) Task 2 (GD) Task 3 (OT) Task 4 (MP) Task 5 (MG) Task 6 (GP)

1 Object (5),
illumination (1),
pose (5)

Object (5),
illumination (1),
pose (5)

Object (5),
illumination (1),
pose (5)

Object (5),
illumination (1),
pose (5)

Object (5),
illumination (1),
pose (5)

Object (5),
illumination (1),
pose (5)

2 Object (5),
illumination (3),
pose (1)

Object (5),
illumination (3),
pose (1)

Object (5),
illumination (3),
pose (1)

Object (5),
illumination (3),
pose (1)

Object (5),
illumination (3),
pose (1)

—

3 Object (5),
illumination (3),
pose (1)

Object (5),
illumination (3),
pose (1)

Object (5),
illumination (3),
pose (1)

Object (5),
illumination (3),
pose (1)

Object (5),
illumination, (3),
pose (1)

—

Table 1. Summary of stimulus conditions. Digits in parentheses indicate the number of each condition.

Figure 3. Example of a four-object oddity task (illumination
condition 1) used for collecting standard observer data. The
observers were asked to select which image was the odd one
out in the four images. We did not tell the observer that the
experiment was on material recognition. We conducted
experiments both in the laboratory and through crowdsourcing.

second set contained stimuli of identical poses taken in
slightly different illumination environments (Figure 2a,
illumination condition 2); and the third set contained
identical poses taken in largely different illumination
environments (Figure 2a, illumination condition 3).
Then, we used the five different object geometries for
each task (Figure 2b).

We wished to collect data from a large number of
observers. A laboratory experiment affords control
over the stimulus presentation environment but is
unsuited to collecting a large amount of data from
numerous participants. In contrast, one can collect a
lot of data through crowdsourcing, at the expense of
reliable stimulus control. To overcome this trade-off, we
conducted identical psychophysical experiments both
in the laboratory and through crowdsourcing. This

enabled us to evaluate individual difference distributions
along with the effects of environmental factors on task
performance.

In sum, we made a large set of image stimuli for
evaluations of visual discrimination performance on
six material dimensions (gloss contrast, gloss DOI,
translucency–opaque, plastic–gold, glass–silver, and
glossy–painted) and measured a large number of
adult human observers performing oddity tasks in the
laboratory and through crowdsourcing. The tasks had
three illumination conditions and five object geometries.
Although the original motivation of this project was to
make a standard stimulus–response dataset of material
recognition for promotion of multidisciplinary studies,
it also has its own scientific value as, to the best of our
knowledge, it is the first systematic comparison of the
effects of illumination condition and object geometry,
as well as of individual variations across a variety of
material dimensions. Our data include several novel
findings, as reported below.

Methods

We evaluated the observers’ performance of six
material recognition tasks. We selected tasks that
had been used in previous material studies: (1)
gloss contrast discrimination (GC); (2) gloss DOI
discrimination (GD); (3) opaque versus translucent
(OT); (4) metallic gold versus plastic yellow (MP); (5)
metallic silver versus glass (MG); and (6) glossy versus
painted (GP). For each task, we used five geometry
models. We used six global illuminations for tasks
1 to 5 and one for task 6. We conducted behavioral
experiments using an oddity task, which can be used
even with human babies, animals, and brain-injured
participants, because it does not entail complex verbal
instructions. In the experiment, the observers were
asked to select the stimulus that represented an oddity
among three or four object stimuli. They were not given
any feedback about whether or not their responses
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were correct. We controlled the task difficulty by
changing the illumination and material parameters.
To test the generality of the resultant database, we
conducted identical experiments in the laboratory and
through crowdsourcing. Our dataset is available at
https://github.com/mswym/material_dataset.

Image generation for making standard image
database

We utilized the physically based rendering software
called Mitsuba (Jakob, 2010) to make images of objects
consisting of different materials, and we controlled six
different material dimensions.

Task 1 (GC) and task 2 (GD) conditions
To control the material property of the gloss

discrimination tasks, we used the perceptual light
reflection model proposed by Pellacini et al. (2000).
They constructed a model based on the results of
psychophysical experiments using stimuli rendered by
the Ward reflection model (Ward, 1992) and rewrote the
Ward model parameters in perceptual terms. The model
of Pellacini et al. has two parameters, d and c, which
roughly correspond to the DOI gloss and the contrast
gloss, respectively, of Hunter (1937). The difficulty of
our two gloss discrimination tasks was controlled by
separately modulating these two parameters.

The parameter space of the Ward reflection model
can be described as follows:

ρ (θi, φi, θo, φo) = ρd

π
+ ρs

exp
[−tan2δ/α2]

4πα2
√
cos θi cos θo

,

where ρ(θ i, φi, θo, φo) is the surface reflection model,
and θ i, φi and θo, φo are the incoming and outgoing
directions, respectively. The model has three parameters;
ρd is the diffuse reflectance of a surface, ρs is the
energy of its specular component, and α is the spread
of the specular lobe. As noted earlier, Pellacini et al.
(2000) defined two perceptual dimensions, c and d, on
the basis of the Ward model parameters, such that d
corresponds to DOI gloss and is calculated from α, and
c corresponds to perceptual glossiness contrast and is
calculated from ρs and ρd using the following formula:

d = 1 − α

c = 3
√

ρs + ρd
2 − 3

√
ρd
2
.

Although more physically feasible bidirectional
reflectance distribution function (BRDF) models
than the Ward model have been proposed for gloss
simulation (Ashikmin, Premože, & Shirley, 2000;
Walter, Marschner, Li, & Torrance, 2007), we based
ours on the Ward model because it has been used in
many previous psychophysics and neuroscience studies
(Nishio et al., 2014).

Figure 4. Material examples of tasks 1 (GC) and 2 (GD). For task
1 (GC), the specular reflectance of the odd target stimulus was
varied from 0.00 to 0.12. The non-target stimuli that were
presented as the context objects in each task had specular
reflectance of 0.06. For task 2 (GD), the DOI parameter of the
target specular reflection was varied from 1.00 to 0.88, and that
of the non-target stimuli
was 0.94.

