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A B S T R A C T

Artificial Intelligence is transforming drug discovery, particularly in the hit identification phase of therapeutic
compounds. One tool that has been instrumental in this transformation is Quantitative Structure-Activity
Relationship (QSAR) analysis. This computer-aided drug design tool uses machine learning to predict the bio-
logical activity of new compounds based on the numerical representation of chemical structures against various
biological targets. With diabetes mellitus becoming a significant health challenge in recent times, there is intense
research interest in modulating antidiabetic drug targets. α-Glucosidase is an antidiabetic target that has gained
attention due to its ability to suppress postprandial hyperglycaemia, a key contributor to diabetic complications.
This review explored a detailed approach to developing QSAR models, focusing on strategies for generating input
variables (molecular descriptors) and computational approaches ranging from classical machine learning algo-
rithms to modern deep learning algorithms. We also highlighted studies that have used these approaches to
develop predictive models for α-glucosidase inhibitors to modulate this critical antidiabetic drug target.

1. Introduction

Drug discovery is an important process in biomedical research, by
which new candidate medications are discovered or developed. It plays
a vital role in addressing various medical challenges such as diabetes,
cardiovascular diseases, cancer, and neurodegenerative disorders. The
discovery of new drugs enables the development of innovative therapies
that manage symptoms, slow disease progression, and potentially cure
these conditions.
Drug discovery has historically been marked by exorbitant costs and

protracted timelines, particularly during the hit identification phase of
therapeutic compounds [1,2]. Fortunately, technological advancements
such as computational modelling and computer-aided drug design ap-
proaches have made the process more efficient and cost-effective. With
the emergence of Artificial Intelligence (AI), drug discovery has been
revolutionized by AI-powered algorithms, accelerating the identifica-
tion of promising drug candidates, and reducing time and costs [3,4]. AI
is a vast subject of computer science that seeks to develop intelligent

systems capable of doing activities that would normally need human
intelligence [5]. These tasks include recognizing patterns, making de-
cisions, and learning from experience. AI encompasses various subfields
and techniques, including Machine Learning (ML) and Deep Learning
(DL).
One critical tool in the computer-aided drug design toolkit that uses

ML in its process is quantitative structure-activity relationship (QSAR)
analysis [6,7]. The ML used enables learning and predictions from input
data without explicit programming. Essentially, QSAR allows re-
searchers to predict the biological activity of new compounds based on
their chemical structure, making it a useful tool in the search for effec-
tive compounds to modulate drug targets for disease conditions such as
diabetes. Diabetes has become one of the most challenging health
problems of this century with a rapid increase in its global prevalence
[8–10]. Among the many potential antidiabetic targets for QSAR pre-
dictions, α-glucosidase has garnered significant attention due to its
ability to effectively suppress postprandial hyperglycaemia, a significant
contributor to the progression of diabetic complications [11]. The
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development of QSAR models to predict inhibitors of α-glucosidase
could rebound on the progress towards novel antidiabetic therapies.
To develop QSAR models, researchers use various strategies for

generating input variables and computational approaches ranging from
the classical machine learning algorithms such as Multiple Linear
Regression (MLR), Partial Least Squares (PLS), Decision Trees (DT),
Random Forests (RF) and Support Vector Machines (SVM), to modern
deep learning algorithms such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) and Graph Neural Networks
(GNNs) [6,12,13]. The excitement and buzz surrounding AI today are
notably concentrated on DL [14,15]. Deep Learning is a specialized area
within Machine Learning that deals with deep neural networks and has
been particularly successful in handling complex tasks involving large
datasets. It is important to note that there are several strategies in QSAR
to generate the input data (independent variables) for the ML algo-
rithms, which includes 2D-, and 3D-QSAR. These strategies largely
depend on the dimensionality of the compounds’molecular descriptors,
which are numerical representations of compound structures [16]. In
essence, the descriptors are derived from 2D or 3D structural informa-
tion of chemical compounds. QSAR models have been instrumental in
accurately predicting the biological activity of new compounds and
identifying promising drug candidates, reducing the time, costs, and
risks associated with drug discovery.
Different reviews have discussed the role of QSAR in drug discovery

from various perspectives [6,17–22]. For instance, Dudek et al. [18]
provided a comprehensive overview of QSAR, focusing on generating
molecular descriptors and the methodologies for activity prediction.
Wang et al. [22] elaborated on the basic principles of QSAR model
development, highlighting the current applications and challenges of
QSAR in different fields. Abuhammad et al. [17] specifically examined
QSAR research in type II diabetes, detailing the QSAR strategies
employed to model molecular bioactivities towards antidiabetic targets.
While these reviews have covered QSAR, they have yet to specifically

examine the application in α-glucosidase antidiabetic target, to our
knowledge. In the current review, we delve into QSAR strategies in the
context of molecular descriptors and the machine learning algorithms
that drive model predictions (ranging from classical to modern algo-
rithms), further exploring their application to α-glucosidase predictive
models as a case study. We examined studies on the Scopus database
from 2011 to 2023 that developed QSAR models for predicting
α-glucosidase inhibitors. Additionally, we discussed the strengths and
limitations of various classes of molecular descriptors, machine learning
algorithms, and prominent QSAR software platforms used by these
studies for model building.

2. Quantitative structure-activity relationship

The concept of Quantitative Structure-Activity Relationship (QSAR)
was initially introduced by [23]. This pioneering work established nu-
merical substituent constants that represent the specific contributions of
distinct molecular fragments to a compound’s overall activity. In
contemporary drug design, QSAR plays a crucial role, since it can be
used to quickly and efficiently screen large numbers of compounds for
potential drug candidates as opposed to high throughput in vitro
screening which can be expensive to set up and maintain [24]. The
foundational principle of QSAR lies in the understanding that a com-
pound’s biological activity is closely tied to its molecular structure. This
structural information is encoded into molecular descriptors, and the
QSAR model establishes mathematical relationships between these de-
scriptors and biological activities.
From a broad perspective, the fundamental premise of QSAR re-

quires the translation of molecular structures into quantitative param-
eters known as molecular descriptors. The central objective within the
QSAR framework is to determine an appropriate mathematical function
that connects these quantitative descriptors with experimental activity
data. However, the field of QSAR has witnessed innovations from

researchers, breaking the boundaries of quantitative structural de-
scriptors to explore diverse qualitative descriptors focused on capturing
the presence or absence of structural features (such as structural fin-
gerprints) rather than precise numerical measurements. [25].
The classification of QSAR methodologies is based on how descriptor

values and structural representations are derived. This categorization
has evolved over time, progressing from the early 1- or 2-dimensional
(1D or 2D) linear free energy relationships proposed by Hansch and
Free-Wilson [23,26], to Crammer’s 3-dimensional (3D) QSAR approach
[27]. Subsequent advancements include Hopfinger’s extension to the
4th dimension (4D) [28] and Vedani’s exploration of the 5th and 6th
dimensions (5D and 6D) [29–31]. In the context of antidiabetic QSAR
studies, the predominant focus remains on 2D and 3D approaches.

