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Recent advances in our understanding of the allograft response
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Abstract

Organ transplantation is a life-saving treatment for end-stage organ failure. However, despite advances in immunosuppression, 
donor matching, tissue typing, and organ preservation, many organs are still lost each year to rejection. Ultimately, tolerance 
in the absence of immunosuppression is the goal, and although this seldom occurs spontaneously, a deeper understanding of 
alloimmunity may provide avenues for future therapies which aid in its establishment. Here, we highlight the recent key advances 
in our understanding of the allograft response. On the innate side, recent work has highlighted the previously unrecognised role of 
innate lymphoid cells as well as natural killer cells in promoting the alloresponse. The two major routes of allorecognition have 
recently been joined by a third newly identified pathway, semi-direct allorecognition, which is proving to be a key active pathway 
in transplantation. Through this review, we detail these newly defined areas in the allograft response and highlight areas for 
potential future therapeutic intervention.
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Introduction
Allotransplantation saves and improves many thousands of 
lives every year and is the most common treatment for  
end-stage lung, heart, liver and kidney disease. The global 
demand continues to rise, yet there are unresolved challenges to 
this therapy. Tissue typing, organ preservation and immunosup-
pressive drugs have facilitated the survival of more than 80% of  
solid organ transplants at two years post-transplantation. How-
ever, lifelong immunosuppression has its drawbacks, and 
patients are susceptible to a host of issues, including infections1,  
nephrotoxicity2 and cancer3. Ultimately, tolerance in the absence 
of immunosuppression is the goal, and the ideal scenario 
results in weaning the patient gradually from immunosuppres-
sion with no adverse effects. Tolerance seldom occurs, how-
ever, with removal of immunosuppression invariably resulting  
in graft destruction by the host immune system. There is  
therefore a need for novel methods of immunotherapy to cir-
cumvent the challenges with current immunosuppression. The 
development of these novel therapeutics requires an in-depth  
understanding of the alloresponse.

The alloresponse is the term used to describe the response of 
the immune system to cells of non-self origin. It is divided 
into two components: the first is allorecognition, concern-
ing the recognition of non-self antigens by cells of the host’s 
immune system; the second is the ensuing destructive effector  
response4. The traditional T- and B-cell responses to the allo-
graft have been well reviewed (for example, 5). This review 
therefore will explore the more recent advances in our under-
standing of the alloresponse and focus on innate lymphoid 
cells (ILCs), natural killer (NK) cells, and novel pathways of  
allorecognition.

Innate lymphoid cells
The common lymphoid progenitor (CLP) is the developmen-
tal precursor for the effector cells of the adaptive immune 
response: T cells, B cells, and the ILCs which are devoid of any 
genetically rearranged antigen specificity (Figure 1). NK cells  
were the first of these ILCs to be defined and are commonly 
viewed as the non-specific counterpart to CD8+ T cells. These 
cells are instrumental to the destruction of transformed, infected 
or stressed cells6. The second group to be described con-
sisted of lymphoid tissue inducer cells, whose function was 
determined to induce the development of lymph nodes and  
Peyer’s patches7,8. In the past decade, however, a new subset 
of these ILCs that developmentally and phenotypically resem-
ble CD4+ T helper (Th) cells has been classified. They share a 
common lineage with T cells, B cells and the other innate lym-
phocytes, all of which are the progeny of the CLP (Figure 1). It 
is believed that, following the divergence with the T-cell and  
B-cell lineages, the CLP gives rise to a specific ILC progeni-
tor termed the common innate lymphoid progenitor9. ILCs, 
rather than responding to specific antigens, have key roles in 
defence against infection and wound healing and are activated 
by microbial compounds, stress responses and the inflammatory  
environment of surrounding tissues10–12. Unlike their adaptive 

