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Bacterial toxin-antitoxin (TA) systems consist of two or more adjacent genes, encoding
a toxin and an antitoxin. TA systems are implicated in evolutionary and physiological
functions including genome maintenance, antibiotics persistence, phage defense, and
virulence. Eight classes of TA systems have been described, based on the mechanism
of toxin neutralization by the antitoxin. Although studied well in model species of clinical
significance, little is known about the TA system abundance and diversity, and their
potential roles in stress tolerance and virulence of plant pathogens. In this study, we
screened the genomes of 339 strains representing the genetic and lifestyle diversity of
the Pseudomonas syringae species complex for TA systems. Using bioinformatic search
and prediction tools, including SLING, BLAST, HMMER, TADB2.0, and T1TAdb, we
show that P. syringae strains encode 26 different families of TA systems targeting diverse
cellular functions. TA systems in this species are almost exclusively type II. We predicted
a median of 15 TA systems per genome, and we identified six type II TA families that
are found in more than 80% of strains, while others are more sporadic. The majority
of predicted TA genes are chromosomally encoded. Further functional characterization
of the predicted TA systems could reveal how these widely prevalent gene modules
potentially impact P. syringae ecology, virulence, and disease management practices.

Keywords: Pseudomonas syringae, toxin-antitoxin systems, phylogroup, genomics, stress

INTRODUCTION

The Pseudomonas syringae species complex consists of a monophyletic group of plant-pathogenic,
plant-commensal, and environmental isolates within the major clade of the genus Pseudomonas
(Xin et al., 2018). The strains are grouped into 13 phylogroups by multilocus sequence analysis
(Berge et al., 2014) and phylogenomics (Gomila et al., 2017; Dillon et al., 2019a; Newberry et al.,
2019). Based on host range and symptomatology, P. syringae strains have been also classified into
over 60 pathovars that together affect almost all known crop plants of economic importance.
Periodic outbreaks, including a recent devastating epidemic of bacterial canker in kiwifruit in
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New Zealand (McCann et al., 2013), establish these plant
pathogens as a serious threat to global food production. In
addition to being a pathogen, P. syringae survives well in
the environment and is commonly found in precipitation and
natural bodies of water (Morris et al., 2008, 2013). Epiphytic
and environmental populations face extreme fluctuations in
UV light, temperature, humidity, and nutrient availability, as
well as antimicrobial compounds produced by plants and their
microbiota (Hirano and Upper, 2000; Lindow and Brandl, 2003;
Craig et al., 2021). Previous studies have reported induction
of viable but not culturable (VBNC) state and a concomitant
alteration in the gene expression profile upon exposure of
P. syringae cells to conditions that mimic oxidative burst of early
stage plant infection (Mock et al., 2015; Postnikova et al., 2015).
We recently reported that a plant pathogenic P. syringae can
survive bacteriocin and antibiotics exposure by entering another
dormant, tolerant state known as persistence (Kandel et al., 2020;
Patel et al., 2021). Although several stress response pathways have
been identified, it is still not well understood how P. syringae
can cope with environmental stresses in epiphytic and free-living
conditions or maintain virulence genes in the extended absence
of host selection pressure.

Toxin-antitoxin (TA) systems are small, self-regulating genetic
elements, comprised of two to three adjacent genes. The toxin
component interferes with an essential cellular function such as
translation, DNA replication, and cell wall biosynthesis, whereas
the cognate antitoxin neutralizes toxin activity (Unterholzner
et al., 2013b). Because the antitoxin is typically less stable
than the toxin, conditions that affect antitoxin expression or
degradation can increase the pool of unbound toxin, inhibiting
cellular processes (Unterholzner et al., 2013b). TA systems
have been broadly classified into eight types depending on
the nature of antitoxin and its mode of interaction with
the toxin (Song and Wood, 2020b). Most well-studied TA
systems are Type II, characterized by protein antitoxins that
directly bind and neutralize toxin active sites (unlike the type
I and III systems, where antitoxins are non-coding RNAs).
TA systems were initially implicated as a plasmid maintenance
mechanism that suppressed the growth of plasmid-free daughter
cells in the absence of antitoxin expression (Ogura and
Hiraga, 1983). Subsequent studies have identified TA genes
in bacterial chromosomes, which can similarly prevent loss
of genomic islands (Wozniak and Waldor, 2009; Yao et al.,
2015). TA loci have been implicated in a wide range of roles
in addition to plasmid and genome maintenance, including
physiological tolerance to antibiotics (Moyed and Bertrand,
1983), phage defense (Sberro et al., 2013; Song and Wood,
2020a), biofilm formation, and virulence (Wood and Wood,
2016). Recent studies have demonstrated that TA systems can
impact the ecology, plasmid maintenance, chemical control
tolerance, and virulence capabilities of plant pathogens. For
example, in Acidovorax citrulli, which causes bacterial fruit
blotch of cucurbits, expression of a TA operon was significantly
induced during plant infection (Shavit et al., 2016). In Xylella
fastidiosa, overexpression of a TA toxin decreased virulence
and increased persistence to copper exposure (Merfa et al.,
2016), while in a separate study, deletion of another TA system

caused a hypervirulence phenotype suggestive of a regulatory role
governing systemic infection (Burbank and Stenger, 2017). In
Xanthomonas oryzae pv. oryzicola, the toxin of one TA system
functions as a virulence effector delivered into host cells via the
type III secretion system (Triplett et al., 2016). Moreover, in
Erwinia amylovora, a 10-fold greater tolerance to streptomycin
was reported when a TA toxin gene was expressed (Peng
et al., 2021). TA systems were also shown to play a significant
role in maintenance of P. syringae virulence plasmids (Bardaji
et al., 2019). While TA systems have been predicted in several
plant pathogenic species, including in Xanthomonas citri and
Erwinia amylovora (Martins et al., 2016; Shidore et al., 2019), TA
system composition and diversity has not been described in the
P. syringae species complex.