For the task of gloss discrimination in the contrast
dimension, the specular reflectance (ρs) was varied
in a range from 0.00 to 0.12 in steps of 0.02 while
keeping the diffuse reflectance (ρd) constant (0.416),
resulting in the contrast parameters 0, 0.018, 0.035,
0.052, 0.067, 0.082, and 0.097. The DOI (d) was the
fixed value (0.94) (Figure 4, task 1). As c approaches 0,
the object appears to have a matte surface. The specular
reflectance (ρs) of the non-target stimulus in the task
was 0.06.

For the task of gloss discrimination in the DOI
dimension, the parameter d was varied from 0.88 to
1.00 in 0.02 steps while keeping ρs constant (0.06)
(Figure 4, task 2). As d approaches 1.00, the highlights
of the object appear sharper. The DOI parameter (d)
of the non-target stimuli was 0.94.

Task 3 (OT) conditions
To make translucent materials, we used the function

of homogeneous participating medium implemented
in the Mitsuba renderer. In this function, a flexible
homogeneous participating medium is embedded in
each object model. The intensity of the light that
travels in the medium is decreased by scattering and
absorption and is increased by nearby scattering. The
parameters of the absorption and scattering coefficients
of the medium describe how the light is decreased. We
used the parameters of the “whole milk” measured by
Jensen, Marschner, Levoy, M., and Hanrahan (2001).
The parameter of the phase function describes the
directional scattering properties of the medium. We
used an isotropic phase function. To control the task
difficulty, we modulated the scale parameter of the

https://github.com/mswym/material_dataset
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Figure 5. Material examples of tasks 3 (OT), 4 (MP), and 5 (MG).
For task 3 (OT), the scale of the volume media that consisted of
milk was varied from 1.0 to 0.0039. For task 4 (MP) and 5 (MG),
the blending ratio of the two materials was varied from 0.0 to
0.8. The non-target stimuli in the tasks were as shown in the
legend.

scattering and absorption coefficients. The parameter
describes the density of the medium. The smaller the
scale parameter is, the more translucent the medium
becomes. The scale parameter was varied as follows:
0.0039, 0.0156, 0.0625, 0.25, and 1.00 (Figure 5, task
3). The scale parameter of the non-target stimulus in
the task was 1.00. In addition, the surface of the object
was modeled as a smooth dielectric material to produce
strong specular highlights, as in previous studies
(Gkioulekas et al., 2013; Xiao et al., 2014). That is,
non-target objects were always opaque, and the degree
of transparency of the target object was changed.

Task 4 (MP) conditions
To morph the material between gold and plastic

yellow, we utilized a linear combination of gold and
plastic BRDFs, implemented in the Mitsuba renderer.
By changing the weight of the combination, the
appearance of a material (e.g., gold) can be modulated
toward that of the other material (e.g., plastic yellow).
In this task, the weight was varied in a range from
0.00 to 0.80 in steps of 0.20 (Figure 5, task 4). The
parameter of the non-target stimulus was 0, at which
the material appeared to be pure gold.

Task 5 (MG) conditions
Similar to task 4, we utilized a linear combination of

dielectric glass and silver materials, also implemented in

the Mitsuba renderer. The weight of the combination
was varied from 0.00 to 0.80. The parameter of the
non-target stimulus was 0, at which the material
appeared to be pure silver (Figure 5, task 5).

As noted above, for tasks 3, 4, and 5 in which the
parameters of the target stimulus were varied between
two material states (i.e., opaque vs. transparent,
metallic vs. plastic, and metallic vs. glass), we placed
the non-target objects at one end (i.e., one of two
material states). If we placed the non-target stimuli
in the middle of the stimulus variable, as in tasks 1
and 2, and when the difference between the target and
non-target stimuli was small, the display contained only
ambiguous material objects. In such cases, the observers
might not pay attention to the material dimension
relevant to the task. By placing the non-target at one
extreme value, we could make the stimulus display
always contain the object images in a specific material
state, helping participants focus on the task relevant
material dimension.

Task 6 (GP) conditions
The skewed intensity distribution due to specular

highlights of an object image can be a diagnostic cue
for gloss perception (Motoyoshi et al., 2007). However,
when the specular highlights are inconsistent in terms
of their position and/or orientation with respect to
the diffuse shading component, they look more like
white blobs produced by surface reflectance changes
even if the intensity distribution is kept constant (Beck
& Prazdny; 1981; Anderson & Kim, 2009; Kim et al.,
2011; Marlow et al., 2011; Sawayama & Nishida, 2018).
For our last task of glossy objects versus matte objects
with white paint, we rendered the glossy objects on
the basis of the model of Pellacini et al. (2000). The
parameter c was set to 0.067, and the parameter d
ranged from 0.88 to 1.00 in steps of 0.04 (Figure 6,
lower). Considering material naturalness, these objects
may not be typically encountered in the real world,
but this task is theoretically important because it will
provide insights into the underlying visual computation
of material recognition.

To make object images with inconsistent highlights
(white paints), we rendered each scene twice with
different object materials with identical shapes. First,
we rendered a glossy object image by setting the diffuse
reflectance to 0 (i.e., the image including only specular
highlights). The rendered image of specular highlights
was a two-dimensional texture for the second rendering.
We eliminated the brown table when rendering the
first scene. Next, we rendered a diffuse object image
(i.e., one without specular reflection with the texture
of specular highlights). The object and illumination
for the first and second renderings were the same. We
mapped the specular image rendered in one object
pose to the three-dimensional geometry by spherical
mapping and repeating the image. Because the position
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Figure 6. Material examples of task 6. The DOI of the specular
reflection was varied from 1.00 to 0.88. This parameter was the
same for the non-target painted objects and the target glossy
object in each stimulus display.

of the texture mapping was randomly determined,
the highlight texture positions were inconsistent with
diffuse shadings. We varied the parameter d of the first
rendering from 1.00 to 0.88 (Figure 6, lower). After we
rendered the inconsistent-highlights image, the color
histogram of the image was set to that of a consistent
glossy object image by using a standard histogram
matching method (Sawayama & Nishida, 2018).