counterparts, ILCs do not express specific antigen receptors, and  
as such their immune action is largely non-specific. However,  
similarities between ILCs and T cells in terms of cytokine pro-
duction have led to ILCs being classed as the innate counterparts  
of T cells. These ‘novel’ ILCs therefore have been subclassified  
on the basis of their ability to produce Th2-associated 
cytokines (interleukin 5 [IL-5] and IL-13), Th17-associated 
cytokines (IL-17 and IL-22) or interferon gamma (IFNγ)12. 
Group 1 ILCs (ILC1s) are defined by the production of 
IFNγ and the inability to produce Th17- and Th2-associated 
cytokines. Group 2 ILCs (ILC2s) are defined by their production  
of Th2-associated cytokines, and group 3 ILCs (ILC3s) are 
defined by their ability to produce Th17-associated cytokines. 
Studies have demonstrated that developing ILCs are gener-
ally bone marrow-resident in the foetus and liver-resident in 
adults but that mature ILCs are normally tissue-resident, mainly  
in the liver, lungs, gastrointestinal tract and skin13–15. Until 
recently, very few studies have examined the role of ILCs in 
graft tolerance and rejection, but studies published in recent 
years have started to highlight the potential importance of these  
cell types in the allograft response.

Innate lymphoid cells in lung transplantation
Recent studies have suggested a key role for ILCs in the  
alloresponse following solid organ transplantation. Monticelli 
et al. determined that changes in the levels of certain ILCs were  
associated with the development of allograft dysfunction fol-
lowing lung transplant16. The single-centre cohort study deter-
mined that the development of primary graft dysfunction (PGD), 
a form of acute lung injury that occurs after lung transplanta-
tion, was associated with decreased populations of ILC2 cells 
within the donor lung after reperfusion. This decrease was not 
observed in the non-PGD cohort. The study also showed that in 
participants who did not develop PGD, there was an increase in  
NCR− ILC1 cells (but no change in NCR+ ILC1 cells) in  
pre-perfusion samples, and no such change was observed in 
the PGD cohort. This suggests that the composition of ILCs 
pre- and post-perfusion may influence the development of PGD. 
Previous mouse models had showcased a pro-inflammatory 
role for ILC2 cells in lung disease, acting mainly via IL-13 and  
IL-5 to propagate airway hyper-reactivity17–21, but an earlier  
article by Monticelli et al. demonstrated that in mouse models 
of severe lung injury, ILC2 cells were instrumental in promoting 
airway repair and remodelling through the growth factor amphireg-
ulin, a key mediator of tissue repair and remodelling which  
promotes epithelial cell and fibroblast proliferation22. This role 
for amphiregulin in airway remodelling post-transplantation 
was further demonstrated in a recent study by Todd et al., 
where amphiregulin was shown to be associated with fibro-
sis and lung repair in chronic lung allograft dysfunction23.  
The 2020 study by Monticelli et al. also determined that changes 
in the subset composition of ILC1 cells may be implicated 
in the rate of PGD, showing that there was an increased pro-
portion of NKp44-negative ILC1s (NCR−) in the biopsies of 
patients without PGD when compared with those who developed  
PGD16. The authors suggest that this ‘less active’ subset of 
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ILC1 cells may be associated with protection from reperfusion-
associated graft injury, in contrast to Nkp44-positive ILC1  
cells, which have been associated with graft damage and organ 
rejection.

Recent work by Tanaka et al. identified a role for ILC3 cells in 
lung allograft survival, with ILC3-derived IL-22 thought to 
facilitate tolerance24. This study demonstrated that ILC3 cells, 
along with γδ T cells, produce IL-22, an essential inducer of  
bronchus-associated lymphoid tissue (BALT) formation in allo-
grafts. Previous studies have suggested that the formation of 
BALT following lung transplantation is associated with chronic 
rejection25. However, more recent work has suggested that 
the formation of BALT plays a key role in the maintenance of  
tolerance26,27.

