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A contemporary baseline record of 
the world’s coral reefs
Alberto Rodriguez-Ramirez   1,2,14 ✉, Manuel González-Rivero1,3,4,14 ✉, Oscar Beijbom1,5, 
Christophe Bailhache6, Pim Bongaerts   1,7, Kristen T. Brown2,4, Dominic E. P. Bryant4, 
Peter Dalton1, Sophie Dove2,4, Anjani Ganase4, Emma V. Kennedy   1,8, Catherine J. S. Kim   4,  
Sebastian Lopez-Marcano   1,9, Benjamin P. Neal1,10,11, Veronica Z. Radice   4, 
Julie Vercelloni1,4,12,13, Hawthorne L. Beyer2,4 & Ove Hoegh-Guldberg   1,2,4,14 ✉

Addressing the global decline of coral reefs requires effective actions from managers, policymakers 
and society as a whole. Coral reef scientists are therefore challenged with the task of providing prompt 
and relevant inputs for science-based decision-making. Here, we provide a baseline dataset, covering 
1300 km of tropical coral reef habitats globally, and comprised of over one million geo-referenced, 
high-resolution photo-quadrats analysed using artificial intelligence to automatically estimate the 
proportional cover of benthic components. The dataset contains information on five major reef 
regions, and spans 2012–2018, including surveys before and after the 2016 global bleaching event. 
The taxonomic resolution attained by image analysis, as well as the spatially explicit nature of the 
images, allow for multi-scale spatial analyses, temporal assessments (decline and recovery), and serve 
for supporting image recognition developments. This standardised dataset across broad geographies 
offers a significant contribution towards a sound baseline for advancing our understanding of coral reef 
ecology and thereby taking collective and informed actions to mitigate catastrophic losses in coral reefs 
worldwide.

Background & Summary
The escalating deterioration of coral reefs over the past half-century1,2 has imposed urgent challenges for coral 
reef science3,4, especially at the spatial and temporal scales5 required to support science-based management and 
conservation at global scales6,7. Novel research and management approaches that consider current ecological and 
socio-cultural paradigms of coral reefs are therefore pivotal for addressing such challenges4,7–13. Many of these 
strategies, however, face major challenges in terms of data acquisition, analysis and implementation14. In addition, 
the reluctance to share data among scientists15 may often frustrate progress in reef science, management and con-
servation16. Clearly this increasing demand of scientific outputs needs to be pursued collectively as a top priority16 
in order to take up the challenges of managing Anthropocene reefs effectively in a rapidly changing world4–6,17.

There have been a large number of technological innovations that are revolutionising the collection and 
analysis of critical data18–23. Yet, the lack of adequate metrics for monitoring3, the paucity of large-scale assem-
blage datasets7 and, limited availability of key long-term ecological data24 have generated a lag in the task of 
incorporating scientific findings into management and policy actions. Large-scale and standardised field data 
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have been recognised as essential information for tackling the scale of problems and potential solutions3,6,7,25,26. 
Worldwide data collection and analysis have constrained our ability to detect changes at global scales27,28, partly 
due to our limited understanding of future reef responses and management options at global-scales. Regional 
and sub-regional analyses have provided the most significant insights of contemporary coral reef dynamics and 
the implicated drivers. These studies, however, had to compile, filter and aggregate multiple small-scale data sets 
based on different methods (e.g. transects lines, chain, photo-quadrats)29–33. These meta-analyses are indispensa-
ble, but the time-intensive approach can be minimised in the future.

Here, we present a standardised and contemporary archive of baseline images and data34 of the world’s tropical 
coral reefs between 2012 to 2018. The dataset overcomes limitations and satisfies requirements of some afore-
mentioned data needs in terms of scale, extent, and standardisation for advancing reef science and manage-
ment. The imagery and ecological data were produced within the framework of the XL Catlin Seaview Survey 
Project35. The dataset includes over one million standardised and geo-referenced photo-quadrat images, each 
one covering approximately 1 m2 of substrate. These images were taken at 860 reef locations within the Western 
Atlantic (Caribbean, Lucayan Archipelago, and Bermuda), the Central Indian Ocean (Maldives and Chagos 
Archipelagos), the Central Pacific Ocean (Hawaii), the Coral Triangle and Southeast Asia (Indonesia, Philippines, 
Timor-Leste, Solomon Islands, and Taiwan), and Eastern Australia (Great Barrier Reef). The locations were sur-
veyed using an underwater propulsion vehicle customised with high-definition cameras along 1.5 to 2.0 km tran-
sects at a standard depth of 10 m (±2 m), covering unparalleled areas of coral reefs (over 1300 km of fore-reef 
slopes). Multi-temporal images exist for some reef locations before and after the 2016 global mass bleaching event 
in the Great Barrier Reef, Indonesia, Maldives, Philippines, Hawaii and Taiwan.

The dataset provides estimates of the areal extent of main benthic groups (e.g., “hard coral”, “algae”, etc.) at 
each reef location and for more specific categories for each photo-quadrat. These estimations were obtained from 
the application of an automated image annotation method (Deep Learning Convolutional Neural Networks)23. 
Validation of this approach showed an unbiased 97% agreement between human and automated annotations, 
with errors of the automated estimations ranging between <2% and 7%23.

The dataset offers exceptional opportunities for analysis across multiple spatial scales from local to global, 
enabling the potential detection of change while providing a baseline by which to investigate the contempo-
rary decline and recovery of coral reefs, and addressing a range of broad and specific ecological questions. 
Furthermore, the dataset offers human-classified annotations and images that can be used to train and vali-
date automated image classifiers. The dataset and imagery have contributed to a substantial number of pub-
lications23,25,35–39. The ultimate goal of this record is to expedite scientific investigation and evidence-based 
management. Given the remoteness of some surveyed locations, broad geographic representation as well as 
detailed spatial and taxonomic resolution, the data provide a unique resource to further advance our under-
standing of ecological responses across a range of changing pressures and build a stronger base knowledge that 
supports conservation actions.