We made task 6 only under illumination 1. This is
because it was difficult to match the color distributions
of the target and non-target stimuli for illuminations
2 and 3, where one stimulus set was rendered under
different illuminations. If we matched the color
histograms of the objects under these conditions, the
colors of the objects could be incongruent with their
background colors (i.e., the table and the shadow in
this scene). This could produce another cue to find an
outlier, thus making these conditions inappropriate for
the task purpose.

Geometry
For each material, we rendered the object images

by using five different abstract geometries (Figure 2b).
These geometries were made from a sphere by
modulating each surface normal direction with
different kinds of noise using ShapeToolbox (Saarela &
Olkkonen, 2016; Saarela, 2018). Specifically, Object_1
was made from modulations of low-spatial-frequency
noise and crater-like patterns (the source code
of this geometry is available on the web, http:
//saarela.github.io/ShapeToolbox/gallery-moon.html).
Object_2 was a bumpy sphere modulated by lowpass
bandpass noise. Object_3 was a bumpy sphere
modulated by sine-wave noise. Object_4 and Object_5
were bumpy spheres modulated by Perlin noise. These
objects were also rendered using ShapeToolbox.

Five samples were too small to systematically
vary shape parameters. Instead, we handcrafted
sphere-based abstract shapes in such a way expected
to maximize the shape diversity. It is known that, even
when rendering with the same reflectance function
(BRDF), objects with smooth, low-frequency surface
modulations and those with spiky, high-frequency
surface modulations could have very different material
appearance (Nishida & Shinya, 1998, Vangorp,
Laurijssen, & Dutré, 2007). We therefore created five
geometries with a variety of low and high spatial
frequency surface modulations to see human material
perception under widely different geometry conditions.

Illumination and pose
We used six high-dynamic-range light-probe images

as illuminations for rendering. These images were
obtained from Bernhard Vogl’s light probe database
(http://dativ.at/lightprobes/). To vary the task difficulty,
we used three illumination conditions (illumination
conditions 1, 2, and 3) (Figure 2a). Under illumination
condition 1, the observers selected one oddity from
four images in a task. We rendered the images by using
an identical light probe: “Overcast Day/Building Site
(Metro Vienna).”We prepared five poses for each task
of illumination condition 1 by rotating each object in
36° steps; four of them were randomly selected in each
task.

Under illumination condition 2, the observers
selected one oddity from three images in a task. We
created the images by using slightly different (in terms of
their pixel histograms) light probes, including “Overcast
Day/Building Site (Metro Vienna),” “Overcast Day
at Techgate Donaucity,” and “Metro Station (Vienna
Metro).” The task procedure of illumination condition
3 was the same as that of illumination condition 2.

For illumination condition 3, we created the three
images by using light probes that were rather different
from each other: “Inside Tunnel Machine,” “Tungsten
Light in the Evening (Metro Building Site Vienna),” and
“Building Site Interior (Metro Vienna).”We computed
the pixel histogram similarity for each illumination pair
and used it as the distance for the multidimensional
scaling analysis (MDS). We extracted three largely
different light probes in the MDS space and used them
for illumination condition 3. We also selected three
similar light probes in the space and used them for
illumination condition 2. The pose of each object in
illumination conditions 2 and 3 was not changed. The
stimulus condition is summarized in Table 1.

Rendering
To render the images, we used the integrator of the

photon mapping method for tasks 1, 2, 4, 5, and 6
and used the integrator of the simple volumetric path
tracer implemented in the Mitsuba renderer for task 3
(OT). The calculation was conducted using single-float

http://saarela.github.io/ShapeToolbox/gallery-moon.html
http://dativ.at/lightprobes/
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precision. Each rendered image was converted into
sRGB format with a gamma of 2.2 and saved as an
8-bit PNG image.

Behavioral experiments

Laboratory experiment
Twenty paid volunteers participated in the laboratory

experiment. Before starting the experiment, we
confirmed that all of them had normal color vision by
having them take the Farnsworth Munsell 100 Hue Test
and that all had normal or corrected-to-normal vision
by having them take a simple visual acuity test. The
participants were naïve to the purpose and methods of
the experiment. The experiment was approved by the
ethical committees at NTT Communication Science
Laboratories.

The generated stimuli were presented on a calibrated
30-inch color monitor (ColorEdge CG303W; EIZO,
Hakusan, Ishikawa, Japan) controlled with a Quadro
600 video card (NVIDIA Corporation, Santa Clara,
CA). Each participant viewed the stimuli in a dark
room at a viewing distance of 86 cm, where a single
pixel subtended 1 arcmin. Each object image of 512 ×
512 pixels was presented at a size of 8.5° × 8.5°.

In each trial, four (illumination 1) or three
(illuminations 2 and 3) object images chosen for
each task were presented on the monitor (Figure 3).
Measurements of different illumination conditions
were conducted in different blocks. Under illumination
condition 1, four different object images in different
orientations were presented. Under illumination
conditions 2 and 3, the three different object images
had different illuminations. The order of illumination
conditions 1, 2, and 3 was counterbalanced across
observers. The observers were asked to report which
of the object images looked odd by pushing one of
the keys. The stimuli were presented until the observer
made a response. The task instructions were simply to
find the odd one with no further explanation about how
it was different from the rest. The observers were not
given any feedback about whether or not their response
was correct. All made 10 judgments for each task of
illumination condition 1. Seventeen observers made
10 judgments for each task of illumination condition
2, and three made only seven judgments due to the
experiment’s time limitation. Seventeen observers made
10 judgments for each task of illumination condition 3,
and three made seven judgments due to the experiment’s
time limitation.

Crowdsourcing experiment
In the web experiment, 416, 411, and 405 paid

volunteers participated in the tasks of illumination
conditions 1, 2, and 3, respectively. We recruited
these observers through a Japanese commercial

crowdsourcing service. All who participated under
illumination condition 3 also participated under
illumination conditions 1 and 2. Moreover, all who
participated in illumination condition 2 had also
participated under illumination condition 1. The
experiment was approved by the ethical committees at
NTT Communication Science Laboratories.