Innate lymphoid cells in intestinal transplantation
Type 3 ILCs (ILC3s) have been associated with better out-
comes after intestinal transplantation. A 2020 study identified 
the balance of ILC1/ILC3 cells within the grafts after trans-
plantation as correlating with graft function and survival. When 
unsuccessful transplants were compared with healthy grafts at  
6 months, it was found that there was a decrease in ILC3 num-
bers in the failed transplants28. The authors determined that 
immediately following transplantation, the population of ILC3 
cells was decreased in all grafts but that the population recov-
ered within 2 to 4 weeks in healthy grafts and failed to recover 
in unsuccessful allografts. This suggests a key role for ILC3s  
in the maintenance of tissue homeostasis following intesti-
nal transplant. The authors posit that the production of IL-22 
by ILC3s is the main mechanism by which they support graft  

Figure 1. Lineage of innate lymphocytes and their proposed roles in alloresponses. Until recently, it was believed that the common 
lymphoid progenitor (CLP) was the common ancestor for only the innate natural killer (NK) cells and lymphoid tissue-induced cells as well 
as the T and B cells of the adaptive immune system. However, in the last decade, a further subgroup of innate lymphocytes, termed innate 
lymphoid cells 1–3 (ILC1–3), was discovered. Emerging research suggests that NK cells may have a significant role in the alloresponse and 
allograft rejection through direct cytotoxic actions and activation of T cells, dendritic cells and macrophages. The newly classified ILCs are 
believed to have mixed roles in the alloresponse. ILC1 cells are thought to be pro-inflammatory, acting via interferon gamma (IFNγ) and tumour 
necrosis factor alpha (TNFα) to recruit T cells and increase inflammation propagating organ rejection. ILC2 and ILC3 cells are believed to 
act in an immune-regulatory manner, acting via cytokines and secreted factors to prevent allograft rejection. Figure created using BioRender. 
HSC, haematopoietic stem cell; IL, interleukin; LTi, lymphoid tissue inducer cells; NKp, natural killer precursor.
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survival. Earlier studies on the role of IL-22 in intestinal trans-
plant survival suggested that IL-22 increases proliferation and 
expansion of intestinal stem cells post-transplantation, which 
results in improved mucosal regeneration and epithelial repair29. 
However, the relationship between ILCs and graft survival 
is not as clear-cut, as in the case of the study by Kang et al., 
there was an increase in numbers of ILC1 cells in unsuccessful  
grafts28. These ILC1s act to produce pro-inflammatory IFNγ and 
tumour necrosis factor alpha (TNFα); the implication is that 
in the absence of the protective effects of the IL-22-producing 
ILC3 cells, the increased ILC1s promote graft dysfunction and  
rejection.

Innate lymphoid cells in graft-versus-host disease
Allogenic bone marrow transplantation is a mainstay of man-
agement in many haematological malignancies and immu-
nological pathologies, including lymphoma, myelodysplasia, 
myeloma and leukaemia30. The curative potential of haematopoi-
etic stem cell transplantation (HSCT) is often complicated by 
the risk of graft-versus-host disease (GvHD), in which donor 
T cells target host alloantigens, resulting in the production of a 
number of inflammatory cytokines31. CD4+ T cells produce Th1  
cytokines (IFNγ, TNFα and IL-1) following activation by  
antigen-presenting cells (APCs), which act locally and systemi-
cally to potentiate the effects of alloreactive T cells. CD4+ and  
CD8+ donor T cells also exhibit antigen-specific cytotoxic-
ity in GvHD, and the secretion of perforin and granzyme causes 
cell lysis and apoptosis. Studies estimate that between 35% 
and 50% of HSCT recipients will experience acute GvHD and  
that 50% of these will progress to chronic GvHD32. The prog-
nosis can be quite poor; 30% long-term survival is seen in grade  
3 GvHD and only 5% survival in grade 4 GvHD.