In this study, we used genome mining to predict TA
systems in 339 P. syrinage strains representing the broad
diversity of the species complex, examined their abundance,
diversity, and association with strain phylogeny, source of
isolation, and virulence determinants. We show that homologs
of well-characterized TA systems are ubiquitous and present
in multiple copies in P. syringae genomes. We identified six
major TA families conserved across species, and others that
have more sporadic distributions. Most TA systems occurred in
the chromosome and were likely associated to mobile elements
and virulence factors. Further experimental characterization of
the predicted TA system will reveal their significance in the
context of Pseudomonas syringae biology, ecology, and virulence,
and can provide important insights on how these bacteria can
survive in very diverse and harsh environments. These insights
could be important in designing new management options
for the pathogens.

MATERIALS AND METHODS

Selection of Strains, Phylogenomics, and
Phylogroup Designation
We retrieved a set of 2,345 genomes identified as Pseudomonas
syringae complex in the NCBI database as of October 2020, and
generated a preliminary phylogenetic tree using the evolutionary
distance estimation method of andi with default settings
(Haubold et al., 2014). From this tree, we manually extracted 357
genomes representing the genetic diversity within the P. syringae
complex. We then assessed the completeness of the assembly and
annotation with the benchmarking tool BUSCO (Simão et al.,
2015), using the Pseudomonadales single-copy gene ortholog
dataset. Genomes with a BUSCO score of less than 95% complete
genes were filtered out, and 339 genomes were retained for
further analysis (Supplementary Table 1).

A phylogenomic tree of the 339 strains was constructed using
GToTree v1.5.46 using Gammaproteobacteria gene profiles (Lee,
2019). Sequences of 172 homologous gene sets were used to
construct the tree. The clade containing P. fuscovaginae SE-
1 was used as an outgroup to root the tree. Clustering of
strains with previously known phylogroup designation was used
as the basis for assigning phylogroups to unknown strains,
after confirming that strains of the same phylogroup clustered
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together. Together, we included 77, 104, 38, 31, 11, 2, 61, 2,
4, 4, 2 strains from phylogroups 1, 2, 3, 4, 5, 6, 7, 9, 10, 11,
and 13, respectively. The P. fuscovaginae group clade was not
assigned to any phylogroup. Our genome list did not have any
representatives from phylogroups 8 and 12 due to unavailability
of quality genomes in the public database.

Prediction of Toxin-Antitoxin Systems
Type II and IV TA systems were predicted for whole genomes of
all 339 strains using SLING 2.0.1 (Horesh et al., 2018), a program
that identifies gene pairs based on Hidden Markov Models
(HMM) alignments to annotated genes or unannotated putative
ORFs, as well as gene pair structural requirements. Nucleotide
sequence, annotations, and toxin profile HMMs included with
the program were used as inputs with default parameters.
SLING was run on Roar high-performance computing platform
using 16 processors at Penn State. SLING output consisted of
260 hits that contained a gene with a known toxin domain
(Supplementary Figure 1). A hit is a CDS with a HMMER bit
score of at least 20 for overall sequence/profile comparison with
a previously characterized and/or predicted toxin CDS included
in the program. Hits with the same toxin gene domain were
given separate designations using an e-value cutoff of 0.01 and an
identity score of 30% as reported previously (Horesh et al., 2018).
Toxin hits sharing common domain names were considered
homologs and combined into one category to simplify the results.
For example, the parE toxin gene included 47 hits that were
combined to form a single ParDE TA system. The homologs
with the same hit label (eg., 4H-parE) across the strains (i.e.,
orthologs) were highly conserved (> 70% amino acid identity)
in their amino acid sequence, while hits within a strain (i.e.,
paralogs) with different labels (eg., 4H-parE and 11H-parE) were
divergent (< 30% identity) (Supplementary Figure 2). To check
for completeness of the SLING prediction, we acquired the TA
systems of the three model strains (DC3000, B728a, and 1448A)
predicted in TADB2.0, an updated database of bacterial type II
TA loci (Xie et al., 2018). The TAFinder tool of TADB2.0 was also
run with default parameters using the Refseq accession numbers
of the model strains.

To predict TA systems not included in the training sets
of above programs, an HMM alignment approach was used
to screen genomes for type I, III, V, and VI systems. For
each family of toxin and protein antitoxin to be searched,
a minimum of 20 amino acid sequences representing that
family across diverse bacterial species were retrieved from
UniProt. Sequences were aligned with MAFFT v 7.450 using
default settings and an HMM profile was built using default
settings of the hmmbuild function in the HMMER webserver
(Finn et al., 2011). A locally created target database of 339
P. syringae genomes translated into six reading frames was
used in HMMER’s HMMsearch. The TA systems screened this
way were type I (hok/sok, ldrD/rdlD, tisB/istR-1, symE/symR,
ibsC/sibC, txpA/ratA, fst/RNAI-RNAII, pndA/pndB, shoB/ohsC);
type III (toxN/toxI, abiQ/antiQ, cptI/cptN, tenpN/tenpI); type
V (ghoT/ghoS); and type VI (socB/socA). A type I TA system
predicted for strain DC3000 in the type I toxin-antitoxin
database T1TAdb (Tourasse and Darfeuille, 2021) was included

in the analysis after confirming its presence in our genomes by
nucleotide and protein BLAST.