3. Molecular descriptors in QSAR, the independent variable for
machine learning

Amolecular descriptor represents the outcome of a systematic logical
and mathematical process that converts the chemical information
ingrained within a symbolic portrayal of a molecule into valuable nu-
merical parameters [32]. These descriptors are essential for character-
izing the molecular structure accurately, which is crucial for establishing
a meaningful correlation between the structure and its expected prop-
erties such as biological activity. Molecular descriptors are the critical,
independent variables that train machine learning (ML) algorithms in
QSARmodel development. They are the foundation for ML algorithms to
build and identify potential drug candidates. By transforming complex
chemical information into a format that ML algorithms can understand,
molecular descriptors enable the algorithms to sift through vast amounts
of data, identify patterns, and predict how new compounds might
behave. This prediction makes ML-driven drug discovery promising; it
allows researchers to pinpoint which molecules are worth investigating
further in the lab, thus speeding up the drug discovery process and
making it more efficient. Consequently, molecular descriptors are
considered the cornerstone of QSAR models, as they provide the core
elements necessary for developing reliable models for predicting these
expected properties.
While it is widely acknowledged that molecules sharing structural

similarities tend to exhibit similar properties, it is important to
acknowledge the phenomenon of "activity cliffs." Activity cliffs refer to
instances where molecules with closely resembling structures demon-
strate vastly divergent biological activities [33]. Although they have the
potential to challenge conventional QSAR machine learning modelling
assumptions, activity cliffs offer valuable insights into the intricacies of
molecular interactions and the limitations of descriptor-based pre-
dictions. Despite the presence of some activity cliffs, QSAR models uti-
lizing molecular descriptors remain a powerful tool for identifying
trends and guiding lead optimization in drug discovery.
Molecular descriptors are derived by applying principles from

several different theories, such as graph theory, quantum-chemistry,
information theory and organic chemistry [34]. Together, these the-
ories provide a comprehensive toolkit for developing and using molec-
ular descriptors.
In general, a QSAR model’s dimensionality matches that of the mo-

lecular descriptors utilized. For example, a 2D QSAR model would
employ 2D molecular descriptors to represent the chemical structures,
while a 3D QSAR model would use 3D descriptors [35,36].

3.1. 0D and 1D molecular descriptors

0D descriptors are the simplest representations of molecular struc-
tures and can be derived solely from the chemical formula of a molecule.
These descriptors capture essential bulk properties without delving into
details of molecular connectivity or bonding patterns [37]. These de-
scriptors are very simple to compute and interpret but have a low in-
formation content and a high degree of degeneration, having equal
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values for isomers.
On the other hand, 1D molecular descriptors provide a more detailed

glimpse into molecular structures by representing molecules as sets of
substructures or fragments. These descriptors go beyond the bulk
properties captured by 0D descriptors and focus on encoding specific
substructures within a molecule, thus offering insights into specific
structural features influencing biological activity. This encoding may be
in binary form, indicating the presence or absence of a particular sub-
structure, or in frequency representation, reflecting the rate of occur-
rence of these substructures [16]. For example, a molecule can be
represented by the occurrence of functional groups like hydroxyl (-OH),
amino (-NH2), or carbonyl (-C––O) groups. Also, fragments such as
benzene rings, alkyl chains, or heterocycles can be encoded as part of 1D
descriptors. Similar to 0D descriptors, 1D descriptors also have high
degeneracy with different molecules having the same descriptor values
(e.g., isomers).
While 0D and 1D descriptors offer a basic level of molecular repre-

sentation, their limitations necessitate the use of higher-dimensional
descriptors like 2D and 3D, which capture information about atom
connectivity and spatial arrangements.

3.2. 2D molecular descriptors

2D molecular descriptors represent an advancement over 1D de-
scriptors by incorporating information about how atoms are connected
within a molecule, taking into account the presence and nature of
chemical bonds. This representation is often achieved through a mo-
lecular graph, where atoms are depicted as vertices and bonds as edges
[38]. From this graph representation, various numerical quantifiers of
molecular topology, known as topological indices (TIs), are derived in a
direct and unambiguous manner. These TIs are often referred to as to-
pological descriptors. They allow capturing information about adja-
cency, connectivity, branching, cyclicity, and symmetry.
Topological indices can be logically categorized into two main

groups: topostructural indices and topochemical indices. Topostructural
indices encode information solely about adjacency and through-bond
distances between atoms [39]. They essentially capture information
about the size, shape, and branching of the molecule but do not consider
the chemical nature of the atoms or bonds. Topochemical indices, on the
other hand, go beyond just connectivity and incorporate information
about the chemical properties of the atoms and bonds, such as electro-
negativity, hydrophobicity, atomic mass, and the presence of hydrogen
bond donors/acceptors. Examples of TIs include Wiener index, Randic
index, Connectivity index, Schultz index, Zagreb index, and McGowan
volume [34].
In addition to molecular graphs, linear notation systems such as

Wiswesser line notation, Simplified Molecular Input Line Entry System
(SMILES), and SMiles ARbitrary Target Specification (SMARTS) offer
alternative 2D representations of molecules. These notations encode
molecular structures in a linear format, providing a concise and stan-
dardized way to represent complex molecules [40]. While these linear
representations capture connectivity information in a compact form,
they are often not used as independent variables for QSAR model
development for some reason. For example, SMILES can present ambi-
guity in their molecular representation, where different SMILES strings
can represent the same molecular structure. This ambiguity may lead to
inconsistencies in model inputs and potentially affecting the reliability
and reproducibility of QSAR-ML models.
In essence, 2D molecular descriptors encompass both the structural

connectivity of atoms and certain chemical properties, providing a more
detailed representation of molecular structure and reactivity. Overall,
2D molecular descriptors play a crucial role in understanding structure-
activity relationships and predicting molecular properties. They offer a
comprehensive view of molecular structure by considering both the
topological arrangement of atoms and certain chemical properties,
facilitating more accurate and interpretable computational analysis.

3.3. 3D Molecular descriptors

3D descriptors are numerical values that quantify various aspects of a
molecule’s three-dimensional structure. These descriptors provide in-
formation about the spatial arrangement of atoms, bonds, and other
molecular features in three-dimensional space.

3.3.1. Electronic descriptors
Electronic descriptors encompass valuable information about the

electronic properties of a molecule, describing its electronic nature.
These descriptors contain information regarding the atomic net and
partial charges. Furthermore, electronic descriptors quantify specific
electronic properties of a molecule, such as electron density, electronic
energies, molecular orbital energies, and electron delocalization. Deri-
vation of these descriptors is often obtained through quantum me-
chanical calculations or empirical models that consider the electronic
structure and behaviour of the molecule [41].
Quantum-chemical descriptors are a subset of electronic descriptors,

particularly obtained through quantum mechanical calculations, and
take into account the full wavefunction of the molecule [42]. They
provide information about the distribution of electrons, electron cloud
interactions, and electronic properties relevant to chemical reactivity
and physical behaviour. This implies that quantum-chemical descriptors
are capable of providing a more comprehensive and accurate depiction
of the electronic properties of a molecule when compared to electronic
descriptors calculated using empirical and statistical methods [43].
However, the computational expense of quantum-chemical descriptors
is considerably higher, which limits their applicability to small
molecules.

3.3.2. Geometrical descriptors
Geometrical descriptors take into account the three-dimensional

structure of the molecule, focusing not only the positions of the atoms,
but also the connections among them. Since a geometrical representa-
tion involves the knowledge of the relative positions of the atoms in 3D
space, geometrical descriptors usually provide more information and
discrimination power for similar molecular structures and molecule
conformations than topological descriptors [38]. Despite their high in-
formation content, geometrical descriptors usually show some draw-
backs. They require geometry optimization and, therefore, the cost to
calculate them. Moreover, for flexible molecules, several molecule
conformations can be available; on one hand, new information is
available and can be exploited, but, on the other hand, the problem
complexity can significantly increase [34]. Two of the most known
classes of three-dimensional descriptors are the Weighted Holistic
Invariant Molecular (WHIM) descriptors and the Geometry, Topology,
and Atom-Weights Assembly (GETAWAY) descriptors.
WHIM descriptors encode three-dimensional information on size,

shape, symmetry, and atomic property distribution. They do not take
into account the connections among atoms but only their position in the
three-dimensional space [44]. GETAWAY descriptors encode informa-
tion about the influence that each atom has in determining the whole
shape in the molecule and evaluate the interactions among atoms with
respect to their geometrical position in the three-dimensional space. For
their calculation molecular matrix, representations are considered [45].

3.3.3. Alignment dependency in 3D descriptors
There are two common broad approaches to calculating 3D-descrip-

tors: alignment-dependent and alignment-independent methods.