Emerging evidence suggests that ILCs have a key role in regu-
lating the CD4+ and CD8+ T-cell responses that govern the  
graft-versus-host response in HSCT. Studies have suggested  
that ILC3s exert a protective function via IL-22 secretion33, similar  
to previously discussed intestinal transplant studies. This pro-
tective role for IL-22 has been observed in mouse models, and 
the absence of IL-22 in models of GvHD is associated with 
much more severe disease34. The use of recombinant IL-22 in 
humans who are experiencing acute GvHD is being evaluated in  
clinical trials (ClinicalTrials.gov Identifier: NCT02406651), and 
results are expected soon. ILC2 cells are also believed to have 
a protective role in GvHD. It is thought that ILC2s exert their 
effects not via a cytokine-secreting mechanism such as that seen  
with ILC3s, but through the recruitment of myeloid-derived 
suppressor cells and also via suppression of Th1 and Th17 
cells35. Th1 and Th17 cells have been established as key 
effectors of the alloresponse that precipitate GvHD36,37, and  
ILC2-derived IL-13 and amphiregulin are capable of inhibiting 
their recruitment35.

The future of innate lymphoid cells and the alloresponse
Although there is a paucity of data regarding the role of ILCs 
in alloimmunity and the alloresponse, the studies that have 
been reported suggest a key role for this recently classified 

group of cells in regulating alloresponses in transplantation.  
Further understanding of the exact mechanisms by which these 
cells mediate the alloresponse is needed. The clinical trial 
examining the role of IL-22 in treating acute GvHD is an indi-
cator of the potential for ILC-related therapies, yet there are 
many challenges to overcome, not least the apparent plasticity  
of ILCs. Studies have suggested that in the presence or 
absence of certain cytokine signals, ILCs can undergo type  
switching, in which IL-13- and IL-22-producing ILC2s and 
ILC3s convert to pro-inflammatory IFNγ-producing ILC1s38–41. 
Therapies that seek to expand the population of regulatory  
ILCs and prevent them from transdifferentiation could pro-
vide potential for future therapies. The administration of 
recombinant factors produced by the ILCs could also provide 
therapeutic benefit. Administration of IL-22 is already under  
investigation, and amphiregulin and IL-13 are also of interest.

Natural killer cells
NK cells were the earliest discovered members of the now 
termed ILC population and are so called for their innate or ‘nat-
ural’ ability to kill cells without the need for prior exposure42.  
Self-recognition of class I major histocompatibility (MHC) via 
inhibitory killer cell immunoglobulin-like receptors (KIRs) pre-
vents autologous cell destruction, although NK cells have a low 
threshold for detection of deficient or altered MHC I expres-
sion such that may be seen in certain tumours, allowing the 
detection of mutated cells where necessary43. Based on the  
missing-self hypothesis, the assumption is that NK cells would 
target transplanted organs and therefore be key players in 
the alloresponse. Although there was evidence that NK cells  
played a role in HSCT rejection44, there was little evidence 
that NK cells had any role in solid organ rejection. This theory 
was reinforced by studies which examined the potential role  
of NK cells in graft rejection, and depletion of NK cells in 
models of skin graft rejection and cardiac transplant rejec-
tion failed to prevent or delay graft rejection45–47. Thus, despite 
the intrinsic ability of NK cells to recognise the ‘non-self’, their  
contribution to allograft rejection was considered negligible.