Heatmaps were created using the Interactive Tree of Life
(iTOL) v5 (Letunic and Bork, 2021) using the phylogenomic
tree and TA system abundance used as annotation. Predicted TA
systems were categorized based on their frequency among strains,
as prevalent (if at least one homolog of the given toxin domain
is present in ≥ 80% of strains), common (present in 20–79% of
strains), or rare (present in < 20% of the strains).

Association of Toxin-Antitoxin System
Abundance With Phylogroup, Genome
Size, Plasmid Content, Source of
Isolation, and Presence of Virulence
Determinants
Differences between phylogroups in TA system abundance were
determined from the SLING output and uniquely predicted TA
system of TADB2.0 (psyrTA), and T1TAdb (hok-sok). Genome
size was defined as the assembly size and was recorded for
all strains, while plasmid counts were based on analysis of 28
closed genomes with resolved plasmids. Chromosome or plasmid
localization of genes was determined by manually examining
the start and end nucleotide positions of predicted toxin genes.
Isolation sources were obtained from strain information within
NCBI annotation files, with all isolates from non-plant sources
classified as “other” (Supplementary Table 1). To identify
correlations between TA system abundance and the abundance of
predicted type III effectors, we used bioinformatically predicted
effector repertoires of 140 of the 339 of our genomes as computed
in a previous study (Dillon et al., 2019b). Putative secretion
signals in toxin and antitoxin genes of P. syringae strain DC3000
was predicted using EffectiveDB (Eichinger et al., 2016).

GC Content, Codon Usage Variation,
Gene Neighborhood, and Strain
Grouping by Toxin-Antitoxin Abundance
To identify signs of TA system acquisition through horizontal
transfer, GC content of top 20 abundant toxin hits was extracted
and was compared to that of the genomic GC content. Codon
usage was extracted from the Codon Usage Database.1 The gene
neighborhood of the most ubiquitous three TA system homologs
(pasTI, RES-Xre, and vapBC) for the three strains DC3000,
B728a, and 1448A was visualized using gene graphics.2 Grouping
of strains based on similar TA system content was performed
using SLING outputs of the toxin hits using the average linkage
method for clustering and the Euclidean method for distance
measurement in heatmapper (Babicki et al., 2016).

Sequence Search, Blast, Alignment, and
Phylogenetics
Sequences of the orthologs and paralogs of the same toxin hits
(e.g., parE had 47 total homologs with up to 12 paralogs predicted

1https://www.kazusa.or.jp/codon/
2https://katlabs.cc/genegraphics/app
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in a single genome) were retrieved from the model strains
DC3000, B728a, and 1448A. Alignment of the sequences was
performed in Muscle 3.8.425 within Geneious using 10 maximum
iterations. A phylogenetic tree of the homologs was constructed
using FastTree 2.1.11 using default parameters.

Literature Search for Toxin-Antitoxin
System Expression Patterns
We identified 10 papers for which RNA-Seq or microarray data
were reported for strains DC3000, B728a, and 1448A under
environmental or mutant conditions. Fold change or log2 fold
change data was obtained from supplementary materials, and
locus IDs corresponding to SLING-predicted TA systems were
manually extracted using the start and end nucleotide positions
of TA genes in the genome. Significantly differentially expressed
loci were reported here as reported by the authors; no new data
analysis was performed. Moreover, we used data from a recent
study on genome-wide identification of fitness conferring genes
in strain B728a and analyzed the fitness profiles of TA genes from
their supplementary data (Helmann et al., 2019).

Statistical Analyses
Statistical analysis of difference in TA counts by phylogroup was
performed in JMP Pro 15 using the non-parametric Kruskal-
Wallis test (P < 0.05) followed by each pair multiple comparisons
after confirming that assumptions of parametric tests are not
satisfied as per the goodness of fit test and unequal variance test
in JMP. Phylogroups having fewer than 10 strains were excluded
from this analysis. Correlation analysis between the TA counts
and genome size, plasmid content, and type III effector count
was also performed in JMP Pro 15 using the multivariate option
and Spearman’s ρ. GC content differences were assessed using
Kruskal-Wallis test with a genomic GC used as control group
in Steel method.

RESULTS

P. syringae Genomes Encode 26
Toxin-Antitoxin System Families
Targeting Diverse Cellular Functions, of
Which Six Are Prevalent Throughout the
Species
As a basic step in understanding the roles of TA systems
in P. syringae ecology, we aimed to obtain a comprehensive
list and abundance patterns of TA systems across the species
complex using bioinformatics prediction tools including SLING,
BLAST, and HMMER. We predicted 26 distinct TA system
families throughout the P. syringae genomospecies (Figure 1 and
Supplementary Figure 3). Of these, 24 belonged to the type II
TA system families, and one each belonged to type I (hok-sok) and
type IV system (abiEii) families. The majority of TA system toxins
predicted are orthologs of toxins in other species, which have
been previously reported to inhibit translation through mRNA
cleavage or through modification of translation factors, while
others are reported to inhibit replication, cell wall biosynthesis,

NAD + homeostasis, and other essential functions (Table 1).
To confirm the comprehensiveness of the SLING method,
predictions from three P. syringae model strains were compared
to that from the database TADB2.0. The majority of the SLING
predictions were also identified in TADB2.0 (7 of 12 in B728a,
14 of 19 in DC3000, and 1448A), including five of the six most
prevalent systems described below. Six TA systems, including
the highly conserved pasTI module, were only predicted using
SLING. A TA system from a validated family, psyrTA (Sberro
et al., 2013), was predicted in TADB2.0 but not SLING. Few
TA genes were uniquely predicted in TADB2.0 and TAFinder
(Supplementary Table 2).