3.3.3.1. Alignment-dependent method. This method places a critical
focus on molecular alignment prior to the calculation of 3D descriptors.
Prominent examples of this approach are Comparative Molecular Field
Analysis (CoMFA) and Comparative Molecular Similarity Indices Anal-
ysis (CoMSIA). In CoMFA, all aligned ligands are placed in an energy
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grid, and at each lattice point, a charged probe atom is positioned to
calculate energy. The energy calculated corresponds to electrostatic
(Coulombic) and steric (Van der Waals) potentials [46,47]. These values
serve as descriptors for further analysis. CoMSIA is similar to CoMFA,
but unlike CoMFA, CoMSIA calculates the similarity indices of a mole-
cule at a regular grid of points in space. The similarity indices are a
measure of how similar the molecule is to a reference molecule [48].
Oftentimes, the alignment-dependent approach has many limitations as
it may be time consuming; this can introduce user biasness and it may
affect the sensitivity of the resultant model. Moreover, this approach
may be impracticable to compound set with diverse scaffolds.

3.3.3.2. Alignment-independent method. This approach is invariant to
molecule rotation and translation in space, and thus, requires no su-
perposition of compounds [49]. Here, geometrical and electronic de-
scriptors are calculated without focusing on the alignment of molecules.

3.4. Higher dimensional QSAR

Ligands, in many cases, are not static and can have considerable
conformational flexibility, and this can affect the performance of 3D-
QSAR models, which rely on rigid representations. In a way to over-
come the limitations of 3D descriptors and associated 3D QSAR models,
the 4D QSARmethodology was developed [28]. It is designed to account
for the variations in the conformational space of the ligands by using
ensemble sampling. As a ligand can have many conformers, such detail
in chemical representation and simulation requires a lot more compu-
tational power than traditional 2D and 3D QSAR. A step further beyond
4D QSAR is the 5D QSAR, which takes into account the dynamic changes
in the molecular structure of targets upon ligand binding in an “induced
fit” concept [30,31]. Unlike rigid docking models, which assume a fixed
structure for both ligands and targets, induced fit considers the flexi-
bility and adaptability of molecules during the binding process. 6D
QSAR goes even further by adding an extra dimension that captures the
influence of solvent environments on molecular interactions [29].
While 4D to 6D descriptors in QSAR modelling may provide better

results than the 2D and 3D approaches, their high computational cost
makes them less suitable for high-throughput virtual screening.

3.5. Fingerprint descriptors

Molecular fingerprints are binary or integer arrays that represent the
presence or absence of certain chemical features or substructures within
a molecule. These features can range from simple binary bits corre-
sponding to the presence or absence of specific atoms or bonds to more
complex representations capturing molecular topology [50,51].
The goal of generating molecular fingerprints is to produce a

compact representation that retains important structural information
while minimizing the computational burden. This is particularly
important when dealing with large databases of compounds or con-
ducting high-throughput virtual screening experiments.
Some of the most used fingerprint types are described as follows.

3.5.1. Structural key fingerprints
Structural key fingerprints are binary fingerprints that encode the

presence or absence of specific substructures within a molecule which
are predefined. They typically represent the presence of certain chemi-
cal fragments or functional groups, such as hydroxyl groups, amines, or
aromatic rings [51,52]. PubChem fingerprints, and Molecular Access
System (MACCS) keys are popular examples of structural key
fingerprints.

3.5.2. Topological fingerprints
Topological fingerprints, also known as path-based fingerprints,

encode the connectivity information of a molecule in a binary or integer

format. They often represent the occurrence of specific atom types or
bond types at defined distances from each other. Topological finger-
prints are sensitive to molecular size and symmetry. Topological Torsion
(TT) and Daylight fingerprints are well-known examples of topological
fingerprints [53].

3.5.3. Circular fingerprints
Circular fingerprints represent a distinct type of topological finger-

prints, which are characterized by their use of hashed topological fin-
gerprints [54]. In contrast to conventional topological fingerprints,
which rely on path analysis within a molecule, circular fingerprints
utilize a record of the molecular environment surrounding each atom
within a specified radius. Consequently, these fingerprints cannot be
employed for substructure inquiries, as identical fragments may possess
distinct environments [52]. Nonetheless, they are extensively utilized in
full structure similarity searches. Extended-Connectivity Fingerprints
(ECFP), Functional-Class Fingerprints (FCFP), and Molprint2D are
prominent examples of circular fingerprints.

3.5.4. Pharmacophore fingerprints
Pharmacophore fingerprints are designed to encode the spatial

arrangement of specific chemical features essential for molecular
recognition, such as hydrogen bond donors/acceptors, hydrophobic re-
gions, and aromatic rings, that are necessary for a molecule to interact
with a biological target [55].

3.5.5. Protein–ligand interaction fingerprints (PLIF)
Protein-ligand interaction fingerprints are used to represent intra-

molecular interactions by analyzing and extracting the binding patterns,
mainly non-covalent interactions, between receptors and ligands. Such
fingerprints can use information regarding molecular docking or
structure-based experimental data to convert 3D protein–ligand in-
teractions into 1D bitstrings, which are subsequently used to train ma-
chine learning models [56].
The summary of the strengths and challenges associated with each

type of descriptor, progressing from lower- to higher-dimensional space,
is presented in Table 1.

4. Machine learning algorithms in QSAR

Machine learning algorithms are essential for developing predictive
models to accurately predict outcomes by analysing data. In QSAR, these
algorithms use various molecular descriptors of compounds as inde-
pendent variables to train the ML model. The molecular descriptors can
be obtained from either 2D or 3D structural information. The bio-
activities derived from experiments are considered the dependent vari-
ables in model development. By leveraging ML, researchers can create
models that accurately predict the bioactivity of a given compound [57,
58]. We can subjectively categorize ML algorithms used in QSAR into
two categories: Classical and Modern ML algorithms. While several ex-
amples fall into these two categories, we have only discussed a few al-
gorithms commonly used in QSAR model development.

4.1. Classical machine learning algorithms

Classical ML encompasses well-established techniques and algo-
rithms, such as multiple linear regression, partial least squares, decision
trees, random forest and support vector machines, often requiring
manual feature engineering. It tends to excel in scenarios with inter-
pretable models, smaller datasets, and a reliance on domain expertise for
feature selection.

4.1.1. Linear models
Linear models are one of the fundamental building blocks of ML.

They create a function that fits a line to the training data. This line tries
to capture the relationship between the independent and the dependent
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variables. Several examples of linear models exist, but we only describe
a few common to QSAR model development, such as multiple linear
regression, Partial Least Squares, and Binary Logistic Regression.

4.1.1.1. Multiple linear regression. Multiple Linear Regression (MLR) is a
statistical technique that helps establish a linear relationship between a
dependent variable such as biological activity and two or more inde-
pendent variables like molecular descriptors. It is an extension of simple
linear regression, which has only one independent variable, and it is
useful in situations where multiple factors may influence the outcome.
MLR is a foundational and interpretable technique in QSAR modelling
[59]. However, it is important to note that MLR is a linear model, which
means it can only capture linear relationships between the dependent
and independent variables. If the relationship between the dependent
and independent variables is non-linear, then MLR may not be the most
suitable method for developing a QSAR model.

4.1.1.2. Partial least squares. Partial Least Squares (PLS) is a widely
used multivariate statistical technique in QSAR studies. It is suitable for
regression analysis of high-dimensional data, that is, data with a high
number of independent variables [60]. PLS works by discovering a set of
latent variables that are linear combinations of the original descriptors.
Latent variables are new variables generated by combining the original
independent variables in a way that captures the most critical infor-
mation for predicting the dependent variable [61]. PLS iteratively finds
pairs of latent variables. The first latent variable is determined by
finding the linear combination of independent variables that has the
highest covariance with the dependent variable. The second latent
variable is found by identifying the linear combination of independent
variables that has the highest covariance with the residual from the first
latent variable. This process continues until the desired number of latent
variables is reached [62,63]. Compared to other methods, PLS is less
sensitive to outliers because it does not give equal weight to all

independent variables [63]. Instead, PLS assigns more weight to the
independent variables most correlated with the dependent variable.
However, the latent variables produced by PLSmay not always provide a
straightforward interpretation [64].

