

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.



Contents lists available at ScienceDirect

## Journal of Clinical Neuroscience



journal homepage: www.journals.elsevier.com/journal-of-clinical-neuroscience

Review article

# Multiple sclerosis relapse after COVID-19 vaccination: A case report-based systematic review



Fardin Nabizadeh<sup>a,b</sup>, Elham Ramezannezhad<sup>a,c</sup>, Kimia Kazemzadeh<sup>d,e</sup>, Elham Khalili<sup>f,g</sup>, Elham Moases Ghaffary<sup>h</sup>, Omid Mirmosayyeb<sup>h,\*</sup>

<sup>a</sup> Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran

<sup>b</sup> School of Medicine, Iran University of Medical Sciences, Tehran, Iran

<sup>c</sup> School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

<sup>d</sup> Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran

<sup>e</sup> Universal Scientific Education and Research Network (USERN), Tehran, Iran

<sup>f</sup> Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

<sup>g</sup> Universal Scientific Education and Research Network (USERN), Bandar Abbas, Hormozgan, Iran

<sup>h</sup> Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

ARTICLE INFO

Keywords: Multiple sclerosis COVID-19 vaccination Relapse Exacerbation

#### ABSTRACT

*Background:* Concerns about vaccination increased among patients with multiple sclerosis (MS) regarding side effects, efficacy, and disease exacerbation. Recently there were reports of MS relapses after the COVID-19 vaccination, which emerged the safety concerns. Therefore, we aimed to perform a systematic review of case reports and case series studies to investigate the MS relapses after COVID-19 vaccination with most details. *Methods:* We systematically searched three databases, including PubMed, Scopus, and Web of Science, in February 2022. Case reports and case series which reported relapse after COVID-19 vaccination in MS patients were eligible to include in our study.

*Results:* Seven studies were included in our systematic review after the abstract and full-text screening with a total of 29 cases. The mean duration between COVID-19 vaccination and relapse appearance was  $9.48 \pm 7.29$  days. Among patients, 22 cases experienced relapse after their first dosage of the COVID-19 vaccine, one after the second dose, and five after the booster dose. The type of vaccine was unknown for one patient. The most common symptoms of relapses were sensory deficits (paresthesia, numbness, dysesthesia, and hypoesthesia) and weakness.

*Conclusion:* Overall, the COVID-19 vaccination may trigger relapses in some MS patients, but as the infection itself can stimulate relapse, the benefit of vaccination outweighs its risk in this population, and mass vaccination against COVID-19, especially in MS patients, should be continued and encouraged.

#### 1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for coronavirus infection, was declared a world-wide pandemic by the World Health Organization (WHO) in March 2020 [1]. Vaccination against COVID-19 is the primary long-term strategy to stop this pandemic globally [2]; thus, worldwide initiatives were done to develop vaccines against this pandemic which has claimed over 6 million lives and affected over 500 million people as of April 2022 [3]. Patients with comorbidities, especially autoimmune diseases, have been considered at higher risk to develop a more severe form of the disease

[4]. A systematic review and meta-analysis in 2021 showed the pooled prevalence of suspected covid-19 in patients with multiple sclerosis (MS) was 4%, hospitalization was 10%, and death in hospitalized patients was 4% [5].

MS is the most prevalent disabling permanently neurological disease among young adults and is associated with high socioeconomic cost and diminished quality of life [6]. Infectious diseases are the leading cause of death and a common cause of comorbidity among patients with MS and may cause the exacerbation of MS symptoms; thus, vaccination in patients with MS should be purposed as a general policy to decrease the risk of infections [6].

\* Corresponding author. *E-mail address*: omid.mirmosayyeb@gmail.com (O. Mirmosayyeb).

https://doi.org/10.1016/j.jocn.2022.08.012 Received 2 June 2022; Accepted 14 August 2022 Available online 19 August 2022 0967-5868/© 2022 Elsevier Ltd. All rights reserved.



Fig. 1. PRISMA flow diagram depicting the flow of information through the different phases of a systematic review.

Concerns about vaccination increased among health care providers and patients with MS regarding side effects, efficacy, and disease exacerbation [7]. Neurological manifestations are rare complications of COVID-19 infection and vaccination [8]. Among neurological manifestations, autoimmune disorders which affect the nervous system are rare (<0.1%) after COVID-19 vaccination [9]. In another study, after the first dose of Pfizer BioNTech and AstraZeneca vaccines, the most common complications were Guillain-Barré syndrome and Bell's palsy [10]. Recently there were reports of MS relapses after the COVID-19 vaccination, which emerged safety concerns [11-13]. A study by Fragoso et al. revealed that patients with no evidence of MS activity and no change in their medications developed a new relapse with new lesions on magnetic resonance imaging (MRI) along with increased disability following their first dose of AstraZeneca vaccine for COVID-19 [14]. Therefore, we aimed to perform a systematic review of case reports and case series studies to investigate the MS relapses after COVID-19 vaccination with most details.