Genomes varied substantially in TA system repertoires,
and only six TA system families were highly prevalent (i.e.,
present in ≥ 80% of the genomes analyzed (Figures 1A,B).
These included systems encoding putative translation inhibitor
toxins (pasTI, vapBC, hipAB, and higBA), a replication inhibitor
(parDE), and a RES domain toxin proposed to interfere with
cellular NAD+ homeostasis (Table 1). Eight additional predicted
systems present in more than 20% of the strains were categorized
as common TA systems, and the remaining 12 were rare
(Figure 1B). Prevalent TA system families included sets of
toxin orthologs that diverged across strains despite sharing the
common toxin domain, and some included multiple distinct
paralogs within a genome. For example, for the parE toxin gene
of the parDE system, 47 variants were predicted (Supplementary
Figure 1). Similarly, the vapBC family had 21 distinct variants.
A conserved copy of pasTI, RES-xre, and vapBC systems were
predicted in all or most genomes (100, 94, and 87%, respectively),
suggesting an important conserved function.

A hok-sok module of type I TA system was predicted in the
strain DC3000 in the T1TAdb database (Tourasse and Darfeuille,
2021). Nucleotide BLAST of the predicted sequence in the locally
constructed database of our 339 genomes confirmed presence
of full complement of this system in strains of phylogroup 1
(Figure 1A). Other genomes contained orthologs of only the
toxin component. Alignment of the predicted Hok sequence
to previously characterized Hok homologs showed low identity
(15% to that of pR1 plasmid and 13% to that of Erwinia
amylovora). No TA toxin genes for any of the type I, III, V, and
VI systems were detected using BLAST and HMMER alignment
methods. All strains contained a homolog to the proposed type
IV TA system cptB/sdhE antitoxin that is encoded in an operon
with a hypothetical protein of unknown function (DC3000 locus
ID: PSPTO_4227), but no cptA toxin was identified, and sdhE is
an essential flavinylation factor in bacteria, so this is not a likely
TA system. A few potential homologs were detected for antitoxins
abiGii (type IV), ghoS (type V), and socA (type VI). Since these did
not occur in the type strains and no toxin homolog was detected,
no further assessment was performed.

Toxin-Antitoxin System Abundance
Differs by Phylogroup of P. syringae
As TA system abundance greatly varied across genomes
with a minimum of 5 to a maximum of 35 TA systems
(median of 15) predicted per genome of P. syringae, we
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FIGURE 1 | (A) Heatmap showing TA system content and distribution across P. syringae species complex. Names of TA systems are indicated for each row.
Number of homologs of each TA systems are indicated by the color key at the top. Phylogenetic tree color coded according to phylogroups are indicated by
numerals. (B) Percentage of strains containing the TA systems. List of all the TA systems found in P. syringae are shown in the x-axis, and the fraction of strains
carrying a given TA system out of the 339 strains is shown in the y-axis. TA systems were categorized as prevalent, common, and rare based on their abundance as
shown. Except abiEii (type IV), and hok-sok (type I) all belong to type II TA families.

aimed to understand the determinants that influence TA
system abundance. TA system abundance varied significantly
across phylogroups (Figure 2A). Phylogroups 1, 3, and 5
had significantly more TA systems per genome than other
phylogroups (Figure 2A). These differences were mainly driven
by a large variation in the within-genome abundance of three of
the prevalent TA systems, parDE, vapBC, and higBA (Figure 2B).
In addition to the copy number differences, phylogroups also
differed in composition of TA system families. For example,
putative bro-xre systems were common in phylogroup 2, but
absent in phylogroups 4, 5, and 10. The mazEF system was
ubiquitously predicted in phylogroup 7 strains but was sporadic
in others (Figures 1A, 2B). Similarly, full complement of
the type I hok-sok system was predicted only in phylogroup
1 (Figure 1A). Phylogroups could also be distinguished by

divergent orthologs of the same families; for example, the HipA-
5H homologs were predominantly found in phylogroups 7, while
the HipA-6H group was concentrated in phylogroups 1 and 4
(Supplementary Figure 1).

In a clustering analysis based on TA system repertoires, TA
system composition followed phylogroup structure in P. syringae,
with >90% of strains clustering with their phylogroup, suggesting
that most TA system acquisition happened prior to phylogroup
diversification (Supplementary Figure 4). However, at least 26
strains clustered outside their phylogroups, and phylogroups
1, 4, and 5 were significantly split into two or more clusters,
potentially indicative of more recent TA system gain or loss
in these strains. Overall, genetic similarity (i.e., phylogroup
association) is a major factor governing similarities in TA
system abundance.
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TABLE 1 | Toxin-antitoxin systems predicted in P. syringae, toxin function and physiological effect.