4.1.1.3. Binary logistic regression. Binary Logistic Regression (BLR)
constructs a model that maps the features of compounds to the proba-
bility of their biological activity, typically encoded as binary outcomes
(e.g., active or inactive). The algorithm employs the logistic function,
also known as the sigmoid function, to ensure that the predicted prob-
abilities lie between 0 and 1, making it suitable for binary classification
tasks. BLR learns the optimal coefficients that minimize the discrepancy
between predicted probabilities and actual class labels in the training
data [65]. One of the primary advantages of BLR in QSAR is its inter-
pretability, as it provides insights into the impact of individual features
on the probability of influencing biological activity. Additionally, it is
computationally efficient, making it suitable for analyzing large data-
sets. Despite its strengths, BLR assumes a linear relationship between
features and outcomes, which may limit its performance when dealing
with complex, nonlinear relationships.

4.1.2. Tree-based models
Tree-based ML models are a powerful and popular technique used in

various machine learning tasks. These models work by using a series of
decision trees to arrive at a final prediction.

4.1.2.1. Decision trees. Decision trees (DT) are a type of machine
learning algorithm that is used to solve classification and regression
problems. In DT, data is represented as a tree-like structure, where each
node represents a decision, and each branch represents a possible
outcome of that decision. The algorithm recursively partitions data into
subsets based on the values of specific features, selecting the best feature
and corresponding threshold at each step to maximize a chosen splitting
criterion [66]. This criterion could be Gini impurity for classification or
mean squared error for regression [67]. The tree structure continues to
grow until stopping conditions are met, such as a maximum depth, a
minimum number of samples at a leaf node, or a specific impurity level.
The decision tree then serves as a predictive model, guiding new data
along a path from the root node to a leaf node, where a final prediction is
made.
DT are useful in QSAR because they can handle both quantitative and

categorical data, uncover non-linear relationships between molecular
descriptors and activities, and are easy to interpret [68]. However, to
prevent overfitting, they require careful handling, and complex appli-
cations may benefit from pruning or ensemble methods. Overfitting is an
undesirable behavior in machine learning where the model performs
well on training data but not new data. DT in many cases may not
perform optimally, so strategies like class weighting or ensemble
methods may be needed [69]. Additionally, single DT can have high
variance on test set, meaning they may not generalize well to new, un-
seen data. This is where ensemble methods, like Random Forests and
Gradient Boosting, can be beneficial.

4.1.2.2. Random forests. Random Forests (RF) are a widely used and
powerful ensemble learning method in the field of QSAR. They are
designed to improve predictive accuracy and reduce overfitting by
combining multiple DT [70,71]. RF use a process called bootstrapping to
randomly sample the data with replacement, creating multiple datasets.
During the construction of each DT, a random subset of descriptors is
selected at each node, creating diversity. By combining the predictions
of each individual decision tree through majority voting (for classifica-
tion tasks) or averaging (for regression tasks), RF are able to produce
robust and accurate predictions. They excel in handling complex,
high-dimensional data and reducing overfitting [72]. However, their
ensemble nature makes them less interpretable than individual DT, as

Table 1
Summary of descriptor categories in QSAR.

Descriptor
Type

Description Strengths Challenges

0D Represent simplest
molecular
properties, derived
solely from
chemical formulas

Easy to compute,
simple
interpretation

Low information
content, high degree
of degeneracy,
identical values for
isomers

1D Represent
molecules as sets of
substructures or
fragments

More detailed
than 0D, captures
specific
substructures
influencing
activity

Still limited in
complexity, high
degeneracy, poor
differentiation of
isomers

2D Incorporate
information on
how atoms are
connected within a
molecule, often
using molecular
graphs

Captures
connectivity and
topological
information

Cannot capture 3D
spatial information,
some ambiguity in
linear notation
systems like SMILES

3D Quantify spatial
arrangement of
atoms and bonds,
including
electronic and
geometrical
descriptors

Provides detailed
spatial and
electronic
information,
important for
modeling 3D
interactions

Computationally
intensive, requires
geometry
optimization,
handling multiple
conformations can
increase complexity

Higher-
dimensional
Descriptors
(4D, 5D,
6D)

Account for
conformational
flexibility,
dynamic changes
in molecular
structures, and
solvent effects

Captures dynamic
and
environmental
influences,
potentially more
accurate
predictions

Extremely high
computational cost,
increased
complexity, less
practical for high-
throughput
screening
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the overall prediction is an aggregate of many trees.

4.1.3. Support vector machines
Support Vector Machines (SVM) are a versatile ML algorithm that

can be used for both classification and regression problems. SVM work
by transforming the feature space to find a hyperplane that maximizes
the margin between classes or regression targets [73,74]. A hyperplane
is a subspace of one dimension less than the ambient space. In simpler
terms, if a space is 3-dimensional, then its hyperplanes are the 2-dimen-
sional planes, while if the space is 2-dimensional, its hyperplanes are the
1-dimensional lines. SVM find an optimal hyperplane, which acts as the
decision boundary, that separates the data into classes with the largest
possible margin. The margin is the distance between the hyperplane and
the closest points in each class, known as support vectors. SVM can be
categorized as linear or nonlinear models in their operation. While
simple linear SVMs operate with a linear decision boundary in the
feature space, nonlinear SVM can learn more complex decision bound-
aries by implicitly mapping the data into a higher-dimensional space,
where it is easier to find a hyperplane that separates the data along the
line of biological activity. The mapping uses kernel functions such as
polynomial, radial basis function (RBF), or sigmoid kernels [75,76].
SVM are powerful tools for handling high-dimensional data, and they
can capture non-linear relationships between descriptors and biological
activity [77,78]. However, their application can be computationally
intensive, and the choice of kernel and tuning parameters requires
careful consideration [79].

4.1.4. K- Nearest neighbours
K-Nearest Neighbours (kNN) identifies the similarity between the

molecular structures of chemical compounds through their descriptors.
Each compound’s descriptors serve as features, encapsulating various
aspects of its molecular makeup. During the training phase, kNN learns
the instances of the descriptors of each compound in the dataset and the
corresponding biological activities or properties. When a new compound
is predicted, kNN calculates the similarity between its descriptors and
those of the compounds in the training set using distance metrics such as
Euclidean distance [80,81]. The "k" nearest neighbours to the new
compound are identified, and their associated labels are used for pre-
diction. The major advantages of kNN in QSAR lie in its simplicity and
interpretability. kNN does not require complex assumptions about the
underlying data distribution, and by analysing the properties of the
nearest neighbours, kNN can provide insights into the structural features
influencing biological activity [80]. However, as molecular descriptors
increase, the distance metric in the high-dimensional space becomes less
meaningful, leading to inaccurate predictions. Moreover, the value of k
(number of neighbours) significantly impacts the model’s performance.
Choosing a small k can lead to overfitting, while a very high k can result
in underfitting [82].

4.1.5. Bayesian network
Bayesian Network (BN) works by probabilistically representing the

relationships between chemical features and biological activities. The
algorithm starts by constructing a directed acyclic graph where nodes
represent chemical features and biological activities, and edges repre-
sent conditional dependencies between them [83]. The conditional
probability distributions associated with each node are learned from the
available data through statistical methods or expert knowledge [84].
One key advantage of BN in QSAR modelling is their ability to handle
uncertainty effectively. QSAR data often contain noise, missing values,
or measurement errors, and BN can explicitly model and propagate
uncertainty through the network [85,86], providing more reliable pre-
dictions and uncertainty estimates. Additionally, BN offers interpret-
ability through graphical representations of the dependencies between
variables [87], which may allow researchers to understand the under-
lying mechanisms driving compound activity. However, constructing an
accurate BN requires sufficient data to estimate the conditional

probability distributions. When data is limited, BN may suffer from
overfitting or underfitting issues. Moreover, the computational
complexity of BN can be high, especially for large datasets with many
variables.