All observers used the web browsers of their own
personal computers or tablets to participate in the
experiment. We asked them to watch the screen from
a distance of about 60 cm. Each object image was
shown on the screen at a size of 512 × 512 pixels. We
did not strictly control the visual angle of the image
participants observed.

The procedure was similar to that of the laboratory
experiment. In each trial, four or three object images
that had been chosen depending on the task were
presented on the screen, as shown in Figure 3. The
measurement was conducted under illumination
condition 1 first, followed by one under illumination
condition 2 and one under illumination condition 3.
The observers were asked to report which of the object
images looked odd by clicking one of the images. Each
participant made one judgment for each condition. The
other steps of the procedure were the same as those in
the laboratory experiment.

Data analysis

For each oddity task, we computed the proportion
that each participant got correct. The chance level
of the correct proportion was 0.25 for illumination
condition 1 and 0.33 for illumination conditions 2
and 3. We computed the sensitivity d’ from each
correct proportion by using a numerical simulation
to estimate the sensitivity of the oddity task (Craven,
1992). We used the Palamedes data analysis library for
the simulation (Kingdom & Prins, 2010; Kingdom &
Prins, 2016; Prins & Kingdom, 2018). To avoid values
of infinity, we converted the one probability according
to the total trial number in the simulation; that is, we
corrected the one value to 1 – (1/2N), where N is the
total trial number (Macmillan & Kaplan, 1985). For
the laboratory experiment, we computed the sensitivity
(d′) of each observer and averaged it across observers.
For the crowdsourcing experiment, because each
observer engaged in each task one time, we computed
the proportion correct for each task from all of the
observers’ responses and used that value to compute d′.

Results

In this section, we describe the results of our
benchmark data acquisition. First, we evaluate the
environment dependency of our experiment—the
performance difference between the online and
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Figure 7. Results of laboratory and crowdsourcing experiments. The sensitivity d′ in each task in the crowdsourcing experiment is
plotted as a function of that in the laboratory experiment. (a) Results of all tasks. Each plot indicates a task with an object, an
illumination, and a difficulty. The red line indicates the linear regression between the crowdsourcing and laboratory results. The
coefficient of determination (R2) of the regression and the equation are shown in the legend. The results show that the tasks were
generally robust across experimental conditions. (b) Results of individual tasks. Different panels indicate tasks involving different
materials. Each plot in a panel indicates a task with an object, illumination, and difficulty. The red line indicates the linear regression
between the laboratory and crowdsourcing results. The coefficient of determination (R2) of the regression and the equation are
shown in the legend. The accuracy of task 2 (GD) in the crowdsourcing experiment was generally lower than that in the laboratory
experiment. The correlation of task 6 (GP) between the laboratory and crowdsourcing experiments was the worst.

laboratory experiments. Then, we describe the
illumination and geometry effect on each task. After
discussing each task, we show how intermediate
visual features contribute to task performance. In
the end, we analyze the individual difference in each
task.

Environment dependence

For cross-cultural, cross-species, brain-dysfunction,
and developmental studies, stimulus presentation
on a monitor cannot always be strictly controlled
because of apparatus or ethical limitations. Therefore,
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a performance validation of each task across different
apparatuses is critical to decide which tasks the users
of our database should select in their experimental
environment. Figure 7a shows the results of the
correlation analysis between the laboratory and
crowdsourcing experiments. The coefficient of
determination (R2) of the linear regression between the
sensitivity (d′) in the laboratory experiment and that
of the crowdsourcing experiment is 0.79, indicating
a high linear correlation. However, the slope of the
regression is less than 1. This shows that the sensitivity
of the crowdsourcing experiment was worse than that
of the laboratory experiment, with many repetitions
in general. These findings suggest that the present
tasks maintain relative performance across different
experimental environments.

Figure 7b shows the results for each task of the
laboratory and crowdsourcing experiments in more
detail. The coefficients of determination (R2) in tasks
1 to 6 were 0.60, 0.40, 0.86, 0.60, 0.62, and 0.39,
respectively. The coefficient of task 6 (GP) was the
worst, followed by task 2 (GD). As in the latter section,
task 6 (GP) also showed large individual differences;
thus, the correlation between the laboratory and
crowdsourcing experiments was decreased. The slope
of the linear regression on task 2 (GD) was 0.44,
and the proportion correct in the crowdsourcing
experiment for task 2 was generally lower than that in
the laboratory for task 2. In the laboratory experiment,
we used a 30-inch liquid-crystal display monitor, and
the stimulus size of each image was presented at a size
of 8.5° × 8.5°, which we expected to be larger than
when participants on the web observed the image on a
tablet or PC. Task 2 (GD) is related to the DOI of the
specular reflection; thus, the spatial resolution might
have affected the accuracy of the observers’ responses,
although the relative difficulty for task 2 (GD) even in
the crowdsourcing experiment was similar to that in the
laboratory experiment. These findings suggest that the
absolute accuracy of task 2 (GD) depends largely upon
the experimental environment.

Illumination and geometry

Figures 8 to 13 show the performance of each task
in the laboratory experiment. Different panels depict
results obtained for different objects. Different symbols
in each panel depict different illumination conditions.
The results of the crowdsourcing experiment are shown
in Appendix A. For tasks 1 to 5 (Figures 8 to 12), we
parametrically changed the material parameters (e.g.,
the contrast dimensions for task 1, GC). Results show
that the discrimination accuracy increased as the target
material parameters deviated from the non-target one.
This trend is most readily observed for illumination 1
on each task condition. In contrast, the accuracy did
not change much with the material parameters for some

Figure 8. Results of task 1 (GC) in the laboratory experiment.
Different panels show different objects. Different symbols in
each panel depict different illumination conditions. The vertical
red line in each panel indicates the parameter of the non-target
stimulus. Error bars indicate ±1 SEM across observers.

conditions. This trend can be observed for illuminations
2 and 3 of task 1 (GC) and objects 4 and 5 of task
2 (GD). For task 6 (GP), the relation of target and
non-target stimuli differed from that of the other tasks.
In this task, the non-target stimulus was made for each
material parameter (i.e., DOI). As shown in Figure 13,
this material parameter did not affect the task difficulty.