TA system Toxin domains Toxin function Function affected References

ParDEP ParE DNA Gyrase inhibitor Replication Jiang et al., 2002

VapBCP PIN, PIN_3, DUF4411 Cleavage of tRNAfMet Translation Winther and Gerdes,
2011

HigBAP HigB, HigB-like, Gp49 50S ribosome dependent mRNA cleavage Translation Hurley and Woychik,
2009

HipABP HipA_C, HipA_C-HipA_N-
Couple_hipA

Phosphorylation of glutamyl tRNA synthase
(GltX)

Translation Germain et al., 2013

PasTIP

(YfjG-YfjF)
RatA, polyketide_cyc2 Binds 50S ribosomal subunit and blocks

70S ribosome formation
Translation Zhang and Inouye,

2011

RES-xreP RES ADP ribosylates phosphoribosyl
pyrophosphate synthetase (Prs)

NAD + homeostasis Piscotta et al., 2019

Bro-TAC* Bro-N ? ?

MazEFC PemK Ribosome independent mRNA and rRNA
cleavage

Translation Zhang et al., 2003

Phd-docC Fic, DUF4172 Phosphorylates elongation factor Tu
(EF-TU)

Translation Cruz et al., 2014

HicABC HicA Ribosome independent mRNA cleavage Translation Jørgensen et al., 2009

HD-TAC HD c-di-AMP hydrolysis Signaling? Huynh et al., 2015

PezATC

(Epsilon-Zeta)
Zeta Phosphorylate uridine

diphosphate-N-acetylglucosamine (UNAG)
Cell wall
biosynthesis

Mutschler et al., 2011

AbiEiiC (MenTA) AbiEii NTP_transf_2 Nucleotidyltransferase on serine tRNA Translation Cai et al., 2020

Hok-sokC Hok Membrane depolarization Membrane Gerdes et al., 1986

RelEBR RelE_like Ribosome bound mRNA cleavage Translation Christensen and
Gerdes, 2003

AtaTRR GNAT_acetyltran Transfers an acetyl group from acetyl
coenzyme A to Met-tRNAfMet.

Translation Jurënas et al., 2017

DinJ-YafQR YafQ Ribosome dependent mRNA cleavage Translation Prysak et al., 2009

ImmA-IrrER Peptidase_M78, DUF955 Metalloprotease, activation causes
transcriptional induction of genes required
for repair and survival after radiation
exposure

Cleaves repressor, and
induces transcription

Ludanyi et al., 2014

YafN-YafOR YafO Ribosome dependent mRNA cleavage Translation Zhang et al., 2009

DUF4258R DUF4258, CdiA DNA double strand break (contact
dependent inhibition protein)

DNA damage Roussin et al., 2019

KilAC-TAR* ANT ? (Could be involved in phage repression) ?

YefM-YoeBR YoeB 50S ribosomal subunit dependent mRNA
cleavage at A site

Translation Zhang and Inouye,
2009

MqsRAR MqsR Ribosome independent mRNA cleavage Translation Yamaguchi et al., 2009

DarTGR DUF4433 ADP ribosylates DNA Replication Jankevicius et al., 2016

PsyrTAR RecQ ATP-dependent DNA helicase ? Sberro et al., 2013

PrlF-YhaVR Toxin_YhaV Ribosome dependent mRNA cleavage Translation Choi et al., 2017

*These systems were predicted by bioinformatics analysis. Overexpression was toxic to cell, but TA function was not confirmed (Chan et al., 2014). Pprevalent, Ccommon,
Rrare.

Toxin-Antitoxin System Abundance Is
Positively Linked to Genome Size and
Plasmid Number, and Most
Toxin-Antitoxin Systems Are
Chromosomally Encoded
TA systems frequently occur in mobile genetic elements (MGE),
that are known to be horizontally transferred. As the genome
sizes increase due to integration of MGEs or presence of plasmids,
we hypothesize that the number of TA systems will also increase.
We performed a correlation analysis on 339 strains to determine
whether predicted TA system abundance is associated with
genome size. Genome size was weakly, though significantly,
correlated to TA system count (ρ = 0.52, P < 0.0001, Figure 3A).

There was a similar positive correlation observed between TA
system count and the number of plasmids (ρ = 0.44, P = 0.018,
Figure 3B).

Next, we examined whether the TA systems predicted in
the 28 complete P. syringae genomes were chromosome- or
plasmid-borne. The majority (45–100%, mean = 87.7 ± 14.3)
of predicted TA systems were encoded in the chromosome
(Figure 3C and Supplementary Figure 3). The most widely
distributed TA systems, with pasT, vapC, and RES domain toxins,
were exclusively or almost exclusively detected on chromosomes,
though the common and rare vapC homologs also occurred in
plasmids (Figure 3C). Of the 40 plasmids analyzed, 33 contained
at least one TA system with a mean count of 1.8 TA systems per
plasmid, and 7 plasmids did not contain TA systems. A maximum
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FIGURE 2 | (A) TA counts per genome by phylogroups. The central line shows median number of TA system genes from the 339 strains used. Different letters
indicate significant difference in counts as analyzed by Kruskal-Wallis test at P < 0.05. Phylogroups with less than 10 strains were not used in the analysis.
(B) Differences in major TA system content among phylogroups. Mean counts per genome by phylogroup are shown. Phylogroups differed in copy number per
genome of parDE, vapBC and higBA families (also refer heatmap in Figure 1A).

of eight TA systems were predicted in the large plasmid of
the strain 1448A.