4.1.6. Multi-layer perceptrons
Multi-Layer Perceptrons (MLPs) are a type of artificial neural net-

works (ANNs) that consist of an input layer (matching the number of
descriptors), one or more hidden layers with interconnected nodes
(neurons), and an output layer (predicting the activity). MLPs function
by adjusting weights and biases associated with connections between
neurons to minimize the error between the predicted and actual activity
[88]. This learning process makes MLPs excel at finding complex,
non-linear relationships between molecular descriptors and biological
activity. However, MLPs come with common challenges such as over-
fitting, especially with a high number of neurons and small datasets.

4.2. Modern machine learning algorithms

Modern Machine Learning primarily revolves around deep learning
(DL), which is a subfield of ML that focuses on learning complex patterns
from data by using ANNs. DL algorithms have been shown in QSAR
research to produce models that are more robust and accurate models
when compared to the classical algorithms [89,90]. While MLPs are
foundational ANNs, they wouldn’t be considered the forefront of deep
learning algorithms today. Here, we looked at the fundamental princi-
ples of the more complex DL algorithms common in drug discovery such
as Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs) and Graph Neural Networks (GNNs), and their advantages in
QSAR modelling.

4.2.1. Convolutional neural networks
CNNs are a class of DL models primarily designed for processing grid-

like data, such as pixels of data in image processing. However, it has
found application in QSAR using fixed molecular fingerprints as input
data [91–93]. CNNs use a multi-layered architecture that includes
convolutional layers, pooling layers, and fully connected layers. Con-
volutional layers are used to extract features from the input data. Each
convolutional layer contains a set of filters, which are applied to the
input data to extract different features. The output of a convolutional
layer is a feature map, which is a matrix of values that represent the
extracted features. These values are the degree of confidence that the
CNNs algorithm has detected a feature. Pooling layers are used to reduce
the dimensionality of the feature maps and to make the model more
robust to noise [94]. Fully connected layers, similar to the hidden layers
in traditional neural networks, are used to combine the extracted fea-
tures and to make the final prediction [95,96]. During training, CNNs
adjust their parameters through backpropagation and optimization al-
gorithms to minimize a chosen loss function [97]. The power of CNNs
lies in their ability to automatically learn and extract relevant features
from the data, making them suitable for predicting biological activities
based on molecular structures. However, CNNs require large amounts of
data to train effectively and can be computationally demanding. Addi-
tionally, their interpretability can be challenging compared to simpler
models. Despite these challenges, CNNs’ powerful feature extraction
capabilities make them valuable drug discovery tools.

4.2.2. Recurrent neural networks
RNNs are a class of ANNs, designed for handling sequential data.

They operate by maintaining a hidden state that evolves with each input
element in a sequence, allowing them to capture dependencies across
time steps [98]. The hidden state represents the information that the
RNNs have learned about the sequential data up to a certain time. At
each time step, the RNNs processes an input and updates its hidden state
based on the current input and the previous hidden state. Each input
corresponds to a specific position in the sequence representing the
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molecular structure of a compound, where each element in the sequence
corresponds to an atom or a molecular substructure. The RNNs can
produce an output at each time step, and it can also provide an output at
the end of the sequence. These outputs can be used for predicting the
biological activity of compounds. Simplified molecular-input line-entry
system (SMILES) strings are the commonly used molecular representa-
tion used for RNNs [99,100]. They are easy to parse and process.
However, there are some drawbacks to using SMILES strings for RNN
which includes their sensitivity to the order of atoms, meaning that two
SMILES strings that represent the same molecule can be different if the
atoms are in a different order. Canonicalization of SMILES may be
needed to mitigate against this drawback, standardising the order of
atoms [101,102]. Moreover, SMILES strings do not capture the struc-
tural information of molecules, such as the bond lengths and angles
between atoms. Another molecular representation that can be used for
RNNs is molecular graphs [103,104]. A major advantage of molecular
graph representations is that they carry more structural information.
However, they require a large amount of storage space and significant
memory during computation. RNNs are particularly well-suited for
QSAR considering their ability to learn sequential data, such as the order
of atoms in a molecule, which can be crucial for determining biological
activity. The long-term dependency of RNNs makes them difficult to
train, particularly because of the gradient explosion or vanishing prob-
lem [105,106]. The long-term dependency of RNNs refers to the ability
of RNNs to learn long-range relationships in sequential data. This is in
contrast to short-range relationships learning of feedforward neural
networks that forms the basis of RNNs. RNNs architectures such as long
short-term memory (LSTM) and gated recurrent unit (GRU) have been
developed to address these issues and enable RNNs to capture long-term
dependencies more effectively [107–109].

4.2.3. Graph neural networks (GNNs)
GNNs are a type of deep learning algorithm that is particularly well-

suited for QSAR modelling because they can learn to extract features
from molecular graphs [110,111]. Molecular graphs are a way of rep-
resenting molecules as nodes and edges. Nodes represent atoms, and
edges represent bonds between atoms. GNNs work by passing messages
between the nodes of a molecular graph [112]. The messages are passed
over a number of rounds, and at each round, the nodes update their
states based on the messages they receive from their neighbours. These
messages refer to the information that is exchanged between the nodes
of the graph which can include the features of the nodes and the re-
lationships between the nodes [113]. The messages are encoded in a
vector representation for each node and can then be used to predict
bioactivity of compounds. The messages can be passed in different ways,
but the two major approaches to GNNs are recurrent GNNs and convo-
luted GNNs. In the recurrent GNNs, node representation is learned via
some recurrent neural architectures, such as the GRU. On the other
hand, convoluted GNNs work by applying a convolution operation to the
nodes of a graph, aggregating the features of a node and its neighbours
to produce a new feature vector for the node [114]. One of the key
advantages of using GNNs for QSAR is that they do not require the use of
handcrafted molecular descriptors, which may not capture all of the
relevant features of a molecule [110]. By directly working with molec-
ular graphs, where atoms are nodes and bonds are edges, GNNs can learn
complex features that capture the relationships and interactions within a
molecule. This capability allows GNNs to model intricate molecular
structures more effectively than traditional handcrafted descriptors.
However, GNNs require substantial computational power and large
datasets for training, and their interpretability can be challenging due to
the complexity of the learned features. While GNNs offer some inter-
pretability through attention mechanisms that highlight informative
parts of the graph, understanding the inner workings of the message
passing process can be challenging [115].
The effectiveness of each machine learning algorithm in QSAR and

drug discovery largely depends on the size and complexity of the dataset

and the target activity. Simple algorithms like Multiple Linear Regres-
sion and Partial Least Squares work well with smaller datasets and linear
relationships, giving clear and easy-to-understand results. On the other
hand, complex algorithms like Random Forests and Support Vector
Machines excel with large, detailed datasets, capturing complicated,
non-linear patterns. Deep learning models like Convolutional Neural
Networks and Graph Neural Networks also thrive on large, complex
datasets. However, they require even more data and computational
power to avoid overfitting and perform well with new data. Choosing
the right algorithm means balancing the data’s size and complexity with
the specific needs of the target activity to make accurate predictions and
support effective drug discovery.
A summary of the strengths and limitations of the algorithms dis-

cussed is presented in Table 2.

5. General approach to build QSAR machine learning models

A systematic approach is necessary to construct reliable QSAR
models, including data collection, descriptor generation, preprocessing,
feature selection, and model evaluation. This section provides an over-
view of the general approach to the workflow involved in building a
QSAR model and a summary chart is presented in Fig. 1.

Data Collection and Cleaning: The first step in building a QSAR model
is to gather relevant data from various sources, such as scientific liter-
ature, databases, or experimental studies. It’s crucial to ensure that the
data is of high quality and covers a diverse range of chemical compounds

Table 2
Strengths and limitations of the machine learning algorithms.