#### 2. Methods

This study was conducted following preferred reporting items for systematic reviews and *meta*-analyses (PRISMA) guideline [15].

#### 2.1. Search strategy

We systematically searched three databases, including PubMed, Scopus, and Web of Science, in February 2022. Our search strategy included the following terms: (Multiple sclerosis) AND (COVID-19 OR SARS-COV-2 OR corona virus OR Coronavirus Disease OR 2019-nCoV Disease) AND (Vaccination OR Vaccine OR immunization).

#### 2.2. Eligibility criteria

All case reports and case series which reported relapse after COVID-

19 vaccination in MS patients were eligible to include in our study. The non-English article, studies with other vaccination for another virus, review papers, and other types of original studies (cohorts, case-control, and clinical trials) were excluded.

### 2.3. Study selection

Two independent reviewers (F.N, K.K) screened the title and abstracts and excluded irrelevant studies. Then the same reviewers checked the full text of the remaining articles to evaluate their eligibility to include in our study.

#### 2.4. Data extraction

The same investigators (F.N, K.K) extracted the following information based on a predesigned datasheet: Study the demographic, type of MS, age, sex, MS duration, clinical presentation before relapse, MRI findings, type of COVID-19 vaccination, vaccine dosage, the interval between relapse and vaccination, the clinical presentation of relapse, treatments, and outcomes.

#### 2.5. Quality assessments

The quality of included studies was assessed using the Joanna Briggs Institute Critical Appraisal tools for Case Reports independently by two reviewers (F.N, K.K) [16]. The answer to the questions was based on "Yes" or "No" and the score ranged from 0 to 8.

#### 3. Results

Our initial search yielded 1386 studies (Fig. 1). After duplicate removing, 779 papers were screened. At this step, 686 articles were excluded via title and abstract evaluation, and the remaining studies underwent full-text review. Finally, seven studies entered our systematic