We next analyzed GC content, codon usage variation, and
genomic context of TA genes to detect if they contain signs of
horizontal transfer. By comparing the GC content of top 20 toxin
hits to that of the genome, we showed that GC content of 17 of
the 20 toxin genes significantly differed from that of the genome.
GC content varied by > 5% in 8 of the 20, and by > 3% in 12 of
the 20 toxin genes (Supplementary Figure 5). Although we did
not detect a noticeable codon usage variation compared to the
genome in strain DC3000, few toxin genes such as parE, hicA and
higB showed minor differences (Supplementary Figure 6). Upon
examining the genomic context of the three most abundant and
highly conserved TA system variants (i.e., pasT, RES, and vapC),
we observed that these systems are immediately flanked by or
lie within 20 kb region from MGE in at least one of the strains
(Supplementary Figure 7). Together, these results suggest that
most TA systems in P. syringae occur in mobile elements and are
likely to be acquired by horizontal transfer.

Isolation Source of Strains Does Not
Affect Toxin-Antitoxin System
Abundance, and Toxin-Antitoxin Gene
Counts Are Weakly Correlated to Type III
Effector Gene Counts
A previous study reported higher abundance of TA systems in
free-living than in host-associated isolates (Pandey and Gerdes,
2005). We therefore analyzed if the source of isolation of the
strains influences the abundance of TA system in P. syringae.
We did not detect any difference in TA abundance based on
the environment from which strains were isolated (Figure 4A
and Supplementary Figure 8). Notably, strain Psy642, which
forms a separate subclade 2c within phylogroup 2, lacks the major
virulence determinant of canonical type III secretion system,
and was reported to be avirulent in a previous study (Demba
Diallo et al., 2012), showed a different pattern of TA content than

other strains of the same phylogroup (Supplementary Figure 1).
Psy642 and two other strains in this clade did not contain
the vapBC genes (Figure 1A). The highly prevalent vapC-3H,
parE-4H, and hipA-5H homologs are missing in these strains
(Supplementary Figure 1). Since TA systems are known to
stabilize genomic islands that contain virulence and antibiotics
resistant determinants (Wozniak and Waldor, 2009; Yao et al.,
2015), we hypothesized that the predicted type III secretion
system effector counts are correlated to TA gene counts. To this
end, we examined the association between the number of TA loci
and type III effectors, as predicted in a previous study (Dillon
et al., 2019b). Although a similar trend was observed in the
TA gene counts and type III effectors in the three phylogroups
(1, 2, and 3) that are dominated by plant pathogens, overall, a
weak positive correlation (ρ = 0.38, P < 0.0001) was detected
between the two variables (Figure 4B). We also attempted to
examine the association of TA genes to markers of copper and
streptomycin resistance, bactericides that are frequently used in
control of P. syringae diseases. However, these markers could
be predicted only in a limited number of strains based on
BLAST search of the resistant genes as query against our local
database of 339 genomes.

EffectiveT3 predicted four TA gene products of DC3000 as
type III secreted proteins. These included antitoxins of vapBC-
3H (PSPTO_2000), vapBC-26H (PSPTO_1058), and toxins of
HD-15H (PSPTO_2479), and ataTR (PSPTO_RS175570).

Published Gene Expression and Fitness
Profiles for Predicted Toxin-Antitoxin
Systems Indicate Distinct Regulatory
Patterns
Although TA systems are posttranslationally regulated, some
antitoxins are repressors of the TA operon, and conditions
leading to antitoxin degradation and excess free toxin might
lead to induction of the TA operon (Chan et al., 2016).
Therefore, expression patterns could point to conditions in
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FIGURE 3 | (A) Association of TA counts by genome size and (B) plasmid counts. (C) Heatmap showing occurrence of all 260 homologs of TA systems in the 28
completely sequenced strains in chromosome or plasmids. Most TA systems were encoded in the chromosome.

FIGURE 4 | (A) TA counts by isolation source of strains. Strains isolated outside of plant environment (rain, snow, stream, lake water, epilithon) were categorized as
other (n = 13). (B) TA counts and type III effector counts by phylogroups (x-axis). Type III secretion system effector counts predicted in 140 genomes from a previous
study (Dillon et al., 2019b) were used. Strains of phylogroup 7 were not used in this analysis as the strains used here were not used in Dillon et al. (2019b).

which certain toxins might be functional. We compiled reported
transcriptional differences from nine RNA-seq studies and one
well-replicated microarray study, all performed on one of the
model strains DC3000, B728a, or 1448A. Seven of the studies
reported significant differential expression of one or more of
the four highly conserved TA system genes (pasTI, RES-xre,
vapBC, and parDE) under host or abiotic stress, or in virulence

regulatory mutants (Table 2), while three studies found no
difference. In microarray analysis of strain B728a, epiphytic
growth and nitrogen starvation induced 3 TA systems. vapC toxin
genes were reported to be substantially induced during nitrogen
starvation (Supplementary Table 3). The expression of RES-Xre
was suppressed during early infection of DC3000 on Arabidopsis
plants and was conditionally affected by several regulatory gene
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deletions in 1448A (Table 2). While these expression patterns do
not provide conclusive evidence of a function or lack thereof,
they indicate that the different TA system families are regulated
in distinct and complex pathogen and environmental contexts.