Machine Learning
Algorithms

Strengths Limitations

Multiple Linear
Regression
(MLR)

Simple and easy to interpret,
effective for linear
relationships

Cannot capture non-linear
relationships

Partial Least
Squares (PLS)

Handles high-dimensional
data, manages
multicollinearity well

Latent variables are complex
and less interpretable

Binary Logistic
Regression
(BLR)

Interpretable,
computationally efficient for
large datasets

Assumes linear relationships,
may struggle with complex
non-linear relationships

Decision Trees
(DT)

It can model non-linear
relationships, easy to
interpret

Prone to overfitting

Random Forests
(RF)

Reduces overfitting through
ensemble learning, handles
complex data well

Less interpretable than single
decision trees,
computationally intensive

Support Vector
Machines (SVM)

Effective for high-
dimensional data, captures
non-linear relationships

Computationally intensive,
requires careful tuning of
hyperparameters

K-Nearest
Neighbors
(kNN)

Simple to implement and
interpret, no assumptions
about data distribution

Poor performance with high-
dimensional data,
computationally expensive,
sensitive to the value of k
(neighbors)

Bayesian Networks
(BN)

Handles uncertainty well,
captures complex
dependencies between
molecular features

High computational
complexity

Multi-Layer
Perceptrons
(MLP)

Can model complex non-
linear relationships, flexible
architecture

Prone to overfitting,
parameters tuning requires
expertise and can be time-
consuming

Convolutional
Neural Networks
(CNNs)

Automatically learns
features

Requires large datasets and
significant computational
power, difficult to interpret

Recurrent Neural
Networks
(RNNs)

Suitable for sequential data Vanishing/exploding
gradients, requires large
datasets and computational
power

Graph Neural
Networks
(GNNs)

Effectively handles
molecular graphs, learns
complex molecular features

Requires substantial data and
computational resources,
complex to interpret
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and their corresponding activities or properties. Data cleansing involves
removing duplicates, handling missing values, and standardizing the
format to make it suitable for analysis.

Descriptor Generation: Molecules are complex entities, and their
structures must be translated into a numerical format suitable for ma-
chine learning algorithms to learn. This translation is achieved through
molecular descriptors, as described in Section 3. Depending on the depth
of information captured, these descriptors can be 0D, 1D, 2D, or 3D.
Several software tools are available to generate descriptors, including
PaDEL, RDKit, BlueDesc, Dragon, Mordred, CDK and ChemoPy, among
many others.

Data Preprocessing: Preprocessing the data to improve model per-
formance and efficiency is essential before training the model on the
generated descriptor data. Data preprocessing approaches include
handling issues such as cross-correlation between descriptors, filtering
out descriptors with low variance, and normalizing or scaling the data to
ensure all features have similar magnitudes.

Data Splitting: To develop a QSAR model, it is a standard practice to
divide the dataset into training, validation, and test sets. The training set
is used to train the model, the validation set is used to assess model
performance during training, and the test set is used to evaluate the
model’s generalizability and predictive performance on new, unseen
data. In many cases, 70 % to 80 % of the entire dataset is used as the
training set, while 20 % to 30 % is shared between the validation and
test set.

Feature Selection: Feature selection aims to identify the most infor-
mative descriptors contributing to the model. Selecting the most infor-
mative descriptors can significantly improve model performance and
interpretability. Moreover, effective feature selection mitigates the risk
of overfitting by focusing on the most informative features while dis-
carding redundant or noisy ones [116]. Depending on the dataset

characteristics and modelling objectives, various techniques can be
employed for feature selection. The filter and wrapper methods are
feature selection strategies often used in QSAR [117]. Filter methods,
such as variance thresholding, enable the removal of descriptors with
low variance, which are unlikely to capture meaningful variations in the
data. Correlation analysis is another example, often used to identify
descriptors that exhibit high pairwise correlations. One of the highly
correlated pairs is removed to avoid multicollinearity, which may
adversely affect model stability. The filter methods are often already
captured in the data preprocessing stage. Wrapper methods involve the
machine learning algorithm itself in the selection process. Features are
added or removed from a subset, and the model’s performance is eval-
uated on each iteration. Prominent examples of wrapper methods
include forward selection, backward elimination, and recursive feature
elimination [118].

Machine Learning Algorithms: Once the data is prepared and features
are selected, various machine learning algorithms can be applied to
build QSAR models. These algorithms can include multiple linear
regression, partial least squares, decision trees, random forests, support
vector machines, and neural networks. The choice of algorithm depends
on the nature of the data, the complexity of the relationship between
descriptors and activities, and the computational resources available.

Cross Validation and Model Evaluation Metrics: Cross-validation is a
technique used to assess the model’s generalisation performance and
ensure its robustness to variations in the training data. Standard cross-
validation methods include k-fold cross-validation and leave-one-out
cross-validation (LOOCV). K-fold cross-validation involves dividing the
training data into k subsets, training the model on k-1 of these subsets,
and assessing the model’s performance on the one subset left out. This
process is iterated k times, with each subset serving as the validation set
once in the entire process. The final performance metric is computed by

Fig. 1. General workflow for QSAR model development.
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averaging the results across all iterations. LOOCV, on the other hand, is a
variant of k-fold cross-validation where k equals the total number of
data points, meaning each data point serves as a separate validation set
in each iteration [119,120]. The performance of the trained model is
evaluated using appropriate metrics depending on the specific model-
ling task and the nature of the predicted activity (e.g., classification or
regression). If the model trained tackles a regression problem, metrics
such as mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), R-squared and Q-squared score are often
used to assess performance. If, on the other hand, a classification model
is involved, metrics such as accuracy, precision, recall, F1 score, Mat-
thews correlation coefficient (MCC), and area under the receiver oper-
ating characteristic curve (ROC-AUC) are used, depending on the nature
of the prediction task. It is crucial to assess model performance on test
sets using these metrics. It is also vital to note that no single metric is
universally perfect for all ML tasks, and the choice of metric should be
considered based on the specific problem. Moreover, reporting multiple
metrics to provide a more comprehensive understanding of the model’s
performance and potential limitations is often beneficial.

Applicability Domain: The applicability domain defines the chemical
space within which the QSAR model’s predictions are reliable. It is
essential to establish the boundaries of the applicability domain to
ensure that the model is not extrapolating beyond its scope [119,121].
The applicability domain can be defined using various methods, with
distance-based approaches being particularly common in QSAR. These
methods evaluate the similarity between newmolecules and those in the
training set based on their descriptors. Molecules that surpass a pre-
determined similarity threshold may fall outside the model’s domain
[121]. Common similarity measures employed include Euclidean dis-
tance and the Tanimoto coefficient, chosen depending on the descriptor
characteristics. Leverage analysis is another distance-based method that
identifies influential data points within the training set. This analysis,
determined using the hat matrix, highlights molecules that dispropor-
tionately affect the QSAR model’s predictions [122]. High leverage
suggests that a molecule resides in a sparsely populated region of the
descriptor space, potentially indicating challenges with extrapolation.
Establishing the applicability domain is crucial for ensuring QSAR
model robustness and validity, thereby enhancing their utility and
reliability.

Virtual Screening: Once the QSAR model is trained, validated, and has
its applicability domain defined, it can be applied as a virtual screening
tool to screen chemical compounds and prioritize candidates for further
experimental validation. Virtual screening involves predicting the ac-
tivity of a large library of compounds and selecting those with the
highest predicted potency of the desired activity for further
investigation.
Robust QSAR models can be developed following the above-

mentioned steps, facilitating drug discovery and molecular property
assessments.
The next section highlights studies that have engaged the various

input strategies and computational approaches to develop QSAR models
for α-Glucosidase inhibitors as a case study.