The last decade, however, has provided new insights into the 
role of NK cells in solid organ rejection. A 2017 study by 
Kawakami et al. suggested a key role for NK cells in bronchi-
olitis obliterans (BO), a form of chronic rejection seen after  
lung transplantation48. In a mouse model of BO, a much higher 
percentage of NK cells was identified in allografts when com-
pared with isografts, and anti-NK1.1 depletion of NK cells 
attenuated rejection. Furthermore, inhibition of NKG2D, an  
NK cell activating receptor, was found to inhibit the develop-
ment of BO. However, it is worth considering that the NKG2D 
receptor is also constitutively expressed on CD8+ T cells,  
and studies suggest it is a co-stimulatory receptor that acti-
vates T cells alongside the T-cell receptor49. Thus, it is possible  
that the effect seen with NKG2D blockade is at least partially  
related to T-cell inhibition. Furthermore, the study by Kawakami 
et al.48 used a heterotopic tracheal transplant model of  
BO, which has limitations in modelling immune events after  
transplantation50.
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A 2019 study by Koenig et al. challenged the established para-
digm of antibody-mediated microvascular inflammation (MVI) 
as the main cause of graft failure, suggesting that NK cells may 
instead trigger MVI in an antibody-independent manner51.  
The authors demonstrated that graft endothelial cells (ECs) 
were capable of activating recipient NK cells because of the 
mismatched HLA class I molecules51. The study showed that 
the graft ECs triggered the ‘missing self’ based activation of  
NK cells which resulted in MVI. NK-associated MVI was 
shown to act via the mTORC1 pathway in NK cells, and 
rapamycin, an mTORC1 inhibitor, could inhibit the develop-
ment of this NK cell-mediated MVI. Importantly, this study 
demonstrates a non-antibody-mediated mechanism for MVI 
in graft injury, which was previously believed to be solely  
due to antibody-mediated rejection and which potentially is  
controlled with the use of mTORC1 inhibitors.

In another landmark article examining the role of NK cells 
in organ rejection, Niehrs et al. showed that NK cells are capa-
ble of detecting HLA class II molecules, namely HLA-DP  
subsets via the NK cell receptor NKp4452. The ability of NK 
cells to detect HLA class II molecules gives insight into recent 
research that demonstrated an increased risk of GvHD in indi-
viduals who possess a high-expression allele of HLA-DP53. Fur-
thermore, the study by Niehrs et al.52 demonstrated that the NK 
cells interacted with the HLA-DP only via NKp44, an NK activat-
ing receptor which is expressed only by activated NK cells, such  
as in infection, graft inflammation and rejection54. Interestingly, 
this study also showed that the use of anti-NKp44 antibodies 
could prevent NK-APC association52, suggesting that direct NK  
inhibition may prevent the Nkp44-mediated alloresponse. Wu 
and Li remarked that since MHC II is usually expressed by  
professional APCs, NK cells may be interacting with APCs,  
both host- and donor-derived, in the transplant setting54. 
Thus, NK cells could be acting to increase T-cell priming and  
activation, causing graft injury through direct cytotoxic mecha-
nisms or, as one study has suggested, causing a switch in the 
method of donor antigen presentation from the direct to indirect  
allorecognition55. Applying this evidence of NK activity in trans-
plantation and working towards a therapeutic angle, Ashraf 
et al. showed that depletion of NK cells in combination with  
cyclosporin treatment (in a renal transplant model in mice) results 
in enhanced transplant survival together with the development  
of a Foxp3+ regulatory T (Treg) population56.

KIRs are cell surface receptors present on NK cells and are 
classified as activating or inactivating KIRs depending on 
whether they express an activating or inhibiting tyrosine  
kinase57. Although KIRs are known to play a role in many 
inflammatory conditions, until recently there was conflict-
ing evidence regarding their role in transplant rejection58–62. A 
2017 study by Littera et al. demonstrated a key role for KIRs in 
chronic rejection following kidney transplantation63. The study 
identified that when recipient-donor pairs lacked two specific  
functional KIR-HLA ligand combinations (rKIR2DL1/dHLA-C2  
and rKIR3DL1/dHLA-Bw4), they were at significantly higher 
risk of organ rejection63. This immunogenetic profile resulted 

in significantly lower levels of NK inhibition and suggested 
that KIR genotyping prior to transplantation may be a useful 
measure in the future and that there is a potential role for direct  
anti-NK immunotherapy in this setting.