Methods
A comprehensive description of the methodological aspects used during the field surveys and image analysis 
have been published in González-Rivero et al.23,25,35. Therefore, here we include a synopsis of how this dataset was 
generated and made available to the wider community.

Our approach involved the rapid acquisition of high-resolution imagery over large extent of reefs and efficient 
image analysis to provide key information about the state of coral reef benthic habitat across multiple spatial 
scales23. The data generation and processing involved three main components: (1) photographic surveys, (2) 
post-processing of images and (3) image analysis, which are described and summarised below in Fig. 1.

Photographic surveys.  An underwater propulsion vehicle customised with a camera system (“SVII”, 
Supplementary Fig. 1), consisting of three synchronised DSLR (Digital Single-Lens Reflex) cameras (Cannon 
5D-MkII cameras and Nikon Fisheye Nikkor lens with 10.5 mm focal length), was used to survey the fore-reef 
(reef slope) habitats from five major coral reef regions: Central Pacific Ocean, Western Atlantic Ocean, Central 
Indian Ocean, Southeast Asia and Eastern Australia in 23 countries or territories (Table 1, Supplementary Fig. 2). 
Within each region, multiple reef locations were surveyed aiming to capture the variability and status of fore-reefs 
environments across regions and within each region. Sampling design varied according to particular environ-
mental and socioeconomic factors potentially influencing the distribution and structure of coral reef assemblages 
at each region and/or country. Overall, prior to field expeditions, reef localities were selected considering factors 
such as wave exposure, reef zones (i.e. fore-reefs), local anthropogenic stressors (e.g. coastal development), fishing 
pressures, levels of management (e.g. marine park, protected areas), and presence of monitoring sites.

Underwater images were collected in each reef location once every three seconds, approximately every 2 m 
apart, following a transect along the seascape at a standard depth of 10 m (±2 m). Although overlap between 
consecutive images is possible, the process for extracting standardised photo-quadrats from an image ensures 
that the photo-quadrats are non-overlapping between and within images (see further details next section). Each 
transect averaged 1.8 km in length, hereafter referred to as a “survey”. See Supplementary Fig. 3 for an explanation 
of the hierarchical structure of the photographic surveys. No artificial illumination was used during image cap-
ture, but light exposure was manually adjusted by modifying the ISO during the dive, using an on-board tablet 
computer encased in an underwater housing (Supplementary Fig. 1). This computer enabled the diver to control 
camera settings (exposure and shutter speed) according to light conditions. Images were geo-referenced using a 
surface GPS unit tethered to the diver (Supplementary Fig. 1). Altitude and depth of the camera relative to the 
reef substrate and surface were logged at half-second intervals using a Micron Tritech transponder (altitude, 
Supplementary Fig. 1) and pressure sensor (depth) in order to select the imagery within a particular depth and 
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Fig. 1  The workflow for generating the global dataset of coral reef imagery and associated data. The 860 
photographic surveys from the Western Atlantic Ocean, Southeast Asia, Central Pacific Ocean, Central Indian 
Ocean, and Eastern Australia, were conducted between 2012 and 2018. Reef locations are represented by points 
colour-coded according to the survey region. Surveys images were post-processed in order to transform raw fish-
eye images into 1 × 1 m quadrats for manual and automated annotation (inset originally published in González-
Rivero et al.23 as Figure S1). For the image analysis, nine networks were trained. For each network, images were 
divided in two groups: Training and Testing images. Both sets were manually annotated to create a training 
dataset and verification dataset. The training dataset was used to train and fine-tune the network. The fully trained 
network was then used to classify the test images, and contrast the outcomes (Machine) against the human 
annotations (Observer) in the test dataset during the validation process. Finally, the non-annotated images (photo-
quadrats) were automatically annotated using the validated network. The automated classifications were processed 
to originate the benthic covers that constitute this dataset. QGIS software was used to generate the map using the 
layer “Countries WGS84” downloaded from ArcGIS Hub (http://hub.arcgis.com/datasets/UIA::countries-wgs84).
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to scale and crop the images during the post-processing stage. Further details about the photographic surveys are 
provided in González-Rivero et al.25,35.

Post-processing of images for manual and automated annotation.  The post-processing pipeline 
produced images with features required for manual and automated annotation in terms of size and appearance. 
The process involved several steps that transformed the raw images from the downward facing camera into 
photo-quadrats of 1 m2, hereafter referred to as a “quadrat” (Fig. 1). As imagery was collected without artificial 
light using a fisheye lens, each image was processed prior to annotation in order to balance colour and to correct 
the non-linear distortion introduced by the fisheye lens23 (Fig. 1). Initially, colour balance and lens distortion 
correction were manually applied on the raw images using Photoshop (Adobe Systems, California, USA). Later, 
in order to optimise the manual post-processing time of thousands of images, an automatic batch processing was 
conducted on compressed images23 (jpeg format) using Photoshop and ImageMagick, the latter an open-source 
software for image processing (https://imagemagick.org/index.php). In addition, using the geometry of the lens 
and altitude values, images were cropped to a standardised area of approximately 1 m2 of substrate23,35 (Fig. 1). 
Thus, the number of nonoverlapping quadrats extracted from one single raw image varied depending on the 
distance between the camera and the reef surface. Figure 1 illustrates a situation where the altitude of the camera 
allowed for the extraction of two quadrats from one raw image. Further details about colour balance and lens 
distortion correction and cropping are provided in González-Rivero et al.23,35.

Image analysis: manual and automated annotation for estimating covers of benthic catego-
ries.  Manual annotation of the benthic components by a human expert took at least 10 minutes per quadrat, 
creating a bottleneck between image post-processing and the required data-product. To address this issue, we 
developed an automated image analysis to identify and estimate the relative abundance of benthic components 
such as particular types of corals, algae, and other organisms as well as non-living components. To do this, auto-
mated image annotation based on deep learning methods (Deep Learning Convolutional Neural Networks)23 
were applied to automatically identify benthic categories from images based on training using human annotators 
(manual annotation). The process for implementing a Convolutional Neural Network (hereafter “network”) and 
classify coral reef images implied three main stages: (i) label-set (benthic categories) definition, (ii) training and 
fine-tuning of the network, and (iii) automated image annotation and data processing.