6. QSAR studies on α-glucosidase inhibitors

Many studies have applied QSAR machine learning to predict mod-
ulators of other antidiabetic targets, such as sodium-glucose cotrans-
porter [123,124], dipeptidyl peptidase-4 [125], peroxisome
proliferator-activated receptor gamma [126], glycogen synthase ki-
nase 3β [127], and protein tyrosine phosphatase 1B [128]. However, for
this review, we have explicitly focused on studies related to α-glucosi-
dase inhibitors. For our literature survey, we conducted a comprehen-
sive search on the Scopus database using the following criteria: (("QSAR"
OR "Quantitative Structure-Activity Relationship") AND ("alpha-gluco-
sidase" OR "α-glucosidase")), limited to research articles, and publica-
tions between 2011 and 2023. The articles’ keywords filter used

included QSAR, α-glucosidase, alpha-glucosidase, and Quantitative
Structure-Activity Relationship. We considered research articles that we
could access, or are open-access.
These studies, employing various QSAR approaches, have contrib-

uted to a comprehensive understanding QSAR model application for the
prediction of α-glucosidase inhibitors. Some of these studies are dis-
cussed in the following paragraphs, and a summary of the QSAR studies
is presented.
Wu et al. [129] presented a 2D-QSAR model based on triterpene

analogues of ursolic acid, showcasing R2 values of 0.9986 for training
and 0.9996 for the test set. They used PLS as their algorithm of choice for
the model building. A simple approach by Dinparast et al. [130] built a
QSAR model built with MLR, from molecular weight and density de-
scriptors for benzimidazole derivatives. Their predictions yielded R2 and
Q2 values of 0.60 and 0.69, respectively. Mora et al. [131] presented a
3D-QSAR analysis on cinnamic acids using the MLR algorithm. They
achieved predictive values of R2 to be 0.901 and Q2, 0.946.
Using DT, BLR, MLP, k-NN, and SVM, Diéguez-Santana et al. in 2017

[132] and 2019 [133] developed QSAR models for classifying ChEMBL
compounds targeting α-amylase and α-glucosidase inhibition. The
resulting QSAR models demonstrated an accuracy score of 82.66 % and
84.47 % for the training and test sets, for the 2019 study which utilized
DT algorithm. Among the many algorithms used in the 2017 study, they
reported k-NN as their top performing algorithm.
In another approach, Joshi et al. [134] used PLS in their QSAR

method to predict thiazole-based α-glucosidase inhibitors, achieving
cross-validated correlation coefficient Q2 of 0.800 and
non-cross-validated correlation coefficient R2 of 0.943. Izadpanah et al.
[135] contributed a simple mono-descriptor QSAR model for hydrazinyl
thiazole-based pyridine derivatives, exhibiting statistical performance
with R2= 0.888 and Q2= 0.872. They used both MLR and SVM for their
model training. Conversely, Halim et al. [136] developed a 2D-QSAR
model encompassing a diverse array of 36 compounds using PLS, and
yielding R2 = 0.88 and Q2 = 0.71. Dahmani et al. [137] delved into
quantum chemistry, constructing a QSAR model to correlate quantum
chemical descriptors of 1,2,4-triazolone derivatives with their α-gluco-
sidase inhibitory activity. The constructed model achieved a prediction
R2 of 0.645 using MLR.
Sainy et al. [138] performed 3D QSAR analysis, employing

comparative molecular field analysis (CoMFA) and comparative mo-
lecular similarity indices analysis (CoMSIA) on a series of flavones. MLR
analysis was performed using inhibitory activity as the dependent var-
iable and descriptors as the predictor variable. Notably, the derived
CoMFA and CoMSIA models displayed cross-validated Q2 values of
0.742 and 0.759, respectively. Similarly, Liu et al. [139] undertook a
similar approach, developing CoMFA and CoMSIA models for
myricetin-derived flavonols. However, PLS was the algorithm of choice
for training here. Their CoMFA model, characterized by an R2 value of
1.000 and a Q2 of 0.598, and the CoMSIA model, featuring an R2 of
0.998 and Q2 of 0.730, underscored the effectiveness of these models in
predictive analysis.
The contribution from Jia et al. [140] involved the development of

3D-QSAR models through CoMFA and CoMSIA methodologies, applied
to the prediction of α-glucosidase inhibitors from dietary flavonoids
using PLS. The resulting CoMFA model reveals a non-cross-validated
coefficient R2 of 0.996 and cross-validated correlation coefficient Q2

of 0.529, and the CoMSIA model achieving an R2 of 0.997 and Q2 of
0.515.
An unconventional and noteworthy approach to constructing a 2D-

QSAR classifier model for α-glucosidase was undertaken by Diéguez-
Santana et al. in 2017 [132] and 2019 [133]. The study’s consideration
of building models from a large and diverse dataset suggests their QSAR
models may capture a wider applicability domain. However, the clas-
sification model may not distinguish between strong and weak activities
due to the wide range of activity values in the ChEMBL dataset. More-
over, a definite activity threshold was not defined for the active label.
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A summary of all the QSAR studies on α-glucosidase inhibitors that
we looked at is presented in Table 3. It was observed that none of the
studies discussed engaged the use of DL algorithms, which may be
attributed in part to the use of small datasets, since DL need large
datasets for effective application.
The highlighted studies used various software to develop QSAR

models. These tools have unique strengths and limitations that influence
their effectiveness in different contexts. Table 4 summarizes these
strengths and limitations.
Various studies have explored the landscape of QSAR to establish the

predictability of α-glucosidase inhibitors. These studies have shed light
on the relationships between molecular structures and inhibitory

potentials and have the potential to advance our understanding of
α-glucosidase inhibition and facilitate the design of novel inhibitors with
enhanced efficacy. However, there are peculiar challenges that need
attention in order to have usable models with broader applications. The
continued development and application of QSAR methods will be
essential for advancing the field of α-glucosidase inhibitor research.

7. Challenges and future directions

Amidst the abundance of QSAR studies and predictive models aimed
at α-glucosidase prediction, a few challenges hinder the realization of
comprehensive and robust models with broad applicability. Although
these efforts have made significant contributions to the field, a notable
proportion of them have focused on specific compound series and relied
on relatively small datasets, which are often unusable for DL. This
approach, though may be beneficial in terms of model precision, can
inadvertently limit the broader applicability of these models, particu-
larly in the context of screening diverse and structurally varied com-
pound libraries. Only a few studies have considered expanding the
library of compounds for training QSAR models. Illustrative cases are
the studies conducted by Diéguez-Santana et al. [132,133], which
commendably addressed this limitation by delving into the construction
of a classification model based on an extensive and diverse ChEMBL
dataset. However, it is noteworthy that the models from the study might
face challenges when attempting to effectively distinguish among the
vast range of activity values inherent in the ChEMBL dataset. The use of
large and diverse datasets may be an issue of concern for many re-
searchers, as this data would, in many cases, have to be pulled from
different laboratory experiments, resulting in a wide range of varied

Table 3
QSAR studies on α-glucosidase inhibitors.