Studies are also beginning to demonstrate a role for NK cells 
in tolerance. Perhaps one of the earliest studies to identify a 
role for NK cells in tolerance was in 2005, when NK cells 
were shown to promote tolerance in islet allografts by interact-
ing with recipient immune cells64. This study suggested that  
NK cells promoted tolerance by inhibiting CD4 and CD8 T cells, 
as well as DCs, in a perforin-dependent manner. A subsequent 
study highlighted a pro-tolerogenic role for NK cells in skin 
allograft tolerance, showing that NK cells impede the actions of  
donor-derived APCs, resulting in decreased alloreactive T-cell 
activation65. A 2013 study echoed these findings, demonstrat-
ing a pro-tolerogenic role for NK cells in a mouse model of 
allogenic lung transplantation66. Here, NK cells infiltrated lung 
allografts and inhibited T-cell infiltration, resulting in decreased 
alloreactive T-cell activation and increased graft survival. Host 
NK cells inhibited T-cell activation through the destruction 
of donor-derived DCs in a manner similar to that outlined by  
Yu et al.65. An intriguing role for host NK cells has also 
been identified in alloantibody responses, whereby host NK  
allorecognition and killing of donor CD4 T cells prevent the 
latter’s ability to provide help to host B cells67. The role of  
NK cells in transplantation is therefore not straightforward, 
and there is evidence that these cells may act in both directions  
to promote or prevent transplant rejection.

The adaptive alloresponse
The central hypothesis in allograft rejection is based on  
T-cell recognition of donor MHC proteins. Traditionally this  
allorecognition was believed to occur via two mechanisms: 
the direct pathway and the indirect pathway68. When acting via 
the direct pathway, recipient T cells recognise donor (graft) 
MHC molecules on the surface of donor APCs to trigger the  
alloresponse, which is thought to principally contribute to 
acute organ rejection. The indirect pathway is mediated by host 
APCs uptaking and processing donor MHCs with subsequent  
presentation to alloreactive T cells. However, recent evidence  
suggests that a third pathway, semi-direct allorecognition, is  
highly relevant in transplant rejection (Figure 2).

Semi-direct allorecognition refers to the pathway of T-cell 
allorecognition of host APCs which have acquired intact donor 
antigen (usually MHC molecules). Classically, it was thought 
that following organ transplantation donor dendritic cells  
(DCs) migrated as ‘passenger leukocytes’ from the graft to host 
lymph tissues, wherein they presented donor MHC molecules 
to alloreactive T cells69,70. This theory has little evidence to  
support it and donor DCs are absent or found in only very low  
numbers in allografts a week after transplantation71,72. This lends 
little credence to the theory that donor-derived DCs are the  
driving force of alloreactive T-cell activation in the early 
stages of rejection. In fact, recent mouse studies have demon-
strated that intact donor MHCs can exist on the surface of host 
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APCs, and these so-called ‘cross-dressed’ APCs can present the  
donor MHC molecules directly to host T cells70,73.

The transfer of antigen between different cell types is not novel; 
studies show that the leukocytes can transfer surface antigens,  
including MHC I and II, through a number of mechanisms 
termed cross-dressing, cell-nibbling or trogocytosis74–76. This 
concept of cross-dressing was originally proposed by Lechler 
et al. in 200477; following this seminal article, studies have 
identified recipient APCs which expressed intact donor MHCs 
in graft-draining lymph tissues following mouse kidney and 
heart transplantation78,79. Although there has been evidence for 
this semi-direct pathway for just over a decade, the mecha-
nism by which APCs acquire donor MHC molecules has only  
recently begun to be elucidated.

Cell-to-cell contact via receptor-ligand interactions and the release 
of soluble mediators such as cytokines and extracellular vesi-
cles (EVs) are key mediators of inter-cellular communication80  

alongside established cell-cell communication mechanisms. 
The term EV encompasses microvesicles, exosomes (nanovesi-
cles), apoptotic blebs and other yet-to-be-classified EVs81,82.  
Exosomes function as carriers for nucleic acids, proteins and 
possibly lipids and carbohydrates between cells, and the com-
position of the exosome is dependent on the lineage and 
function of the cell it is derived from73. This carrier func-
tion of exosomes would suggest that they may have a role  
in antigen trafficking between APCs; indeed, emerging research 
suggests that the cross-dressing of recipient APCs occurs via 
an exosome-mediated transfer of intact donor MHC mol-
ecules from donor APCs, which may act as the main driver of  
acute T-cell activation following allotransplantation73.