Label-set definition.  As a part of the manual and automated annotation processes to extract benthic cover esti-
mates, label-sets of benthic categories were established based on their functional relevance to coral reef ecosys-
tems and their features to be reliably identified from images by human annotators25. The labels were derived, 
modified and/or simplified from existing classification schemes40,41, and were grouped according to the main 
benthic groups of coral reefs including hard coral, soft coral, other invertebrates, algae, and other. Since coral reef 
assemblages vary in species composition at global and regional scales, and surveys were conducted at different 

Region Survey year Country or Territory Surveys Quadrats

Western Atlantic 
Ocean

2013 Anguilla 15 22,250

2013 Aruba 3 5,615

2013 The Bahamas 30 42,678

2013 Belize 24 32,515

2013 Bermuda 12 25,748

2013 Bonaire 13 23,028

2013 Curacao 16 29,419

2013 Guadeloupe 14 15,277

2013 Mexico 23 38,192

2013 Saint Martin 4 4,368

2013 Saint Vincent and the Grenadines 25 25,498

2013 Saint Eustatius 3 2,033

2013 Turks and Caicos Islands 13 18,387

Eastern Australia 2012, 2014,2016,2017 Australia (Great Barrier Reef) 261 316,369

Central Indian Ocean
2015 The Chagos Archipelago 29 42,777

2015, 2017 Maldives 63 94,921

Southeast Asia

2016, 2018 Taiwan 29 30,062

2014 Timor-Leste 26 28,482

2014, 2018 Indonesia 114 124,889

2014, 2018 The Philippines 24 33,038

2014 The Solomon Islands 20 33,667

Central Pacific Ocean 2015, 2016 United States 99 93,111

Totals 23 860 1,082,324

Table 1.  Summary of the photographic surveys conducted between 2012 and 2018.
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times between 2012 and 2018 across the regions, nine label-sets accounted for such biogeographical and tem-
poral disparity. In general, a label-set was developed after each main survey expedition to a specific region. The 
label-sets varied in complexity (from 23 to 61 labels), considering the differential capacity to visually recog-
nise (in photographs) corals to the lowest possible taxon between the regions. While label-sets for the Atlantic 
and Central Pacific (Hawaii) included categories with coral genus and species, for the Indian Ocean (Maldives, 
Chagos Archipelago), Southeast Asia (Indonesia, Philippines, Timor-Leste, Solomon Islands, and Taiwan), and 
Eastern Australia, corals comprised labels based on a combination of taxonomy (e.g., family and genus) and col-
ony morphology (e.g., branching, massive, encrusting, foliose, tabular).

The other main benthic groups were generally characterised by labels reflecting morphology and/or functional 
groups across the regions. “Soft Corals” were classified into three groups: 1) Alcyoniidae (soft corals), the domi-
nant genera; 2) Sea fans and plumes from the family Gorgoniidae; and 3) Other soft corals. “Algae” groups were 
categorised according to their functional relevance: 1) Crustose coralline algae; 2) Macroalgae; and 3) Epilithic 
Algal Matrix. The latter is a multi-specific algal assemblage smothering the reef surface of up to 1 cm in height 
(dominated by algal turfs). “Other Invertebrates” consisted of labels to classify sessile invertebrates different to 
soft corals (e.g., Millepora, bryozoans, clams, tunicates, soft hexacorrallia, hydroids) and some mobile inverte-
brates observed in the images (mostly echinoderms). The remaining group, “Other”, consisted of sand, sediments, 
and occasional organisms or objects detected in the images such as fish, human debris (e.g., plastic, rope, etc.), 
and transect hardware. The exception within these main groups were the “Sponges”, which were classified and 
represented by multiple labels only in the Atlantic (given their abundance and diversity in the Caribbean), includ-
ing categories with sponge genus and species, and major growth forms (rope, tube, encrusting, massive).

Training and fine-tuning of the network.  The deep learning approach used relies on a convolutional neural net-
work architecture named VGG-D 1642. Details on the initialisation and utilisation of this network are provided in 
González-Rivero et al.23. A total of nine networks were used, one for each country within the regions, except for 
the Western Atlantic Ocean, where the network was trained using data from several countries, and the Philippines 
and Indonesia, where the network was trained using data from those two countries. (Table 2). The first step in 
implementing a network was to randomly select a subset of images from the whole regional set to be classified, 
which were then divided into training and testing sets (Fig. 1). Human experts manually annotated both sets using 
the corresponding label-set under CoralNet43, an online platform designed for image analysis of coral reef related 
materials (https://coralnet.ucsd.edu/). The number of images and points manually annotated per network is pre-
sented in Table 2 (generally 100 points per image for training sets and 40 or 50 points per image for testing sets).