| -1   |
|------|
| Na   |
| biza |
| deh  |
| et   |
| a.   |

| Study                        | Country | Type<br>of MS | Age | Sex | MS<br>disease<br>duration | Clinical<br>presentation of<br>MS before relapse                           | DMTs                    | MRI Findings                                                                                                                                                                                    | Type COVID-19<br>vaccine    | Vaccine<br>dosage | Time<br>interval<br>between<br>vaccination<br>and relapse | Relapse clinical presentations                                                                                        | Treatments                                                           | Outcome                                                                                    |                 |                      |
|------------------------------|---------|---------------|-----|-----|---------------------------|----------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|----------------------|
| Lagosz et al.<br>2022        | Poland  | NR            | 64  | М   | NR                        | NR                                                                         | NR                      | A hypodense lesion<br>in the left frontal-<br>parietal area                                                                                                                                     | NR                          | NR                | 1 day                                                     | Feeling<br>numbness,<br>worsened<br>mobility in the<br>arms and fatigue                                               | Glucocorticoids                                                      | Recovered                                                                                  |                 |                      |
| Kataria<br>et al.<br>2022    | USA     | NR            | 57  | F   | 6 years                   | NR                                                                         | Interferon-<br>beta     | Multiple confluent<br>and distinct<br>hyperintense white<br>matter enhancing<br>lesions in both<br>hemispheres on T2-<br>weighted and<br>diffusion-weighted<br>images. Spine MRI<br>was normal. | BNT162b2/<br>PfizerBioNTech | 2nd               | 18 days                                                   | Fatigue,<br>involuntary eye<br>movements,<br>numbness,<br>tingling, stiffness<br>in her left upper<br>and lower limbs | Intravenous<br>methylprednisolone<br>and physiotherapy ,<br>baclofen | Recovered                                                                                  |                 |                      |
| Etemadifar<br>et al.<br>2021 | Iran    | RRMS          | 34  | F   | 13 years                  | optic neuritis and<br>bilateral lower<br>limb paresthesia /<br>paraparesis | Interferon-<br>beta 1a. | Several new<br>periventricular,<br>juxtacortical and<br>brainstem lesions<br>on T2                                                                                                              | Sputnik                     | 1st               | 3 days                                                    | Severe right<br>hemiplegia and<br>ataxia                                                                              | Oral<br>methylprednisolone<br>for 3 weeks                            | Recovered                                                                                  |                 |                      |
| Ahadi et al.<br>2021         | Iran    | RRMS          | 42  | F   | 20 years                  | optic neuritis/<br>hemiparesthesia<br>and monoparesis/<br>paraparesis      | Interferon-<br>beta 1b. | Showed numeral<br>periventricular,<br>anterior medullary<br>white matter hyper-<br>intensities                                                                                                  | Sinopharm                   | 1st               | 2 days                                                    | Progressive<br>paraparesis<br>without<br>paresthesia                                                                  | Intravenous<br>methylprednisolone                                    | Recovered                                                                                  |                 |                      |
| Maniscalco<br>et al.<br>2021 | Italy   | NR            | 31  | F   | 5 years                   | Tinnitus and dizziness                                                     | Fingolimod              | Three new<br>voluminous<br>enhancing lesions                                                                                                                                                    | BNT162b2/<br>PfizerBioNTech | 1st               | 48 hours                                                  | Paraesthesia and<br>weakness in her<br>left arm and<br>limbs                                                          | Intravenous<br>methylprednisolone                                    | Recovered                                                                                  |                 |                      |
| Fragoso<br>et al.<br>2021    | Brazil  | RRMS          | 22  | F   | 5 years                   | NR                                                                         | Fingolimod              | Non-Gd<br>tumefactive lesion                                                                                                                                                                    | Oxford/<br>AstraZeneca      | 1st               | 7 days                                                    | Facial paralysis,<br>hemiparesis,<br>ataxia                                                                           | Pulsotherapy<br>methylprednisolone                                   | Not yet<br>recovered                                                                       |                 |                      |
|                              |         | RRMS          | 32  | F   | 2 years                   | NR                                                                         | Dimethyl<br>fumarate    | New Gd + lesions in the left eye                                                                                                                                                                | Oxford/<br>AstraZeneca      | 1st               | 10 days                                                   | Loss of vision and<br>papillitis in the                                                                               | Pulsotherapy<br>methylprednisolone<br>Immunoglobulin                 | Partial recoved                                                                            |                 |                      |
|                              |         |               |     |     | SPMS                      | 35                                                                         | М                       | 3 years                                                                                                                                                                                         | NR                          | Natalizumab       | High lesion load ,<br>new lesions                         | Oxford/<br>AstraZeneca                                                                                                | 1st                                                                  | 7 days Worsening of Oral pred<br>disability, could<br>not walk, severe<br>weakness of both | Oral prednisone | Not yet<br>recovered |
|                              |         | RRMS          | 30  | F   | 1 year                    | NR                                                                         | Natalizumab             | New $Gd + lesions$                                                                                                                                                                              | Oxford/<br>AstraZeneca      | 1st               | 25 days                                                   | Right                                                                                                                 | Pulsotherapy                                                         | Recovered                                                                                  |                 |                      |
|                              |         | RRMS          | 42  | F   | 3 years                   | NR                                                                         | Fingolimod              | New Gd+ lesions in spinal cord, T2 level                                                                                                                                                        | Oxford/<br>AstraZeneca      | 1st               | 15 days                                                   | Rapidly<br>progressive<br>weakness in both<br>arms, grade III at<br>its worst                                         | Pulsotherapy<br>methylprednisolone                                   | Recovered                                                                                  |                 |                      |
|                              |         | RRMS          | 35  | М   | 4 years                   | NR                                                                         | Teriflunomide           | New Gd+ lesions in brainstem                                                                                                                                                                    | Oxford/<br>AstraZeneca      | 1st               | 20 days                                                   | Incoordination of<br>right arm and<br>hand                                                                            | Pulsotherapy<br>methylprednisolone                                   | Not yet<br>recovered                                                                       |                 |                      |

(continued on next page)