A 2020 study by Hughes et al. underscores the importance of 
cross-dressed host DCs in mouse islet and kidney transplant 
models83. Semi-direct allorecognition was found to drive the 
early allograft response in secondary lymphoid organs as well 
as the graft itself, proving sufficient to mediate acute rejection  

Figure 2. The pathways of allorecognition. The direct pathway of allorecognition involves the recognition of donor antigens by recipient  
T cells, which bind to donor major histocompatibility molecules (MHCs) on the surface of donor antigen-presenting cells (APCs). The indirect 
pathway involves the presentation of processed donor antigens by MHC molecules on recipient APCs to recipient T cells. Until recently, these 
were believed to be the only two pathways involved in allorecognition. However, evidence has emerged for a third pathway, termed semi-
direct allorecognition, in which intact donor MHC-antigen complexes are presented by recipient APCs to recipient T cells. Figure created 
using BioRender.
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within 26 days83. Conversely, a loss of recipient DCs resulted 
in prolonged graft survival. This mirrors previous data which 
showed replacement of passenger leukocytes by recipient DCs 
soon after transplantation and a drastic decrease in overall donor 
MHC presentation upon selective recipient DC depletion71,84. 
Yet, as early as 2 months after engraftment, cross-dressed  
recipient DCs appeared to vanish from the allograft83. While 
this could indicate the transience of this response pathway, 
Smyth et al. previously showed that after donor leukocyte 
removal, acquired allo-MHC I-peptide complexes on recipi-
ent DCs can drive allograft rejection throughout the lifespan 
of the transplant85. Further evidence comes from studies using  
Batf3−/− mice (which lack CD8α+ conventional DCs), where 
induction of the alloresponse following skin transplantation 
is shown to be dependent on host cross-dressed CD8α+ and  
CD103+ DCs86.

The emerging importance of the semi-direct pathway of  
allorecognition may provide a novel avenue for management 
of allograft rejection. The studies above highlight the impor-
tance of recipient DCs in alloreactive T-cell priming; the  
implication is that therapies which target host DCs may be 
of use in preventing rejection following transplantation. One 
example is the induction of high PD-L1 expression in DCs 
which results in diminished T-cell activation and prolonged 
graft survival87. However, the longevity of the semi-direct  
allorecognition pathway is not entirely clear. Evidence indi-
cates that the direct allorecognition pathway is short-lived and 
its impact restricted to the initial few weeks after transplantation.  

Indirect allorecognition, by contrast, is longer-lived and relevant 
to late rejection responses88–90. If cross-dressed recipient DCs 
do indeed disappear shortly after transplantation, the functional  
significance of this pathway is not fully understood.

Future perspectives
The rates of short-term graft survival have seen significant 
improvements in recent years. However, chronic rejection/allograft 
dysfunction continues to be a challenge, and certain estimates 
suggest that 25% of recipients may experience rejection by two 
years post-transplantation91. However, our improved under-
standing of the mechanisms of allorecognition may provide  
novel avenues for manipulation of alloresponses.

Current studies investigating the efficacy of ILC3-derived  
IL-22 in preventing GvHD have already reached human clini-
cal trials. The regulatory activity of ILC2 cells also seems  
promising and suggests that expansion of this ILC subtype may 
be beneficial in transplant recipients. The discovery of the role 
of NK cells in graft rejection has prompted work assessing 
whether NK cell inhibition may offer a novel method of immu-
nosuppression. Finally, the classification of a third pathway  
of allorecognition provides a new appreciation of the impor-
tance of recipient DCs in the alloresponse and highlights the  
potential for therapies that target this cell population. Although 
these new developments are compelling, a fuller understand-
ing of how the pathways interact with the complete transplant 
response and confirmation of their replicability in humans  
is needed and will likely be the subject of future studies.
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