Trained 
network Region

Folder name at 
the Repository

Country or 
Territory

Training 
images

Training 
annotations

Testing 
images

Testing 
annotations

Test 
transects

1 WAO ATL

Anguilla 10

44,900

50

48,000

5

Aruba 7 30 3

The Bahamas 70 150 12

Belize 111 115 13

Bermuda 17 60 8

Bonaire 21 115 8

Curacao 36 90 7

Guadeloupe 17 75 6

Mexico 60 115 11

Saint Martin 9 25 2

Saint Vincent and 
the Grenadines 54 60 7

Saint Eustatius 12 25 1

Turks and Caicos 
Islands 25 50 4

2 CIO IND_CHA Chagos 359 35,900 331 16,550 29

3 CIO IND_MDV Maldives 1,171 117,100 540 27,000 52

4 EA PAC_AUS Australia 1,234 129,340 1,426 57,080 130

5 CPO PAC_USA Unitated States 
(Hawaii) 501 50,100 660 33,000 60

6 SEA PAC_IDN_PHL
Indonesia 614

75,100
600

45,000
50

Philippines 137 300 24

7 SEA PAC_SLB The Solomon 
Islands 439 44,200 300 15,000 29

8 SEA PAC_TWN Taiwan 350 35,000 300 15,000 27

9 SEA PAC_TLS Timor-Leste 547 55,100 330 16,500 29

Totals 5,801 586,740 5,747 273,130 517

Table 2.  Summary of the images, manual point annotations, and test transects used during the train and test 
processes of each network. Abbreviations at Region column = Western Atlantic Ocean (WAO), Central Indian 
Ocean (CIO), Eastern Australia (EA), Central Pacific Ocean (CPO), Southeast Asia (SEA).
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Each training and testing data set were exported from CoralNet43 and used along with the associated quad-
rats to support an independent training and fine-tuning process aimed to find the network configuration that 
produced the best outcomes. Initially, each quadrat used from the training and testing sets was converted to a set 
of patches cropped out around each annotation point location. The patch area to crop around each annotation 
point was set to 224 × 224 pixels to align with the pre-defined image input size of the VGG-D architecture. The 
fine-tuning exercise ran in general for 40 K iterations to establish the best combination of model parameters or 
weights that minimised the cross-entropy loss while the overall accuracy increased. An independent 20% subset 
from the original set of quadrats was used to assess the performance of the final classification (% of accuracy). In 
addition, parameters of learning rate and image scale were independently optimised for each network by running 
an experiment using different values for such parameters in order to select the values that derived the smallest 
errors per label. Further details of the model parametrisation for each network are provided in González-Rivero 
et al.23 (see Supplementary Material).

Automated image annotation and data processing.  Once optimised, a network was used to automatically anno-
tate the corresponding set of non-annotated quadrats. The quadrats were processed through the network, where 
for each quadrat, 50 points (input patches) were classified using the associated labels. Upon completion of auto-
mated image annotation for a specific region/country, the annotation outputs containing locations of 50 pixels 
(i.e., their x and y coordinates) with their associated labels per quadrat (a csv file per quadrat) were incorporated 
and collated into a MySQL database along with information about the field surveys. In addition to the manual 
and automated annotations tables (raw data), we provide two levels of aggregation for the benthic data. First, the 
relative abundance (cover) for each of the benthic labels per quadrat, which was calculated as the ratio between 
the numbers of points classified for a given label by the total number of points evaluated in a quadrat. Second, 
the relative abundance for each of the main benthic groups (hard coral, soft coral, other invertebrates, algae, and 
other) per survey, which involved three calculations: 1) summarise the quadrat covers by image averaging all the 
quadrats from one single image per label, 2) summarise image covers by survey averaging all the images across 
one survey per label, and 3) merge survey data by main benthic groups summing the covers of all labels belonging 
to the same group across one survey.

Data Records
The dataset presented here has been made freely available through The University of Queensland “eSpace” repos-
itory34, and released under a Creative Commons Attribution license (CC BY 3.0; https://creativecommons.org/
licenses/by/3.0/deed.en_US). For attribution, we expect users to cite this paper when using the content. It includes 
three core components: 1) a series of relational tables (csv format) with the manual and automated annotations 
(raw data), 2) a series of relational tables (csv format) with benthic covers per survey and quadrat (processed 
data), dataset IDs, and label-set descriptions, and 3) the imagery associated with the dataset (jpeg format). We are 
providing cover data from more than one million of quadrats (over 55 million of associated data records) based 
on automated annotation, and over 859 K points (image features) classified by humans within selected quadrats 
through the CoralNet43 web interface that can be used to implement approaches of automated image analyses.

A unique identification number (ID) was assigned to every survey (5 digits), image (9 digits), and quadrat 
(11 digits) which are the basis for the database relational links among tables and files. For example, in quadrat 
ID 17001644602, the first five digits correspond to the survey ID (17001), the survey ID and the next four digits 
(6446, a number automatically assigned by the camera between 0001 and 9999) to the image ID (170016446), and 
the image ID along with the last two digits (02, quadrat number within an image automatically assigned during 
the cropping process) to the quadrat ID. The core table “seasurvey_quadrat.csv” contains all the survey, image and 
quadrat IDs (over 1.1 million records) and is zipped within the “tabular-data.zip” file. See Supplementary Fig. 3 
for an explanation of the hierarchical structure of the dataset.

Manual and automated annotations.  The structure of the tables containing the data records from man-
ual (testing and training datasets) and automated annotations is presented in Table 3. Each annotation record is 
identified by the quadrat ID and includes the coordinates of the pixel that has been annotated (x and y), and its 
corresponding label. Both types of annotation records are zipped within the “tabular-data.zip” file. While there is 
a unique file (“seaviewsurvey_annotations.csv”) for the automated annotations with more than 55.2 million data 
records, there are nine files with the manual annotations, which correspond to the regions/countries conforming 
the training sets (Table 2). They were named “annotations_” with the region/country code (Table 3) appended 
(e.g., annotations_PAC_AUS.csv).

The table “seaviewsurvey_labelsets.csv” provides the description of the label-sets used for each region. The 
structure of this table is presented in Table 3, where each record corresponds to a label within a region. Refer to 
the Usage Notes section for instructions on accessing visual examples of the labels.