F. Nabizadeh et al.

| Study                 | Country | Type<br>of MS | Age | Sex | MS<br>disease<br>duration | Clinical<br>presentation of<br>MS before relapse                        | DMTs                  | MRI Findings                                                                                                                                           | Type COVID-19<br>vaccine              | Vaccine<br>dosage | Time<br>interval<br>between<br>vaccination<br>and relapse | Relapse clinical presentations                                             | Treatments                                        | Outcome              |
|-----------------------|---------|---------------|-----|-----|---------------------------|-------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|----------------------|
|                       |         | PPMS          | 51  | М   | 2 years                   | NR                                                                      | NR                    | New Gd+ lesions in                                                                                                                                     | Oxford/                               | 1st               | 25 days                                                   | Hypoesthesia in                                                            | No treatment                                      | Not yet              |
|                       |         | RRMS          | 32  | F   | 6 years                   | NR                                                                      | Glatiramer<br>acetate | New Gd+ lesions+<br>new lesions                                                                                                                        | AstraZeneca<br>Oxford/<br>AstraZeneca | 1st               | 7 days                                                    | Motor and<br>sensitive deficits<br>in right leg and<br>foot                | Pulsotherapy<br>methylprednisolone                | Not yet<br>recovered |
| Nistri et al.<br>2021 | Italy   | NR            | 48  | F   | New<br>diagnosis          | visual acuity<br>deficit from right<br>eye                              | NR                    | Enhancing lesion in<br>the corpus<br>callosum, multiple<br>white matter<br>unenhanced lesions<br>and lesions in the<br>occipital lobe were<br>detected | Oxford/<br>AstraZeneca                | 1 st              | 8 days                                                    | Visual acuity<br>deficit from right<br>eye                                 | High dose of<br>intravenous<br>methylprednisolone | Recovered            |
|                       |         | NR            | 45  | М   | 9 years                   | NR                                                                      | Ocrelizumab           | Two new lesions in<br>the temporal gyri<br>and a new spinal<br>cord lesion at T3<br>level                                                              | Oxford/<br>AstraZeneca                | 1st               | 3 weeks                                                   | Dysesthesia in<br>both legs                                                | Steroids                                          | NR                   |
|                       |         | NR            | 54  | F   | 28 years                  | NR                                                                      | NR                    | One enhancing<br>lesion in the spinal<br>cord                                                                                                          | Oxford/<br>AstraZeneca                | 1 st              | 3 days                                                    | Developed<br>hypoesthesia<br>below the T6<br>level                         | Intravenous<br>methylprednisolone                 | Recovered            |
|                       |         | NR            | 66  | F   | New<br>diagnosis          | visual disturbance<br>and postural<br>instability on the<br>right limbs | NR                    | Multiple white<br>matter lesions, four<br>of them enhancing<br>in the left<br>paratrigonal and<br>periventricular<br>white matter                      | Oxford/<br>AstraZeneca                | 1 st              | 1 week                                                    | Visual<br>disturbance and<br>postural<br>instability on the<br>right limbs | Intravenous<br>methylprednisolone                 | Partial<br>recovered |
|                       |         | NR            | 42  | F   | 2 years                   | progressive<br>weakness on the<br>right side of body                    | Ocrelizumab           | Enhancing brain<br>lesion in the right<br>corona radiata                                                                                               | Moderna                               | 1 st              | 2 weeks                                                   | Slight weakness<br>of the left upper<br>limb                               | NR                                                | NR                   |
|                       |         | NR            | 57  | М   | 20 yeas                   | NR                                                                      | NR                    | Enhancing pontine<br>lesion                                                                                                                            | Moderna                               | booster           | 2 weeks                                                   | Severe motor<br>deficit in both<br>legs                                    | Intravenous<br>methylprednisolone                 | Partial<br>recovered |
|                       |         | NR            | 49  | F   | 8 years                   | NR                                                                      | Dimethyl<br>fumarate  | A periventricular<br>lesion and a spinal<br>lesion at C3 level,<br>both enhancing                                                                      | BNT162b2/<br>PfizerBioNTech           | 1 st              | 5 days                                                    | Numbness on the<br>left hand and left<br>side of her head                  | Intravenous<br>methylprednisolone                 | Recovered            |
|                       |         | NR            | 39  | М   | 7 years                   | hypoesthesia on<br>left side                                            | Dimethyl<br>fumarate  | Three new lesions,<br>two of which were<br>enhancing in the<br>left parietal lobe<br>and in the<br>periventricular<br>white matter                     | BNT162b2/<br>PfizerBioNTech           | 1st               | 10 days                                                   | Paresthesia on<br>left leg                                                 | Oral steroids                                     | Partial<br>recoverd  |
|                       |         | NR            | 39  | F   | New<br>diagnosis          | NR                                                                      | NR                    | A new enhancing<br>lesion in the<br>mesencephalon                                                                                                      | BNT162b2/<br>PfizerBioNTech           | 1st               | 3 days                                                    | Dysesthesia on<br>her right hand<br>and foot                               | Intravenous<br>methylprednisolone                 | Recovered            |