By comprehensively assessing material recognition
performance across different stimulus conditions, we
found novel properties that have been overlooked in
the previous literature, one of which pertains to the
geometrical dependence of material recognition. When
object images changed in the gloss DOI discrimination
task (task 2, GD) (Figure 9), the observers could
detect the material difference better for smooth objects
(objects 2 and 3) than for rugged objects (objects 4
and 5). In contrast, when the object images changed
in the gloss contrast discrimination task (task 1, GC)
(Figure 8), little geometrical dependence was found.
We also found little geometrical dependence when
observers detected highlight-shading consistency (task
6, GP) (Figure 13). Although geometrical dependencies
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Figure 9. Results of task 2 (GD) in the laboratory experiment.

of glossiness perception have been reported before
(Nishida & Shinya, 1998; Vangorp et al., 2007), they
were mainly about the effects of shape on apparent
gloss characteristics, not on gloss discrimination.
Furthermore, our results also show a geometrical
dependence of translucency perception (task 3,
OT) (Figure 10). Similar to the dependence on the
DOI dimension, the sensitivity changed between the
smooth objects (objects 2 and 3) and rugged objects
(objects 4 and 5), but in the opposite way. Specifically,
the translucent difference was more easily detected
for the rugged objects than for the smooth objects
(Figure 10).

We also found an illumination dependence in material
recognition. We used three illumination conditions,
wherein the illumination environments used in a task
were identical (illumination 1), similar to each other
(illumination 2), or largely different from each other
(illumination 3). The results showed that task accuracy
decreased as the difference in light probes across the
images increased from illumination 1 to illuminations 2
and 3 (Figures 8–13). This finding not only confirms the
large effect of illumination on gloss perception reported
before (Fleming et al., 2003; Motoyoshi & Matoba
2012; Zhang, de Ridder, Barla, & Pont, 2019) but also
demonstrates similarly strong effects of illumination on

Figure 10. Results of task 3 (OT) in the laboratory experiment.

other material discrimination tasks (OT, MP, and MG).
The observers’ data is stored in the repository with the
image dataset (Appendix B).

Intermediate visual feature analysis

One may raise the concern that our observers might
have made oddity judgments based on differences
in low-level superficial image properties such as the
mean color of the object. We did not explicitly ask
the observers to select one object image in terms of
the material appearance. This procedure could lead
observers to take a simple strategy unrelated to material
judgment. A related question is that, if not such simple
properties, are there any intermediate image features
in hierarchical visual processing that can explain the
observers’ responses? Recent studies have shown that
the intermediate processing in the ventral visual stream
of humans and monkeys encodes the higher-order
image features as computed in texture synthesis
algorithms or deep convolutional neural networks
(Freeman et al., 2013; Okazawa, Tajima, Komtsu, 2015;
2017; Yamins & Dicarlo, 2016). It has been suggested
that the processing in the visual ventral stream also
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Figure 11. Results of task 4 (MP) in the laboratory experiment.
Data for one of the observers for object 1 and illumination 2 are
missing due to a mistake in the stimulus presentation.

mediates material recognition for static objects (Nishio
et al., 2012; Nishio et al., 2014; Miyakawa et al., 2017).
We asked how such intermediate features possibly
processed in material computation could explain the
observers’ responses.

More specifically, we analyzed how various image
feature differences on each task could explain the
observers’ task performance. Each task (i.e., a material
dimension with an object under an illumination
condition) included a set of material objects with
different combinations of poses (illumination condition
1) or illuminations (illumination conditions 2 and 3).
These combinations were used as repetition for the
behavioral experiment. In the analysis, we chose all
combinations for each task and calculated the mean
feature distance. We calculated this distance metric
using various image features (e.g., pixel statistics,
texture statistics) as described below in detail. If the
distance metric of each image feature is correlated with
human performance, then the feature can be diagnostic
for human judgments.

We linearly regressed the discrimination sensitivity
d’ for each task using the distance metric calculated
from various image features. Specifically, we used

Figure 12. Results of task 5 (MG) in the laboratory experiment.

the texture parameters originally proposed in the
literature of texture synthesis by Portilla & Simoncelli
(2000). They suggested that natural textures can be
synthesized by the probabilistic summary statistics
derived from the pixel histogram and the subband
distribution, including higher-order statistics such as
the correlations across the subband filter outputs. More
recently, many studies have shown that the intermediate
visual processing in the ventral stream, such as V2 or
V4, encodes these texture parameters (Freeman et al.,
2011; Okazawa et al., 2015). Following the previous
studies (Okazawa et al., 2015), we reduced the original
texture parameters by removing redundant features
because a large number of parameters can make the
fitting unreliable. Specifically, we conducted the same
reduction as Okazawa et al. (2015), except that (1) we
included the mean, SD, and kurtosis of the marginal
statistics, as well as the skewness, and (2) we calculated
these statistics not only for grayscale images (CIE L*
image) but also for color images (CIE a* and CIE b*
images). We defined the white XYZ value averaging the
diffuse white sphere rendered under each illumination
condition and used it to calculate the CIE L*a*b* of
each image. We extracted the center 128 × 128 pixels
of each image and calculated the texture parameters
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Figure 13. Results of task 6 (GP) in the laboratory experiment.

using the texture synthesis algorithm by Portilla &
Simoncelli (2000) with four scales and four orientations.
We reduced these original texture parameters of each
CIE L*, a*, or b* image to 32 parameters following
Okazawa et al. (2013). More details are described
in the supplementary tables S1 and S2 of Okazawa
et al. (2013). In total, we used 96 parameters for the
regression analysis.