Benthic cover.  The structure of the tables containing the data records from benthic covers per survey and 
quadrat is presented in Table 3. Both types of cover records are zipped within the “tabular-data.zip” file. Each data 
record in the surveys file (“seaviewsurvey_surveys.csv”) corresponds to a unique survey identified by the survey 
ID and contains the cover of the five main benthic groups (hard coral, soft coral, other invertebrates, algae, and 
other) along with metadata of the survey (e.g., ocean, country, latitude, longitude, etc.). Cover records per quadrat 
were grouped in five files and named “seaviewsurvey_reefcover_” with the ocean and/or region appended (e.g., 
seaviewsurvey_reefcover_pacificaustralia.csv) to facilitate the data retrieval by the main regions surveyed.
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Table/File Data field Descriptor

seaviewsurvey_surveys.csv

surveyid

A five unique digit survey ID representing data collection at one location 
(a transect location) at one point in time. This ID is unique in this table 
and used in the folder naming code. There may be multiple survey IDs 
associated with a transect ID if multi-temporal surveys were conducted 
at this reef location

transectid
The five unique digit transect ID. A transect ID will appear more than 
once in this field if the transect has been surveyed temporally (more than 
one occasion)

surveydate The date (YYYYMMDD) on which the survey was completed

ocean
The three letter code representing the ocean within which the survey 
occurred: ATL = Atlantic Ocean, IND = Indian Ocean, PAC = Pacific 
Ocean

country The three letter country code of the Exclusive Economic Zone within 
which the survey occurs (e.g., AUS = Australia)

folder_name
The full name of the zipped folder associated with the survey (e.g., 
“ PAC_AUS_47035_201710”) where quadrats are stored within the 
“photo_quadrats” folder

lat_start The latitude of the start of the survey (decimal degrees)

lng_start The longitude of the start of the survey (decimal degrees)

lat_end The latitude of the end of the survey (decimal degrees)

lng_end The longitude of the end of the survey (decimal degrees)

pr_hard_coral The proportional cover of hard coral

pr_algae The proportional cover of algae

pr_soft_coral The proportional cover of soft coral

pr_oth_invert The proportional cover of other invertebrates apart from hard corals and 
soft corals

pr_other The proportional cover of other categories apart from hard corals, algae, 
soft corals and other invertebrates

seaviewsurvey_quadrats.csv

surveyid
The five-digit survey ID number from the “seaviewsurvey_surveys.csv” 
table. There is a one:many relationship between the surveys table and the 
quadrats table.

imageid
The nine-digit image ID. This correspond to the five-digit survey ID 
and four more digits between 0001 and 9999 (number of the picture 
automatically assigned by the camera). Identical image ID’s will appear 
multiple times in this field as one image has associated multiple quadrats

quadratid

The 11 unique digit quadrat ID. This correspond to the nine-digit image 
ID and two more digits usually between 01 and 09, which refer to the 
quadrat number within an image (automatically assigned during the 
cropping process). “.jpg” must be added to the quadrat ID to derive the 
filename of the quadrat (with the extension) within the imagery.

seaviewsurvey_reefcover_[region].csv

surveyid
The five-digit survey ID number from the seaviewsurvey_surveys.csv 
table. There is a one:many relationship between the surveys table and the 
reefcover table.

imageid
The nine-digit image ID from the seaviewsurvey_quadrats.csv. Identical 
image ID’s appear multiple times in this field as one image has associated 
multiple quadrats

quadratid
The 11-digit quadrat ID from the seaviewsurvey_quadrats.csv table. 
There is a one:many relationship between the cover table and the 
annotations table because each quadrat can have many annotations

lat The latitude the survey (decimal degrees)

lng The longitude of the survey (decimal degrees)

[label] The proportional cover of the label within the quadrat. A description of 
each label is presented in the “seaviewsurvey_labelsets.csv” table

seaviewsurvey_annotations.csv

quadratid
The 11-digit quadrat ID from the seaviewsurvey_quadrats.csv table. 
There is a one:many relationship between the quadrat table and the 
annotations table because each quadrat can have many annotations

y Y coordinate (row) of the pixel (graphics format image, origin of first 
pixel in the upper left corner) that has been automatically annotated.

x X coordinate (column) of the pixel (graphics format image, origin of first 
pixel in the upper left corner) that has been automatically annotated.

label The short code representing the category identified. A description of each 
label is presented in the “seaviewsurvey_labelsets.csv” table

annotations_[ocean]_[country].csv

quadratid
The 11 digit quadrat ID from the seaviewsurvey_quadrats.csv table. 
There is a one:many relationship between the quadrat table and the 
annotations table because each quadrat can have many annotations

y Y coordinate (row) of the pixel (graphics format image, origin of first 
pixel in the upper left corner) that has been manually annotated

x X coordinate (column) of the pixel (graphics format image, origin of first 
pixel in the upper left corner) that has been manually annotated

label_name The full name of the label identified. A description of each label is 
presented in the seaviewsurvey_labelsets.csv table

Continued
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Imagery.  The imagery is grouped under three main folders within the repository34: (1) photo-quadrats, (2) 
annotated-images, and (3) survey-previews. The images files (jpeg format) associated with the quadrats cover 
records are stored in the “photo-quadrats” folder. To facilitate the image retrieval, quadrats are grouped by sur-
veys in 860 zip files (.zip). Each zip folder survey was named with a code using the combination of four infor-
mation components separated by underscores: the ocean in which the survey occurs (ATL = Atlantic Ocean, 
IND = Indian Ocean, PAC = Pacific Ocean), the three letter country code of the Exclusive Economic Zone within 
which the transect occurs (e.g., AUS = Australia), the unique five digit survey ID number, and the year and month 
of the survey formatted as YYYYMM (e.g., PAC_AUS_15007_201212.zip). Such naming convention is used in 
the “folder_name” data field within the “seaviewsurvey_surveys.csv” table.

The images files (jpeg format) associated with the manual annotations are stored in the “annotated-images” 
folder. There, images were grouped into nine zip folders according to the nine training sets of the manual anno-
tations (Table 2). Therefore, folders were named using the corresponding annotations file name but excluding 
the initial part (e.g., for the “annotations_PAC_AUS.csv” file, the images folder was named as “PAC_AUS.zip”).

Low-resolution previews of all photo-quadrats per each survey (tiled into one jpeg image per survey) were 
zipped into archives grouped by ocean and country (e.g., “PAC_AUS” refers to the Pacific Ocean and Australia) 
under the “survey-previews” folder. These preview images provide a coarse overview of the content of the 
photo-quadrats that may help users to identify which surveys they are most interested in downloading.