In a recent Rb-TnSeq study aimed at identifying genome-
wide fitness profile of B728a genes, three antitoxin gene mutants
(that of two parDE and a vapBC) showed below threshold
abundance in the BarSeq library (Supplementary Figure 9).
The authors suggested that these genes could be important for
in vitro growth and survival. Similarly, although not reported to
be significant in the paper, the plant fitness score was lower for
antitoxin mutants of RES-xre, hipAB, psyrTA, and a vapBC system
(Supplementary Figure 9). We speculate that the disruption of
antitoxin genes by transposon insertion could have freed their
cognate toxins. The freed toxins subsequently caused growth
inhibition or death of the mutants lowering their abundance
in the library. Interestingly, toxin gene mutants of the pasTI
system showed below threshold abundance in the library, which
could suggest a different regulation of this TA system or multiple
cellular functions of the predicted toxin gene. Moreover, in the
study that validated TA system function of psyrTA mentioned
above, a parDE system is reported to be functional based on
cloning success of predicted TA genes during Sanger-based
whole-genome shotgun sequencing (Sberro et al., 2013).

DISCUSSION

Using in silico prediction from a broad-scale genomic data, we
show that TA systems are prevalent and occur in diverse patterns
in Pseudomonas syringae species complex. We found that 100% of
screened genomes contain at least five TA systems with a median
count of 15 per genome across the species. We predicted 26
distinct TA families that almost exclusively belong to the type II
group, except for a type IV system that was sporadically detected
in some strains and a type I system detected in phylogroup 1.
Of the 26 TA systems, six are highly abundant across the species
implying potentially conserved roles in P. syringae ecology.
The most prevalent among the TA systems was that of the
pasTI system, occurring mostly as a single copy in all strains
with a high degree of sequence conservation. Although limited
data exists regarding the functional characterization, a previous
study in Escherichia coli CFT073 showed that this TA system is
involved in stress tolerance under nutrient limitation, oxidative
stress, and antibiotic persistence (Norton and Mulvey, 2012).
Another recent study has confirmed its role in stress survival
but contradicted its function as a TA system (Fino et al., 2020).
Interestingly, The pasT gene was recently shown to be important
for in vitro fitness in P. syringae, indicating a functional role
(Helmann et al., 2019).

Orthologs of other prevalent TA loci (vapBC, RES-xre, parDE,
higBA, hipAB) have been widely described to function as TA
systems. We predicted multiple paralogs of parDE, vapBC, and
higBA systems in some phylogroups and strains. We determined
that sequences of paralogs are highly divergent. Whether all
paralogs are active and if they are also functionally diverse is
a subject of further research. The parDE and vapBC homologs

were also among the most prevalent in another plant pathogen,
Erwinia amylovora (Shidore et al., 2019). A vapBC ortholog
was characterized as a TA system in the plant pathogen
Acidovorax citruli, and was shown to be overexpressed during
plant infection (Shavit et al., 2016). We predicted that some
of the vapB antitoxin sequences contain a type III secretion
signal, indicating a potential role in virulence. The role of
vapBC in stress responses is reported in several other species
(Arcus et al., 2010). The parDE system has been implicated
in persistence against DNA gyrase inhibiting antibiotics in
P. aeruginosa (Muthuramalingam et al., 2019). Homologs are
also known for plasmid and genome maintenance in several
other species including plant pathogens (Roberts et al., 1994;
Yuan et al., 2011; Unterholzner et al., 2013a). Similarly, TA
systems containing the RES domain toxin was also prevalent,
and a copy was highly conserved across species. Although this
system is previously characterized as a bona fide TA system
including in P. putida (Skjerning et al., 2019), its physiological
role remains to be determined. higBA system, another prevalent
TA system in P. syringae, was shown to regulate virulence
factor production in P. aeruginosa (Wood and Wood, 2016).
Similarly, hipAB system has been shown to function in antibiotics
persistence in vitro (Moyed and Bertrand, 1983; Germain et al.,
2013) and also in the natural host environment (Schumacher
et al., 2015). Taken together, the prevelance of these TA systems
in P. syringae and their characterized roles in other taxa
indicate that they may play multiple roles in the ecology of this
phytopathogen. Further experiments will be able to reveal more
specific details on their roles and the conditions under which
they are activated.

TA genes that were less prevelant but were commonly found
in P. syringae included toxin families of well characterized TA
systems in other species. Some notable examples in this category
were mazEF, hicAB, phd-doc, pezAT, abiEii, and hok-sok. Previous
studies have reported stress and virulence associated function
of these TA genes. For example, MazF toxin of the mazEF
system was shown to contribute Mycobacterium tuberculosis cells
survive oxidative stress, nutrient depletion, and virulence in
the host (Tiwari et al., 2015). Rare TA systems also contained
TA candidates that have been experimentally verified in other
systems, including toxin families RelE, YafO, YafQ, AtaT (GNAT),
YoeB, MqsR, and YhaV. Some candidates of both common and
rare TA systems predicted in this study are less well studied
and have not been demonstrated to function as TA systems
experimentally, such as the Bro-N and KilaC(ANT) toxins (Chan
et al., 2014). Only further experimental research can validate if
they function as a TA system in P. syringae or are involved in
other functions.

Our results show that TA system abundance differs by
phylogroups. In addition to the genetic similarity, strains
belonging to the same phylogroup are generally expected to have
similar phenotypic traits consistent with their unique ecology.
For instance, phylogroup 2 strains were shown to be more
aggressive in cantaloupe seedling, were most consistently ice-
nucleation active, and more likely to produce syringomycin-like
toxin than strains of other phylogroups. Similarly, phylogroup
3 strains are rarely known to possess ice-nucleation activity
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TABLE 2 | Reported expression patterns of TA system genes in three model strains B728a, 1448A, DC3000.