We conducted five regressions with different types
of parameters to explore the contribution of different
statistics. Specifically, we used (1) pixel color means,
(2) pixel color statistics, (3) Portilla–Simoncelli (PS)
grayscale texture statistics, (4) PS grayscale and pixel
color statistics, and (5) PS color statistics. The pixel
color means and the pixel color statistics were the
marginal statistics in the PS texture statistics. The pixel
color means indicated the averaged pixel values of each
L*a*b* channel. The pixel color statistics indicated
the mean, SD, skewness, and kurtosis of each color
channel. The numbers of these parameters were 3
and 12, respectively. For the two conditions, we used
a linear regression without regularization to fit the
discrimination sensitivity (blue and red in Figure 14).
For the three PS texture statistics conditions (yellow,
purple, and green in Figure 14), we used the compressed
PS statistics as described above. Because the number

Figure 14. Results of the linear regressions using different
parameters. We regressed the human discrimination
performance on pixel color means (three parameters, blue),
pixel color statistics (12 parameters, red), PS grayscale texture
statistics (regularized 18 parameters, yellow), PS grayscale
statistics and pixel color statistics (regularized 18 parameters,
purple), or PS color statistics (regularized 18 parameters,
purple). (a) Results of theMSE for each regression. (b) Results
of theMSE for each regression. These results are shown using a
violin plot. (c) Results of theMSE for each task. The error bars
indicate the bootstrap 95% confidence intervals.

of parameters for these conditions was large (32, 48,
and 96, respectively), we used L1-penalized linear
least-squares regression (i.e., lasso) to avoid overfitting.
We controlled the hyperparameters so that the number
of independent variables was 18, where the regression
of the PS grayscale statistics condition showed the
minimum mean-squared error (MSE).

We divided all tasks into training and test datasets
with a ratio of four to one, respectively, and conducted
the above five regressions. The task ratio was kept
constant across the training and test datasets.
For the training dataset on the lasso regressions,
we regressed the discrimination sensitivity using
5-fold-cross validation. Figure 14 shows the MSE
and the determinant coefficient for the test datasets.
We resampled the training and test datasets 10,000
times and have depicted the distribution using a
violin plot. The predictions based on the color mean
statistics did not match the observers’ discrimination



Journal of Vision (2022) 22(2):17, 1–24 Sawayama et al. 14

Figure 15. Histogram of response accuracy for each observer in the crowdsourcing (blue) and lab (red) experiments. Different panels
indicate different material tasks and illumination conditions. For each condition, the probability of a correct response was calculated
by averaging the responses of each observer across objects and task difficulties. The histograms of crowdsourcing and lab
experiments are overlaid in each panel. The mean and standard deviation of each distribution are shown in each panel.

sensitivity at all (Figs. 14a, 14b). These results suggest
that the observers did not simply rely on the mean
differences to perform the oddity tasks. The MSE and
the determinant coefficient for the marginal statistics
condition were more improved when we added the
higher-order statistics (marginal statistics condition, PS
grayscale statistics condition, and PS color statistics
condition). Because the regularization parameter was
controlled under the PS color and grayscale statistics
conditions, these results cannot be ascribed to the
number of independent variables. It is noteworthy that,
even when all of the PS color statistics were used, the
prediction was not sufficient to explain the observers’
discrimination performance. This finding suggests that
human material judgments also rely on higher-order
features the PS statistics do not cover. One possible
future direction is to use the intermediate activation of
the deep neural networks. To support this direction, we
include in our database the activation data of VGG-19,
a feedforward convolutional neural network, for our
image dataset and the analysis about how the dataset is
represented in each layer (see Appendix C). In short,
our dataset images were clustered in higher layers of the
pretrained network according to object differences, and
the material differences were represented in each object
cluster.

Individual differences

Next, we evaluated the individual differences of
each task in the Japanese adult population. Figure 15
shows the histogram of the response accuracy for
each observer in the crowdsourcing and laboratory
experiments. For the crowdsourcing experiment, the
number of observers for illumination conditions 1,
2, and 3 was 416, 411, and 405, respectively. For the
laboratory experiment, the number of observers was
20. For each condition, the probability of a correct
response was calculated by averaging the responses of
each observer across objects and task difficulties. The
standard deviations of tasks 1 to 6 under illumination
condition 1 were 0.14, 0.11, 0.12, 0.12, 0.12, and 0.23,
indicating a particularly large individual difference for
task 6 (GP). The standard deviation under illumination
conditions 2 and 3 ranged from 0.09 to 0.18. It should
also be noted that most of the conditions showed
unimodal distributions, whereas task 6 (GP) showed
a nearly uniform distribution. This finding suggests
that individual differences in the discrimination
ability of the spatial consistency of specular
highlights are larger than those for other material
properties, including glossiness contrast and DOI
(GC and GD).
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Discussion

The present study aimed to construct a database of
material images annotated with the results of human
discrimination tasks. We created material images that
varied in six different material dimensions on the
basis of the previous material-recognition studies. Our
dataset includes various objects and illuminations so
that users can comprehensively investigate the effects
of these physical causes on material recognition. The
results of psychophysical experiments showed that most
of the task difficulty could be appropriately controlled
by manipulating the material parameters. Furthermore,
analysis of visual feature showed that the parameters of
higher-order color texture statistics (Figure 14, PS color
statistics) can partially, but not completely, explain task
performance. One crucial point of our dataset is that
we used a nonverbal procedure to collect the observers’
data. Because this procedure is widely used in babies,
brain-injured participants, and animals, the current
behavioral data can be a benchmark for more diverse
research fields.

Because we comprehensively investigated the
material recognition using a structured dataset, our
dataset itself revealed novel findings about material
recognition. For instance, the present results indicate
that the performance of the tasks in the crowdsourcing
experiment was strongly correlated with that in the
laboratory experiment. This suggests that the dataset
has enough tolerance to conduct new experiments
involving a variety of observers and experimental
conditions. Another is that geometry dependency on
material recognition emerges similarly in different
material attributes such as gloss DOI or translucency
(Figure 10). Specifically, the translucency discrimination
sensitivity was high when the object had rugged surfaces
(e.g., objects 1, 4, and 5). Some studies have shown that
physically prominent features of translucent objects
appear around sharp corners on the surface (Fleming &
Bülthoff, 2005; Gkioulekas et al., 2013). One possibility
is that the diagnostic features for translucent perception
lie in the edge/corner of a translucent object and our
rugged objects included much information to judge
translucency. More recently, Xiao, Zhao, Gkioulekas,
Bi, and Bala (2020) investigated the effect of geometry
on translucency perception. In their experiments,
they changed the smoothness of the object edges. In
agreement with our findings, the edge modulation was
critical to the translucency perception. Specifically, the
object with the smooth edge was perceived as more
translucent than the sharp one.