(continued on next page)

F. Nabizadeh et al.

Table 1 (continued)

| Study | Country | Type<br>of MS | Age | Sex | MS<br>disease<br>duration | Clinical<br>presentation of<br>MS before relapse | DMTs                 | MRI Findings                                                                                                                                                                              | Type COVID-19<br>vaccine    | Vaccine<br>dosage | Time<br>interval<br>between<br>vaccination<br>and relapse | Relapse clinical presentations                                                                                  | Treatments                        | Outcome              |
|-------|---------|---------------|-----|-----|---------------------------|--------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|
|       |         | NR            | 60  | F   | 23 years                  | NR                                               | Dimethyl<br>fumarate | One enhancing<br>brain lesion in the<br>left periventricular<br>white matter                                                                                                              | BNT162b2/<br>PfizerBioNTech | 1st               | 2 days                                                    | Fatigue and<br>numbness in both<br>legs                                                                         | NR                                | NR                   |
|       |         | NR            | 30  | F   | 3 years                   | optic neuritis                                   | Cladribine           | Two enhancing<br>brain lesions, one in<br>the right corona<br>radiata and one<br>with conspicuous<br>oedema in the left<br>centrum semiovale                                              | BNT162b2/<br>PfizerBioNTech | booster           | 20 days                                                   | Language<br>disturbance                                                                                         | NR                                | NR                   |
|       |         | NR            | 58  | F   | 21 years                  | NR                                               | NR                   | A new area with<br>ring enhancement<br>in the white matter<br>of the left frontal<br>lobe                                                                                                 | BNT162b2/<br>PfizerBioNTech | 1st               | 3 days                                                    | Headache,<br>balance<br>disturbance,<br>urinary<br>incontinence,<br>difficulties in<br>walking and<br>dysphagia | Intravenous<br>methylprednisolone | Recovered            |
|       |         | NR            | 34  | F   | 3 months                  | numbness and<br>hyposthenia on<br>her right hand | NR                   | Three brain<br>enhancing lesion<br>(one right posterior<br>paraventricular and<br>two in the left<br>periventricular<br>white matter) and a<br>new unenhanced<br>lesion on spinal<br>cord | BNT162b2/<br>PfizerBioNTech | booster           | 4 days                                                    | Neck pain and<br>hypoesthesia on<br>right arm                                                                   | NR                                | NR                   |
|       |         | NR            | 35  | F   | 16 years                  | NR                                               | Dimethyl<br>fumarate | Three enhancing<br>lesions in the left<br>temporal lobe and<br>left centrum<br>semiovale                                                                                                  | BNT162b2/<br>PfizerBioNTech | booster           | 1 day                                                     | Paresthesia on<br>the left side of<br>body                                                                      | NR                                | NR                   |
|       |         | NR            | 54  | Μ   | 18 years                  | NR                                               | Teriflunomide        | Two ring-enhancing<br>lesions located in<br>the left<br>periventricular<br>white matter                                                                                                   | bNT162b2/<br>PfizerBioNTech | 1st               | 1 week                                                    | Right<br>hemiparesis                                                                                            | Intravenous<br>methylprednisolone | Recovered            |
|       |         | NR            | 37  | М   | 2 years                   | NR                                               | Dimethyl<br>fumarate | A new tumefactive<br>contrast-enhancing<br>lesion in the left<br>fronto-parietal<br>white matter                                                                                          | BNT162b2/<br>PfizerBioNTech | booster           | 11 days                                                   | Weakness on<br>right limbs                                                                                      | Intravenous<br>methylprednisolone | Partial<br>recovered |

Abbreviations: NR, Not Reported, RRMS, relapsing remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis; PPMS, primary progressive multiple sclerosis, DMTs, disease modyfing therapies.



Fig. 2. The mean duration between vaccination and relapse based on type of vaccine (A), and type of COVID-19 vaccine used among cases (B).

review [11–14,17–19]. The demographical and clinical characteristics of included studies are detailed in Table 1. A total of 29 cases with a mean age of 43.2  $\pm$  11.5 and a range [22–66] were included in our study. 68% of the patients were female, and eight cases were reported as RRMS. The mean duration between COVID-19 vaccination and relapse appearance was 9.48  $\pm$  7.29 days (Fig. 2). Twelve patients received Oxford/AstraZeneca, twelve received PfizerBioNTech, two Moderna, and each one received Sputnik and Sinopharm (Fig. 2). Among patients, 22 cases experienced relapse after their first dosage of the COVID-19 vaccine, one after the second dose, and five after the booster dose. The type of vaccine was unknown for one patient. The most common symptoms of relapses were sensory deficits (n = 14) (paresthesia, numbness, dysesthesia, and hypoesthesia) and weakness (n = 6). After relapse, most of the patients received glucocorticoids, and 13 patients recovered, five partially recovered, and five patients not yet recovered until the end of the study follow-up (see Fig. 3).