Strain Condition Vs. PasT RES VapC-3H ParE-4H References

A T A T A T A T

B728a H2O2 HMM Yu et al., 2013

Apoplast HMM

Epiphytic HMM

Low Fe HMM

Low N HMM

Low NaCl HMM

B728a 30◦C 28◦C Hockett et al., 2013

1448A 1lon wt Hua et al., 2020

1448A (MM) 1OmpR 1ompS

1phoP 1phoQ

1pilR 1pilS

1psrA wt

1rhpR 1rhpS

1vfr wt

1algU wt

1gacA wt Shao et al., 2021

1OmpR 1ompR

1phoP 1phoQ

1448A (KB) 1pilR 1pilS

1psrA wt

1rhpR 1rhpS

1rpoN wt

1vfr wt

DC3000 1algU wt Markel et al., 2016

At PTI (1h) Naive 1

PTI 3 h Naive 3 h

PTI 5 h Naive 5 h

Naïve 1 h inoculum

DC3000 Naive 3 h inoculum

Naive 5 h inoculum

PTI 3 h inoculum Lovelace et al., 2018

PTI 1 h inoculum

PTI 5 h inoculum

Naive 1 h Naive 3 h

Naive 1 h Naive 5 h

Naive 3 h Naive 5 h

PTI 1 h PTI 3 h

PTI 1 h PTI 5 h

PTI 3 h PTI 5 h

Green box indicate significantly upregulated gene, blue box indicate the significantly downregulated gene and white box indicate no significant difference in the expression
level in comparison with control.
Bronstein et al. (2008), (DC3000): RES Antitoxin, down regulated and ParE-1 Toxin, upregulated due to ferric citrate and sodium citrate treatment at 4 h compared to
control respectively.
Lam et al. (2014), (DC3000)- hrpRS and HrpL mutants: no effect on any of these four TA systems.
Filiatrault et al. (2010), (DC3000): no effect on any of these four TA systems.
Santamaría-Hernando et al. (2020)20, (DC3000): no effect on TA systems of blue-light perception.
Greenwald et al. (2012), (B728a)-B728a 1acsS vs. B728a: no effect on any of these four TA systems.
Liu et al. (2020), (DC3000, B728a) DC3000 1(p)ppGpp vs. DC3000 and B728a 1(p)ppGpp vs. B728a: None of these TA systems are differentially expressed.
A, antitoxin; T, toxin; HMM, HRP MM-mannitol medium; 1lon, Lon knockout mutant; 1OmpR, 1ompS, 1phoP, 1phoQ, 1pilR, 1pilS, 1psrA, 1rhpR, 1rhpS, 1vfr,
1algU, 1gacA, and 1rpoN, deletion mutant of Type 3 secretion system regulators; MM, M9 minimum medium; KB, King’s B medium; PTI, pattern-triggered immunity; 1
h, 1-h post inoculation; 3 h, 3-h post inoculation; 5 h, 5-h post inoculation; hrpRS− and hrpL−, deletion mutant of hrpRS and hrpL gene; and DC3000 1(p)ppGpp and
B728a 1(p)ppGpp, ppGpp gene knockout mutant of DC3000 and B728a, respectively.

and are negative for syringomycin-like toxins (Berge et al.,
2014). Previous studies have also reported phylogroup dependent
differences in the content of virulence factors (Baltrus et al.,
2012; Dillon et al., 2019b). While it is impossible to speculate

the significance of these difference at this point, similar sporadic
distribution of TA system linked to genetic similarity has been
also described previously both in clinical (Horesh et al., 2020) and
plant pathogens (Shavit et al., 2016; Shidore et al., 2019).
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TA systems are mostly known to occur in the accessory
genome and are associated to MGEs or plasmids (Fraikin et al.,
2020). Although we predicted that 82.5% (33 out of 40) of
plasmids contain at least one TA system, a vast majority of
TA systems are encoded in the chromosome in P. syringae.
Chromosomally encoded TA systems are also reported to
contribute to stability of genomic islands (Wozniak and Waldor,
2009; Yao et al., 2015). Moreover, virulence and antimicrobial
resistance determinants are known to occur in laterally acquired
genomic islands including in P. syringae (Kim et al., 1998;
Feil et al., 2005). A comparison of the counts of type III
effectors and TA loci showed similar trends in three of the
phylogroups that are dominated by plant pathogens. Phylogroup
2 strains, which are known to be broad-host range and contain
relatively smaller repertoire of type III effectors compared to
other phylogroups (Baltrus et al., 2012), also contained lower
counts of TA genes in our study. Moreover, strain CC1557
that was shown to contain unusually lower counts of type
III effectors in a previous study (Hockett et al., 2014) was
predicted to encode fewer of TA system genes (8 TA systems
encoded compared to a median of 15). It could be possible
that the TA systems occur in same genomic islands as the
virulence and resistant determinants and could prevent their loss,
imparting adaptational benefits. Alternatively, these results might
indicate that strains that rely on larger repertoires of type III
effectors, also rely on larger TA system repertoires in a manner
related to their ecology. Testing these alternative hypotheses will
require a combination of additional bioinformatic analyses and
experimentation.

Taken together, we show that P. syringae genomes
encode multiple TA systems that target diverse cellular
functions upon activation. Based on our results of the
abundance patterns and evidence of the ecological roles
discussed above, we speculate that TA systems could be
important as virulence effectors, in maintaining genes of
virulence and antimicrobial resistance, in antimicrobial and
environmental stress tolerance, in defending phage predation
among others in P. syrinage. Further research focusing on
the experimental characterization and ecological roles of
the predicted TA systems can provide important insights in
the epidemiology and management of plant disease caused
by P. syringae.
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