Another finding is that the ability to discriminate
the spatial consistency of specular highlights in
glossiness perception has large individual differences,
although other glossiness discrimination tasks do not
show such large differences. Some studies suggest
that image statistics are diagnostic for glossiness

perception (Adelson, 2001; Motoyoshi et al., 2007).
However, when specular highlights of an object
image are inconsistent in terms of their position
and/or orientation with respect to the diffuse shading
component, they look more like white blobs produced
by surface reflectance changes (Beck & Prazdny, 1981;
Kim et al., 2011; Marlow et al., 2011). This is why
the highlight-inconsistency effect is considered to be
a counterexample to the image statistics explanation.
The large individual differences suggest that the
discrimination of the spatial consistency of specular
highlights may be mediated by a different, and possibly
more complicated, mechanism than that responsible for
glossiness contrast/DOI discrimination. In agreement
with this notion, Sawayama and Nishida (2018) showed
that highlight inconsistency is discriminated by image
gradient features different from those used in the
human material computation. This suggests that the
glossiness computation is mediated by multiple stages,
such that one step is to discriminate different materials
on a surface for extracting a region-of-interest (ROI)
and another is to compute the degree of glossiness in
the ROI as shown in Motoyoshi et al. (2007).

One may have a concern that the intermediate objects
in tasks 4 and 5 are physically not feasible because
they are a mixture of two physically distinct materials.
However, our stimuli do not look so unrealistic. The
dielectric/metal materials are distinct material categories
when considering an object with a uniform single
material, but many daily objects surrounding us are a
mixture of various materials, and we often see a plastic
object coated by a metallic material. We can regard our
intermediate materials as an approximation of such
coated materials. In addition, continuously connecting
distinct categories is common in various research fields,
such as speech recognition (e.g., Grey & Gordon, 1978)
or face recognition (e.g., Turk, Heatherton, Kelley,
Funnell, Gazzaniga, & Macrae, 2002), especially to
elucidate what stimulus image features are involved in
the processing. Considering the literature, we think our
intermediate approach is reasonable.

Although our database includes diverse material
dimensions, they are still not enough to cover the full
range of natural materials. One example is cloth (Bi
& Xiao, 2016; Xiao, Bi, Jia, Wei, & Adelson, 2016;
Bi, Jin, Nienborg, & Xiao, 2018; Bi, Jin, Nienborg, &
Xiao, 2019). Cloth materials are ubiquitous in everyday
environments. A reason we did not include this class
of materials is that it has been shown that the cloth
perception strongly relies on dynamic information (Bi
et al., 2018; Bi et al., 2019). Because of the limited
experimental time, our database currently focuses on
static images. This is why other materials related to
dynamic information (reviewed by Nishida, Kawabe,
Sawayama, & Fukiage, 2018) related to the perception
of liquidness (Kawabe, Maruya, & Nishida, 2015),
viscosity (Kawabe, Maruya, Fleming, & Nishida, 2015,
van Assen & Fleming, 2016), and stiffness (Paulun
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et al., 2017; Schmid & Doerschner, 2018), among
others, were not used in the current investigation. In
addition, the perception of wetness (Sawayama et al.,
2017a) and the fineness of surface microstructures
(Sawayama, Nishida, & Shinya, 2017b) were not
investigated because of the difficulty of continuously
controlling physical material parameters by using
identical geometries of other tasks. Because we only
used five geometries, material perceptions derived from
object mechanical properties were also not investigated
(Schmidt, Paulun, van Assen, & Fleming, 2017). A
crucial point is that we can share our source code to
reproduce images. We hope to remove obstacles to
constructing a new dataset and contribute to future
work on material recognition. Sharing the datasets
with the source code should allow researchers to easily
conduct new studies within this literature. For example,
we measured the discrimination sensitivities in our
experiments from one side of the materials in tasks 3,
4, and 5 (i.e., opaque, gold, and silver). The sensitivities
from the other side (i.e., transparent, plastic, and glass)
could be slightly different from the current results.
Researchers can easily render new images of different
material parameters in the same scene condition and
conduct a new investigation.

Our datasets also highlight the difficulty of choosing
appropriate parameters that cover the full range
of the material sensitivity. We chose the stimulus
parameters based on the preliminary experiments.
We tried to choose the parameters so that we can
measure the sensitivity of each task in the full range,
from the level of chance to maximum accuracy.
However, we found large individual differences in some
tasks (e.g., task 6), and they resulted in the partial
measurement of the narrow sensitivity range. This
unpredictability is one of the difficulties of producing
the large size of the dataset. The current findings should
contribute to future attempts to create material image
datasets.

Our dataset focuses on expanding the previous
findings regarding material recognition into more
diverse research fields. From the view of a global
standard dataset, our dataset has several limitations
as described above. However, it did contribute to
this expansion purpose. Specifically, several research
groups of behavioral science, computer science, and
neuroscience have ongoing projects utilizing our
dataset, and some findings have already been reported
at conferences and journals. Kawasaki et al. (2019)
used our dataset to explore the role of the monkey
inferior temporal cortex on material perception by using
electrocorticography recordings. Tsuda, Fujimichi,
Yokoyama, and Saiki (2020) investigated the role of
working memory on material processing using our
dataset. Koumura, Sawayama, and Nishida (2018)
explored how mid-level features in deep convolutional
neural networks can explain human behavioral data.