Technical Validation
The methodological approach of automated image annotation used to generate this dataset is described and vali-
dated in Gonzalez-Rivero et al.23. In order to evaluate the reliability of the estimations of benthic covers per each 
network we used the set of images and manual annotations defined above as testing datasets. Each testing dataset 
was constructed from contiguous images within standard spatial units (hereafter called “test transects”) with an 
extent of 30 m in length, concomitant with most coral reef monitoring programs31,44–46 and best represents the 
spatial heterogeneity within a site25. Thus, the aggregation of images within 30 m test transects allowed the eval-
uation of the performance of automated estimations within a scale that is consistent with monitoring sampling 
units, accounting for the variability in benthic abundance estimation among images. Test transects were selected 
at random while ensuring that images used for training the networks were not included. A total of 5,747 images, 
within 517 test transects (Table 2), were annotated (identical annotations points) by trained human observ-
ers, hereafter called “observer”, and the networks, hereafter called “machine”. The benthic composition within 
these test transects was averaged across images and contrasted between the two groups annotated: observer vs. 
machine. Specifically, we compared the error between machine and observer at the level of benthic categories and 
the consistency between machine and observer estimations from a community perspective.

We used the Absolute Error (E) to estimate the variability in the machine estimates when compared against 
observer estimations of abundance of a given benthic category. The absolute error (hereafter called “error”) for 
each category (i) was calculated as the absolute difference between the abundance estimated by the machine (m) 
and the observer (o; Eq. (1)). The error was calculated and compared at two aggregation levels: a) main benthic 
groups and b) label-set, sensu González-Rivero et al.25:

= −∣ ∣m oE (1)i i i

Such errors indicated that the trained networks (machine) were able to produce cover estimates comparable to 
those generated by observers, and therefore suitable for spatial and temporal analysis and monitoring23. While the 
errors are variable among regions and benthic categories (Fig. 2), they are within the range of previously reported 
inter- and intra-observer variability for established monitoring programs47 (e.g., 2–5%, Long Term Monitoring 
Program, AIMS, Australia). Among main benthic groups (e.g., hard coral, algae), “Algae” showed the highest 

Table/File Data field Descriptor

label The short code representing the category identified. A description of each 
label is presented in the “seaviewsurvey_labelsets.csv” table

func_group Main benthic group of the label identified: hard coral, soft coral, other 
invertebrates, algae, other

method Type of annotation: random = point selected randomly during the 
annotation; target = point aimed during the annotation

data_set Application of the manual annotations: train = to train a net; test = to 
validate a net

seaviewsurvey_labelsets.csv

region Name of one of the five regions surveyed: Atlantic, Indian Ocean, Pacific 
Australia, Southeast Asia, Pacific Hawaii

label The short code for one of the labels within the region considered

func_group Main benthic group of the label: hard coral, soft coral, other 
invertebrates, algae, other

label_name The full name of the label within the region considered

merged_label Alternative short code in order reduce the complexity of the label-set. 
Some related labels were merged for the technical validation

merged_name The full name of the merged label

description_examples A brief description of what the labels represent, with examples

Table 3.  List of tables/files (and their structure) included in the repository.
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errors among regions, ranging between 2% (Pacific, Hawaii) and 5% (Southeast Asia, Fig. 2). The abundance of 
“Hard Coral” and “Soft Coral” estimated by the machine showed errors between 1% (Atlantic) and 4% (Australia), 
and 0.5% (Indian Ocean) and 3% (Australia), respectively. The remaining groups (Other and Other Invertebrates) 
showed a consistent error below 2% (Fig. 2).

The error of machine estimates was more consistent within main groups, with the only exception of the “Algae” 
group (Fig. 3). “Epilithic Algal Matrix”, as a functional group, comprised of a diverse number of algae groups (e.g., 
turf, cyanobacteria) was the most variable label (5%–7% error). The error of estimations, within the “Hard Coral” 
group, remained below 2% among regions, while “Soft Coral”, in particular “Other soft corals”, showed an error 
of up to 3%. This label is comprised of a large diversity of genera and growth forms, while more taxonomically 
defined labels showed an error below 2%. The remaining labels within the “Other” group, comprised mainly by 
substrate categories (e.g., sand, terrigenous sediment), and “Other Invertebrates”, comprise of benthic inverte-
brates other than hard and soft corals, showed a consistently low error (below 1%–2%; Fig. 3).

In addition, the overall performance of automated image annotation was evaluated by 1) correlating the esti-
mates of abundance (cover) produced by the machine against those produced by the observer, and 2) evaluating 
the overall agreement between machine and observer estimations using the Bland-Altman plot48, also called 
difference plots. Correlation was evaluated using the coefficient of determination (R2) from a linear regression 
model, which also evaluated the significance of this correlation. The R2 provides an indication of the intensity of 
the correlation by evaluating the co-variance between the observer and machine estimations. The Bland-Altman 
plot determines differences between the two estimations against the observer estimations, or reference sensu 
Krouwer49. We used the Bland-Altman plot analysis50 to evaluate: (1) the mean of the difference or bias of 
machine estimations, (2) the homogeneity of the difference between machine and observer across the mean (i.e., 
over-dispersion) and, (3) the critical difference or agreement limits. The latter refers to the range, within the 95% 
Confidence Interval, of the difference between the two methods, and can be used as a reference to define where 
the measurements fall out of the range of the agreement (i.e., precision of the agreement). Bias refers to the differ-
ence between the two methods and the Bland-Altman plot can help visualise whether this bias changes across the 
mean of values evaluated, and therefore a measurement of the consistency of the bias50.

Expectedly, network estimations (machine) of benthic cover were highly correlated with observer estimations 
for all five global regions (R2 = 0.97, P < 0.001, Fig. 4). Most importantly, the differences between the machine 
and observer were unbiased across the spectrum of benthic cover (mean ~ 0), and the variability around the mean 
difference was estimated at 4% (Critical Difference or 95% Confidence Interval of the difference) for all labels 
across the surveyed regions (Fig. 4).