The result of the quality assessment using JBI criteria revealed that six studies scored more than 7, and only one study scored 5 (Table 2). The mean JBI score for all included studies was 7.28.

#### 4. Discussion

Although mass vaccination against COVID-19 is the preferred way of controlling the disease, concerns around the long-term safety of these vaccines have remained unclear, in particular in patients with underlying comorbidities [20]. Autoimmune disorders comprise a group of these comorbidities for which vaccination may trigger undesired responses. Post-vaccination relapses in neurological autoimmune disorders such as MS and Guillen Barre have been previously reported with HBV, Influenza, polio, and tetanus vaccines [21,22]. Available COVID-19 vaccines are no exception, and reports of Bell's palsy, transverse myelitis, Guillen Barre syndrome and MS relapses have emerged [23].

To the current time point, there is no contraindication for COVID-19 vaccination in MS patients except for living attenuated vaccines in patients under immunosuppressive or immunomodulatory regimens [24]. In addition, no vaccine is favored for MS patients [14]. However, reports of relapses after either first or booster doses of COVID-19 vaccines indicate an association between disease pathophysiology and vaccination. In an interval ranging from one to 25 days after vaccination, a portion of MS patients manifested neurological symptoms, with the most common ones being paralysis, visual loss, weakness, and motor deficits.



Fig. 3. Mechanism of relapse in patients with MS following COVID-19 vaccination, by BioRender.

| Table 2 | 2 |
|---------|---|
|---------|---|

|  | The Joanna | Briggs | Institute | Critical | Appraisal | tools | for Ca | ase Re | ports |
|--|------------|--------|-----------|----------|-----------|-------|--------|--------|-------|
|--|------------|--------|-----------|----------|-----------|-------|--------|--------|-------|

|                                                                                      | Lagosz et al.<br>2022 | Kataria et al.<br>2022 | Etemadifar et al.<br>2021 | Ahadi et al.<br>2021 | Maniscalco et al.<br>2021 | Fragoso et al.<br>2021 | Nistri et al.<br>2021 |
|--------------------------------------------------------------------------------------|-----------------------|------------------------|---------------------------|----------------------|---------------------------|------------------------|-----------------------|
| Were patient's demographic characteristics clearly described?                        | No                    | Yes                    | Yes                       | Yes                  | Yes                       | Yes                    | Yes                   |
| Was the patient's history clearly described and<br>presented as a timeline?          | No                    | No                     | Yes                       | Yes                  | Yes                       | Yes                    | No                    |
| Was the current clinical condition of the patient on presentation clearly described? | Yes                   | Yes                    | Yes                       | Yes                  | Yes                       | Yes                    | Yes                   |
| Were diagnostic tests or assessment methods and the results clearly described?       | Yes                   | Yes                    | Yes                       | Yes                  | Yes                       | Yes                    | Yes                   |
| Was the intervention(s) or treatment procedure(s) clearly described?                 | No                    | Yes                    | Yes                       | Yes                  | Yes                       | Yes                    | Yes                   |
| Was the post-intervention clinical condition clearly described?                      | Yes                   | Yes                    | Yes                       | Yes                  | Yes                       | Yes                    | Yes                   |
| Were adverse events (harms) or unanticipated<br>events identified and described?     | Yes                   | Yes                    | Yes                       | Yes                  | Yes                       | Yes                    | Yes                   |
| Does the case report provide takeaway lessons?                                       | Yes                   | Yes                    | Yes                       | Yes                  | Yes                       | Yes                    | Yes                   |
| Total rank                                                                           | 5                     | 7                      | 8                         | 8                    | 8                         | 8                      | 7                     |

The extent of immune response in MS patients depends on both individual genetic susceptibility, and the type of vaccine used [13,25].