Conclusion

We constructed image and observer database
for material recognition experiments. We collected
observation data about material discrimination
in tasks that had a nonverbal procedure for six
material dimensions and several task difficulties. The
results of psychophysical experiments in laboratory
and crowdsourcing environments showed that the
performance of the tasks in the crowdsourcing
experiment was strongly correlated with the
performance of the tasks in the laboratory experiment.
In addition, by using the above comprehensive data,
we obtained novel findings on the perception of
translucence and glossiness. Not only can the database
be used as benchmark data for neuroscience and
psychophysics studies on the material recognition
capability of healthy adult humans, but it can also be
used in cross-cultural, cross-species, brain-dysfunction,
and developmental studies of humans and animals.

Keywords: material perception, image and observer
database, visual psychophysics, computer graphics,
crowdsourcing
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Appendix A. Crowdsourcing
experiment

The results of the crowdsourcing experiment are
shown in Figures A1 to A6. The same experiments were
also conducted in the laboratory environment, and their
results are shown in Figures 8 to 13 in the text.

Figure A1. Results of task 1 (GC) in the crowdsourcing
experiment. Different panels show different objects. Different
symbols in each panel depict different illumination conditions.
The vertical red line in each panel indicates the parameter of
the non-target stimulus. Error bars indicate the 95% bootstrap
confidence intervals.

Figure A2. Results of task 2 (GD) in the crowdsourcing
experiment.

https://doi.org/10.1167/19.4.11
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Figure A3. Results of task 3 (OT) in the crowdsourcing
experiment.

Figure A4. Results of task 4 (MP) in the crowdsourcing
experiment.

Figure A5. Results of task 5 (MG) in the crowdsourcing
experiment.

Figure A6. Results of task 6 (GP) in the crowdsourcing
experiment.
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Appendix B. Data records

The database is available at https://github.com/
mswym/material_dataset. Figure B1 shows the data
structure. The standard data are divided into three
folders according to the illumination conditions. Each
illumination condition folder contains folders of the
material tasks (tasks 1 to 6). Each material task folder
includes experimental task folders. Each experimental
task folder corresponds to one task in the behavioral
experiments. The name of each folder indicates the
illumination condition, object, material task, and task
level. For example, the name “Il1_obj1_Task1_06_12”
indicates illumination condition 1 (Il1), object 1 (obj1),
task 1 (Task1), contrast of 0.06 for the non-target
stimulus, and contrast of 0.12 for the comparison
stimulus.

Each task folder contains the two folders named
“1” and “0”. The images in folder “0” indicate the
non-target stimuli, and the images in folder “1” are
the target stimuli. Under illumination condition 1,
three images are randomly selected from folder “0”,
and one correct image is selected from folder “1.” Five
images with different poses are stored in each “1”
or “0” folder for illumination condition 1, whereas
three images with different illuminations are stored

for illumination conditions 2 and 3. The images in
the database are in PNG format and have a size of
512 × 512 pixels. In addition, standard observer data
are placed on the top layer in the database in a CSV
file. The file contains observer data including the
probability of the correct response and the sensitivity
d′ for each task in the crowdsourcing and laboratory
experiments.

Appendix C. Convolutional neural
networks

We analyzed how our datasets are represented in
convolutional neural networks (CNNs). We extracted
the visual features from each intermediate layer of a
CNN. We used VGGNet16 (Simonyan and Zisserman,
2015), pretrained for the object recognition task
using ImageNet 2012 (Russakovsky et al., 2015), and
computed the activation of 30 convolution layers and
three fully connected layers of the model. To reduce
the number of dimensions, we spatially averaged the
activation of each channel. Thus, we obtained the
multidimensional activation vector for each layer with
the dimension number of the channels.

Figure B1. Data structure in the database. Solid rectangles indicate a folder; dashed ones indicate a file.

https://github.com/mswym/materialdataset


Journal of Vision (2022) 22(2):17, 1–24 Sawayama et al. 23

Figure C1. Embedding spaces of intermediate features of a
deep neural network trained for object recognition. The top,
center, and bottom rows show the same embedding spaces
with different color symbols as indicated in the legend. The left,
middle, and right columns are the results of the first
convolution layer (conv1_1), the final convolution layer
(conv5_3), and the third fully connected layer (fc 3),
respectively.

Figures C1 to C4 show the t-SNE embedding
of each layer (Maaten & Hinton, 2008). Figure C1
shows the results of the first convolution layer (conv
1_1), the last convolution layer (conv 5_3), and the
third fully connected layer. Each plot indicates each
material image. Different panels in each column
indicate different labelings based on task, object,
and illumination, as shown in the legends. Figure C2
shows the embeddings of all of the layers, which are
colored by different tasks. Figures C3 and C4 show
the same embeddings as Figure C2, except colored
according to different objects and illuminations,
respectively.

The embedding of the first convolution layer (conv
1_1) showed the clusters according to task differences,
especially the MG, MP, and OT clusters. In contrast,
this embedding did not show any object-based clusters.

Figure C2. Embedding spaces of intermediate features of a
deep neural network trained for object recognition. Results of
all of the 16 layers are shown with coloring for different tasks.

Earlier layers are generally sensitive to lower image
features. Different tasks have different colors in our
datasets, except that tasks GC, GD, and GP share
similar green colors. In addition, some clusters of
illumination condition 3 emerged in the first layer
embedding. The pixel color distribution of illumination
condition 3 is also largely different from the others.
These results suggest that the first layer codes such
lower image features.

The embeddings of the last convolution layer and the
third fully connected layer show the clusters according
to object differences. Different tasks and illuminations
are separately distributed within each object cluster.
Although the embedding is clustered according to
object differences, it does not show the separation
between objects 2 and 3. This finding is consistent with
human discrimination performance. The results of
behavioral experiments indicate that the task accuracies
of objects 2 and 3 were similar to each other and
different from other object conditions, especially for
tasks GD and OT.
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Figure C3. Embedding spaces of intermediate features of a
deep neural network trained for object recognition. Results of
all of the 16 layers are shown with coloring for different objects.

Figure C4. Embedding spaces of intermediate features of a
deep neural network trained for object recognition. Results of
all of the 16 layers are shown with coloring for different objects.