Lastly, to evaluate the machine performance for estimating community structure, pair-wise comparisons of 
manual and automated estimations of benthic composition within each test transect were executed using the 
Bray-Curtis similarity index. This index is sensitive to misrepresentation in the automated estimation of abun-
dance for specific labels or benthic groups when compared against manual observations. Therefore, index val-
ues of 100% will represent a complete resemblance between machine and observer estimations for community 
composition. While the Absolute Error already provides a metric for label-specific performance of automated 
annotations, the community-wide analysis lays out a synthesis analysis to understand how closely represented is 
the automated estimation of benthic composition against manual observations across the range of communities 
within a region.

The comparison of communities within regions using Bray-Curtis similarity index showed the estimations of 
benthic composition were consistent between observer and machine (i.e., between 84% and 94% of similarity) 
among and within regions (Fig. 5). Across regions, Australia and South East Asia exhibited the lowest values 
of similarities, 84% and 88% respectively. Indian Ocean and Atlantic showed similarities around 90%, while 
Central Pacific Ocean presented up to 94% of similarity between automated estimations and manual observa-
tions. Irrespective of the differences in community structure among and within regions, this comparison corrob-
orates the reliability of the machine estimations at both label and community level.

Machine estimations were generally better for well-defined and large organisms in quadrats, such as corals 
and soft corals, showing the lowest error (<1%–2%). The window size (224 × 224 pixels), however, penalises the 
estimation of smaller, patchy or less defined organisms, such as algal categories (error 3%–6%). Additional caveats 
and discussions in terms of the errors and accuracy of data derived from automated classifiers can be found in 
Beijbom et al.18,19, González-Rivero et al.23,25 and Williams et al.22.

In summary, the validation exercise demonstrates that the trained networks generated cover estimates unbi-
ased compared to those derived from observers, with an overall error of 4%. Thus, our data set represents a useful 
source of information to support spatio-temporal analysis of coral reefs ranging from small- (presence/absence 
within quadrats 1 m2) to broad-scales (regional/global analysis).

Usage Notes
Users can identify transects of relevance using a map or file naming convention present on the data repository34. 
The survey ID (“surveyid” in tables) is the unique identifier of each reef location in space and time that users will 
require as a key cross-reference to navigate within the repository and link the different cover tables, as well as 
cover records with the imagery folders.

Our relational dataset contains some tables with thousands to millions of rows (e.g., cover, quadrat and anno-
tation tables), hence it is advised to use a software that can handle this structure, such as R, PostGRES, Microsoft 
Access, etc. Manipulating these data with Microsoft Excel is not advised. For users interested in working with the 
whole dataset, the best approach will be to create a database, for instance in the MySQL system, and import all the 
csv files provided within the “tabular-data.zip”. Then the user can relate the tables using the “surveyid”, “imageid” 
and “quadratid” fields, which are cross-referenced between tables (see Data Records section and Table 3).
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Accessing benthic covers.  We provide guidelines to access cover records from the Indian Ocean Region 
(hereafter called “IOR”) per survey and quadrat as a transferable example for retrieving any cover record. The first 
step is to download the “tabular-data.zip” file from the repository34. As soon as the file is unzipped, 18 csv files 
(i.e., tables) are extracted including six with cover records, one file for each of the five regions and one summary 
file. Within the latter, the “seaviewsurvey_surveys.csv” file, the user can directly access the percent cover of main 
benthic groups (hard coral, algae, soft coral, other invertebrate, and other) summarised per survey (“surveyid” 
column). Filtering this table by the “ocean” column, users can select the surveys associated only with IOR, in this 
case 92 surveys. In addition, users can filter the surveys per country (“country” column), link each survey to the 
zip folder with the images (“folder_name” column) and the geographic location (columns with latitude and lon-
gitude at the start and end of the survey).

If users require percentage covers of detailed benthic categories per quadrat they must work with the file “seav-
iewsurvey_reefcover_indianocean.csv” (if the user is interested in other region/country, please refer to Table 1 to 
find the appropriate file). Users can relate cover records at the level of surveys (seaviewsurvey_surveys.csv file) 
with records at the level of quadrats (seaviewsurvey_reefcover_indianocean.csv) using the “surveyid” field.

To summarise percentage covers at the level of quadrats, users must sum the values of the benthic categories 
of interest. In our example with the IOR, by selecting and merging from the 45 field names of the columns in 
the “seaviewsurvey_reefcover_indianocean.csv” file. For this purpose, we recommend using the label-set table 
“seaviewsurvey_labelsets.csv” to understand the labels of different benthic categories, review the descriptions 
and examples, and guide your merging scheme. Filtering the label-set table by the “region” column, in this case 
selecting Indian Ocean, users will obtain the 45 categories (under the “label” column) associated with this region. 
Please note we also provide a reduced set of categories (under “merged_label” and “merged_name” columns) used 
in the technical validation, however users can merge the categories based on their criteria. A good consistency 
check to use after merging categories is that the cover fields in each row should always sum to 1.0 (these values are 
proportions, and 1.0 represents 100%).

To create summaries of the cover data for spatial analyses (at different scales) users will need to consider 
the cases where from a single georeferenced image there is more than one 1 m2 photo-quadrat extracted (see 
Post-processing of images section). This implies all the quadrats originated from the same image have the same 
georeference. For this situation, we recommend to aggregate the cover table (in this case seaviewsurvey_reef-
cover_indianocean.csv) by the “imageid” field, taking the mean cover value among all records (quadrats) for 
an image. From this point, users can spatially aggregate the images according with their own criteria and/or 
purposes. For instance, we applied hierarchical clustering to obtain the 30 m test transects for the technical val-
idation. Further details about this method are provided in González-Rivero et al.23 (see SM4 in Supplementary 
Material) and Vercelloni et al.37. When aggregating, users can relate cover records using the “surveyid”, “imageid” 
and “quadratid” fields. It is important to remind here that the dataset has a unique ID for each survey (five digits), 
image (nine digits), and quadrat (eleven digits) that link the different tables and files. Thus, in the ID 36001004202 
from the IOR cover dataset, the first five digits correspond to the survey ID (36001), this survey ID and the 
next four digits to the image ID (360010042), and the image ID along with the last two digits to the quadrat ID 
(36001004202, 02 implies there are at least two quadrats available for the 360010042 image).