Cross-reactivity and bystander activation are well-established theories justifying autoimmunity after vaccination. Depending on the vaccine type, one of these mechanisms may be more relevant. In the case of Pfizer, which is an RNA virus coding for spike proteins in lipid membrane without any adjuvant, cross-reactivity may explain the situation as the COVID-19 spike protein antibody is structurally similar to myelin basic protein [25]. Besides, the interaction between spike proteins and Angiotensin-Converting Enzyme 2 (ACE2) receptors located in the Blood-Brain Barrier (BBB) and spinal neurons have been reported in several in vivo studies [26]. This is true for Coronavirus itself, as it can cross BBB either with transcytosis using ACE2 receptors or reach brain parenchyma via the olfactory bulb [14]. However, autoimmunity after the AstraZeneca vaccine is less likely to happen because of this crossreactivity. AstraZeneca has an adjuvant (MF59) that has clearly been shown to induce inflammation by secretion of cytokines, including IL-6, IL-8, chemokine CCL-2, CCL-3, and CCL-4 [27]. The adjuvant can activate the Toll-Like Receptor (TLR) that per se prompts nuclear factor kappa B (NF-kB) phosphorylation. NF-kB is a transcription factor of up to 1500 inflammatory genes, including cytokines and chemokines. These molecules supply T and B cells with adequate stimuli to recognize their specific antigen and initiate clonal activation. In MS patients, these inflammatory molecules can interfere with control over self-reacting clones and activate unrelated lymphocytes, something that is called bystander activation [28,29]. In this way, clonal expansion occurs, and the disease relapses.

Despite the fact that these relapses were temporally associated with vaccine administration, with current studies, it is impossible to disentangle post-vaccination relapses from the relapses that would have manifested regardless of COVID-19 vaccination [13]. In a study on 555 MS patients, 2.1% of patients receiving the first dose and 1.6% with the second dose experienced relapses; however, no difference in the relapse rate was highlighted when the results were compared to previous years [30]. This study was limited to a short follow-up period and therefore its results should be interpreted with caution. More studies are warranted to show a causal association.

Overall, the COVID-19 vaccination may trigger relapses in some MS patients but as the infection itself can stimulate relapse, the benefit of vaccination outweighs its risk in this population, and mass vaccination against COVID-19 especially in MS patients should be continued and encouraged [31]. In the meanwhile, most of the relapsed cases were fully recovered after receiving methylprednisolone showing the relapse can be controlled without consequences [11,13,14,17,18].

#### Funding

We do not have any financial support for this study.

#### **Ethical approval**

Since the data in this paper were obtained from the PPMI database (ppmi.loni.usc.edu), it does not include any research involving human or animal subjects.

#### Availability of data and material

The datasets analyzed during the current study are available upon request with no restriction.

#### **Consent for publication**

This manuscript has been approved for publication by all authors.

#### Author contributions

All the authors listed in the manuscript have participated actively in preparing the final version of this case report.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### References

- [1] Hassaniazad M, Farshidi H, Gharibzadeh A, Bazram A, Khalili E, Noormandi A, et al. Efficacy and safety of favipiravir plus interferon-beta versus lopinavir/ ritonavir plus interferon-beta in moderately ill patients with COVID-19: A randomized clinical trial. J Med Virol 2022;94(7):3184–91.
- [2] Huang Y, Rodgers WJ, Middleton RM, Baheerathan A, Tuite-Dalton KA, Ford DV, et al. Willingness to receive a COVID-19 vaccine in people with multiple sclerosis – UK MS Register survey. Multiple Scler Related Disorders 2021;55:103175.
- [3] Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021;19(3):141–54.
- [4] Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020;8(4): e21.
- [5] Moghadasi AN, Mirmosayyeb O, Barzegar M, Sahraian MA, Ghajarzadeh M. The prevalence of COVID-19 infection in patients with multiple sclerosis (MS): a systematic review and meta-analysis. Neurol Sci 2021;42(8):3093–9.
- [6] Persson R, Lee S, Ulcickas Yood M, Wagner CM, Minton N, Niemcryk S, et al. Infections in patients diagnosed with multiple sclerosis: a multi-database study. Mult Scler Relat Disord 2020;41:101982.
- [7] Yazdani A, Mirmosayyeb O, Ghaffary EM, Hashemi MS, Ghajarzadeh M. COVID-19 vaccines and patients with multiple sclerosis: willingness, unwillingness and hesitancy: a systematic review and meta-analysis. Neurol Sci 2022;43(7):4085–94.