Accessing temporal data.  Table 1 identifies which regions/countries have temporal data. Using the “seav-
iewsurvey_surveys.csv” table users can identify which reef locations have been surveyed multiple times by fil-
tering by the “transectid” field. A transect ID will appear more than once in this field if the transect has been 
surveyed temporally in more than one year. For instance, filtering the table by Indian Ocean/Maldives, and then 

Fig. 2  Mean Absolute Error for the automated estimation of the abundance (cover) of main benthic groups per 
region. Solid and error bars represent the mean and 95% Confidence Intervals of the error, respectively. Figure 
originally published as Fig. 3 in González-Rivero et al.23.
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filtering the first transect ID, 37001, you will find there are two surveys ID associated with this transect, 37001 
and 46001, which were done in 2015 and 2017 respectively as recorded in the “surveydate” field. This means this 
reef location has available images and cover data for these years. Once the user has identified and selected reef 
locations with temporal data, we recommend plotting the georeferenced data of the images of the surveys of inter-
est in order to visually explore the spatial overlap between them over the different years and design appropriate 
temporal comparisons. Further details about temporal assessments are provided in González-Rivero et al.23 (see 
SM4 in Supplementary Material), Kennedy et al.39 and Vercelloni et al.37.

Fig. 3  Mean Absolute Error for the automated estimation of the abundance (cover) of key benthic categories. 
Errors are aggregated by main benthic groups, along the y-axis, and regions, along the x-axis. Solid and error 
bars represent the mean and 95% Confidence Intervals of the error, respectively. Figure originally published as 
Fig. 4 in González-Rivero et al.23.
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Accessing the imagery associated with benthic covers.  To inspect the image quadrats associated 
with the data in detail, users only need the survey ID(s) and to download the set of quadrats required from the 
“photo-quadrats” directory at the repository34. Within this directory, the different zip folders of each survey can 
be identified with a code (e.g., IND_MDV_37001_201503) that includes the five digits of the survey ID in the 

Fig. 4  Overall agreement between observer (manual) and machine (networks) estimations of abundance 
(cover). Agreement is here discretised in two metrics: (a) Correlation between machine and observer 
annotations, and (b) bias (Bland-Altman plot). Each filled circle in these panels represents the estimated 
cover for each label classified by both, the machine and the observer in a given transect. The correlation shows 
that estimations of benthic abundance by expert observations are significantly represented by the automated 
estimations (R2 = 0.97). The Bland-Altman plot shows that overall the differences (Bias) between machine 
and observer tend to mean of zero (grey continuous line), and a homogenous error around the mean, defined 
by Critical Difference (Critical diff.) or the 95% Confidence Interval of the difference between observers and 
machines (dashed grey lines). Figure originally published in González-Rivero et al.23 (as Figure A1).

Fig. 5  Comparison of compositional similarity within regions. Community similarity between observed and 
estimated benthic composition per region was evaluated by the Bray-Curtis similarity index. Solid and error 
bars represent the mean and 95% Confidence Intervals of the error, respectively. Figure originally published in 
González-Rivero et al.23 (as Fig. 5).
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middle of the code (i.e., 37001). Alternatively, users can find the zip folder’s name associated with any survey 
using the “seaviewsurvey_surveys.csv” table and looking at the “folder_name” column. Once a survey has been 
downloaded and unzipped, all the associated quadrats (jpeg format) are identified with a unique ID, the “quad-
ratid” in which the first five digits correspond to the survey ID. Users can always related each photo-quadrat to 
the cover records from the data tables using the “quadratid”.

The sets of three raw photographs (downward, left and right facing), in CR2 format (Canon Raw version 2 for-
mat) that constitute each survey, including the downward facing files used to generate the quadrats of this dataset 
will be also accessible through an open-access data repository in the future.

Accessing annotations data and their images.  Extracting the “tabular-data.zip” file users can access 
nine files with the records of manual annotations used for training and validating each network (one per net-
work). Table 2 lists the networks and the name of the corresponding csv file. For instance using the “annotations_
IND_MDV.csv” table and filtering by the “data_set” field users can differentiate if the record was used for either 
training (“train”) or validation (“test”). The image quadrats specifically associated with the annotations can be 
accessed from the “annotated-images” directory on the repository34. Within this directory, the different zip fold-
ers of the networks are identified with the corresponding annotations file name but excluding the “annotations” 
part. Thus, for the “annotations_IND_MDV.csv” set of annotations, the matching images folder is “IND_MDV.
zip”. By associating annotations data and their images with the labelset information (seaviewsurvey_labelsets.csv 
file), users can extract specific visual examples of the labels used during the manual annotations for the different 
regions.

Additionally, if users are interested in visual examples of the labels, the Supplementary Table 1 provides the 
URLs to view multiple examples of images annotated at CoralNet (https://coralnet.ucsd.edu/) for each label. 
Users need to search for the region and label of interest within the table, click on the relevant URL or also copy the 
URL and paste it into any browser address bar to access the images directly.

In addition to the manual annotations, within the “tabular-data.zip” file users can have access to one file with 
all raw records of the automated annotations (“seaviewsurvey_annotations.csv”). The records of this table can be 
related to the cover records (processed data of covers files) by the “quadratid” fields.

Code availability
The documented code and examples to implement the automated image analyses method from this study can be 
found in the following repository: https://github.com/mgonzalezrivero/reef_learning.
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