- [8] Patone M, Handunnetthi L, Saatci D, Pan J, Katikireddi SV, Razvi S, et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med 2021;27(12):2144–53.
- [9] Thomas SJ, Moreira ED, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine through 6 months. N Engl J Med 2021;385(19):1761–73.
- [10] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384(5):403–16.
- [11] Etemadifar M, Sigari AA, Sedaghat N, Salari M, Nouri H. Acute relapse and poor immunization following COVID-19 vaccination in a rituximab-treated multiple sclerosis patient. Hum Vaccin Immunother 2021;17(10):3481–3.
- [12] Kataria H, Hart CG, Alizadeh A, Cossoy M, Kaushik DK, Bernstein CN, et al. Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. Brain 2021; 144(1):162–85.
- [13] Nistri R, Barbuti E, Rinaldi V, Tufano L, Pozzilli V, Ianniello A, et al. Case report: multiple sclerosis relapses after vaccination against SARS-CoV2: a series of clinical cases. Front Neurol 2021;12:765954.
- [14] Fragoso YD, Gomes S, Gonçalves MVM, Mendes Junior E, Oliveira BES, Rocha CF, et al. New relapse of multiple sclerosis and neuromyelitis optica as a potential adverse event of AstraZeneca AZD1222 vaccination for COVID-19. Mult Scler Relat Disord 2022;57:103321.
- [15] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339: b2535.
- [16] M P. Moola S MZ, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Lisy K, Qureshi R, Mattis P. JBI Manual for Evidence Synthesis. JBI Manual for Evidence Synthesis. 2020.
- [17] Łagosz P, Biegus J, Gruszka E, Zymliński R. The surprising course of multiple sclerosis relapse in a patient after SARS-CoV-2 vaccination. Kardiol Pol 2022;80(2): 237–8.
- [18] Maniscalco GT, Manzo V, Di Battista ME, Salvatore S, Moreggia O, Scavone C, et al. Severe multiple sclerosis relapse after COVID-19 vaccination: a case report. Front Neurol 2021;12:721502.
- [19] Seyed Ahadi M, Ghadiri F, Ahraian MA, Naser Moghadasi A. Acute attack in a patient with multiple sclerosis 2 days after COVID vaccination: a case report. Acta Neurol Belg 2021.
- [20] Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet 2021; 397(10269):72–4.
- [21] Confavreux C, Suissa S, Saddier P, Bourdès V, Vukusic S. Vaccinations and the risk of relapse in multiple sclerosis. N Engl J Med 2001;344(5):319–26.
- [22] Geier MR, Geier DA, Zahalsky AC. Influenza vaccination and Guillain Barre syndrome. Clin Immunol 2003;107(2):116–21.
- [23] Li X, Raventós B, Roel E, Pistillo A, Martinez-Hernandez E, Delmestri A, et al. Association between covid-19 vaccination, SARS-CoV-2 infection, and risk of immune mediated neurological events: population based cohort and self-controlled case series analysis. BMJ. 2022;376:e068373.
- [24] Dema M, Eixarch H, Villar LM, Montalban X, Espejo C. Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 2021;20(9):102893.
- [25] Langer-Gould A, Qian L, Tartof SY, Brara SM, Jacobsen SJ, Beaber BE, et al. Vaccines and the risk of multiple sclerosis and other central nervous system demyelinating diseases. JAMA Neurol 2014;71(12):1506.
- [26] Farez MF, Correale J, Armstrong MJ, Rae-Grant A, Gloss D, Donley D, et al. Practice guideline update summary: vaccine-preventable infections and immunization in multiple sclerosis: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology 2019;93(13):584–94.
- [27] Ko EJ, Kang SM. Immunology and efficacy of MF59-adjuvanted vaccines. Hum Vaccin Immunother 2018;14(12):3041–5.
- [28] Amaral MP, Branco LM, Strasser A, Dixit VM, Bortoluci KR. Paradise revealed III: why so many ways to die? Apoptosis, necroptosis, pyroptosis, and beyond. Cell Death Differ 2020;27(5):1740–2.
- [29] Taniguchi K, Karin M. NF-kB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18(5):309–24.
- [30] Achiron A, Dolev M, Menascu S, Zohar D-N, Dreyer-Alster S, Miron S, et al. COVID-19 vaccination in patients with multiple sclerosis: What we have learnt by February 2021. Mult Scler 2021;27(6):864–70.
- [31] Diem L, Friedli C, Chan A, Salmen A, Hoepner R. Vaccine hesitancy in patients with multiple sclerosis: preparing for the SARS-CoV-2 vaccination challenge. Neurol Neuroimmunol Neuroinflamm 2021;8(3):e991.