Study
reference

Descriptors Algorithm Dataset Size

Sainy et al.
[138]

3D (CoMFA,
CoMSIA)

MLR Flavones 15

Liu et al.
[139]

3D (CoMFA,
CoMSIA)

PLS Flavonols 26

Diéguez-
Santana
et al.[132]

0-2D MLP, SVM,
BN, BLR,
KNN

Diverse set 2055

Joshi et al.
[134]

2D and 3D
(CoMFA,
CoMSIA)

PLS Thiazole derivatives 46

Izadpanah
et al.[135]

2D (Mono-
descriptor)

MLR, SVM Hydrazinyl thiazole-
based pyridine
derivatives

35

Halim et al.
[136]

2D PLS Diverse set 36

Dahmani
et al.[137]

3D MLR 1,2,4-triazolone
derivatives

18

Jia et al.[140] 3D (CoMFA,
CoMSIA)

PLS Flavonoids 27

Diéguez-
Santana
et al.[133]

2D DT Diverse set 1546

Mora et al.
[131]

3D-QSAR MLR N-cinnamoyl and
hydroxycinnamoyl
amides

17

Laoud et al.
[141]

3D PLS Salacinol analogues 35

Asadollahi-
Baboli &
Dehnavi
[142]

2D and 3D PLS, SVM Tetracyclic oxindole
derivatives

34

Popović-
Djordjević
et al.[143]

2D and 3D PLS Cyclic urea and
carbamate derivatives

13

Channar et al.
[144]

3D MLR 2,6-di (subsituted
phenyl) thiazolo[3,2-
b]− 1,2,4-triazoles

10

Zheng et al.
[145]

3D (CoMFA,
CoMSIA)

PLS Xanthone analogues 54

Dinparast
et al.[130]

2D and 3D MLR Benzimidazole
derivatives

14

Zhang et al.
[146]

3D PLS Diverse set including
peptides

19

Liu et al.
[147]

3D (CoMFA) PLS Phenolic acid amides 42

Wu et al.
[129]

2D PLS Triterpene analogues of
ursolic acid

30

Imran et al.
[148]

2D MLR Flavone hydrazones 30

Jabeen et al.
[149]

3D PLS Diverse set 47

Saihi et al.
[150]

2D and 3D MLR Xanthone and
curcuminoid
derivatives

57

Masand et al.
[151]

2D MLR, KNN Xanthone derivatives 43

Moorthy et al.
[152]

2D and 3D MLR Andrographolide
derivatives

19

Table 4
Some prominent software used in the development of QSAR models.

Tools Strengths Limitations

WEKA (Waikato
Environment for
Knowledge
Analysis)

− Open-source and free to
use

− Wide variety of machine
learning algorithms

− Large user community
and support

− Limited built-in chem-
informatics
functionalities

MOE (Molecular
Operating
Environment)

− Extensive
cheminformatics toolkit

− Good visualization tools
− Scripting capabilities for
automation

− Commercial software
with licensing costs

− May require significant
training

SYBYL − Good support for 3D-
QSAR, including CoMFA
and CoMSIA

− Established user base in
some fields

− Less flexibility for
custom model
development

− Not actively developed
anymore

Schrödinger − Powerful descriptor
generation capabilities

− Integrated workflow for
model building and
analysis

− Limited open-source
functionality

− May require significant
training

MATLAB − Powerful programming
language for custom
model development

− Extensive libraries for
scientific computing and
data analysis

− Highly flexible

− Requires programming
expertise

− Can be time-consuming
to build models from
scratch

− Requires licensing fee
for full features

SPSS − Good for basic QSAR
modeling

− Limited machine
learning capabilities

− Not specifically
designed for
cheminformatics

Hyperchem − Some basic descriptor
generation options

− Good visualization tools
for QSAR analysis

− Limited functionalities
for QSAR model
building

− Not actively developed
anymore
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IC50 values [153,154]. However, pIC50, achieved by logarithmically
transforming IC50, may circumvent this issue by normalizing and
enabling direct comparison of values from disparate experiments.
While DL approach in drug discovery is on the rise (Fig. 2), and has

recorded some successful applications such as identification of halicin, a
novel broad spectrum antibiotic compound [155], it has been largely
unexplored for developing predictive models for α-glucosidase in-
hibitors. For instance, a search using Scopus, an abstract and citation
database launched by Elsevier in 2004, with the search terms [("Deep
Learning") AND ("alpha-glucosidase" OR "α-glucosidase")], returned one
article. However, the article primarily focuses on simulations of induced
pluripotent stem cells and differentiated skeletal muscle cells to study
the infantile onset of Pompe disease [156]. This underscores the unex-
plored gap in DL approach for prediction of α-glucosidase inhibitors.
To forge ahead with the development of robust and versatile models

for α-glucosidase inhibitors, the key lies in the strategic use of extensive
and diverse datasets for model training, alongside a concerted focus on
developing DL models that can discern with precision compounds with
strong α-glucosidase inhibition. Indeed, DL holds immense potential to
revolutionize antidiabetic drug discovery by leveraging vast biological
datasets to identify potential drug targets [157,158], repurpose existing
drugs [159], predict efficacy and toxicity, perform virtual screening,
enable personalized medicine approaches [160], and integrate
multi-omics data for disease characterization and treatment optimiza-
tion [161]. In embracing DL approaches, the identification and devel-
opment of novel antidiabetic therapies may be expedited.

8. Conclusion

In conclusion, QSAR models offer valuable insights into the com-
plexities of predicting α-glucosidase inhibitors. The combination of
molecular descriptors, machine learning algorithms, and data
complexity influences the quality of these models. Key descriptors used
in QSAR models include 0D descriptors representing simple molecular
properties, 1D descriptors capturing information on molecular frag-
ments, 2D descriptors incorporating connectivity and topological in-
formation, and 3D descriptors quantifying the spatial arrangement of
atoms and bonds. Machine learning algorithms trained on these de-
scriptors range from classical to deep learning techniques. Classical al-
gorithms are generally easier to implement but may struggle with
complex, non-linear relationships between descriptors and desired
bioactivity. In contrast, deep learning algorithms are highly effective at
capturing intricate patterns but require large datasets and significant
computational resources.
Many QSAR studies on α-glucosidase inhibitors examined in this

article have focused on specific chemical series and used small datasets,
limiting model generalizability to a wider chemical space. Aggregating
data from these studies can create a more extensive and structurally
diverse dataset well-suited for training deep learning algorithms. As
QSAR methods advance in α-glucosidase inhibitor research, leveraging
diverse datasets becomes crucial for successfully applying deep learning
approaches. Embracing these advancements may accelerate progress
toward discovering novel α-glucosidase inhibitors and developing
practical therapeutic applications.
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Ivanović MD, et al. α-Glucosidase inhibitory activity and cytotoxic effects of some
cyclic urea and carbamate derivatives. J Enzym Inhib Med Chem 2017;32:
298–303. https://doi.org/10.1080/14756366.2016.1250754.

[144] Channar PA, Saeed A, Larik FA, Rashid S, Iqbal Q, Rozi M, et al. Design and
synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as
α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D
QSAR and risk analysis. Biomed Pharm 2017;94:499–513. https://doi.org/
10.1016/j.biopha.2017.07.139.

[145] Zheng X, Zhou S, Zhang C, Wu D, Luo H-B, Wu Y. Docking-assisted 3D-QSAR
studies on xanthones as α-glucosidase inhibitors. J Mol Model 2017;23. https://
doi.org/10.1007/s00894-017-3438-1.

[146] Zhang Y, Wang N, Wang W, Wang J, Zhu Z, Li X. Molecular mechanisms of novel
peptides from silkworm pupae that inhibit α-glucosidase. Peptides 2016;76:
45–50. https://doi.org/10.1016/j.peptides.2015.12.004.

[147] Liu B, Ma J-M, Chen H-W, Li Z-L, Sun L-H, Zeng Z, et al. α-Glucosidase inhibitory
activities of phenolic acid amides with l-amino acid moiety. RSC Adv 2016;6:
50837–45. https://doi.org/10.1039/c6ra08330g.

[148] Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, et al. Synthesis of
novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR
analysis and docking studies. Eur J Med Chem 2015;105:156–70. https://doi.org/
10.1016/j.ejmech.2015.10.017.

[149] Jabeen F, Oliferenko PV, Oliferenko AA, Pillai GG, Ansari FL, Hall CD, et al. Dual
inhibition of the α-glucosidase and butyrylcholinesterase studied by molecular
field topology analysis. Eur J Med Chem 2014;80:228–42. https://doi.org/
10.1016/j.ejmech.2014.04.018.

[150] Saihi Y, Kraim K, Ferkous F, Djeghaba Z, Azzouzi A, Benouis S. Nonlinear qsar
study of xanthone and curcuminoid derivatives as α-glucosidase inhibitors. Bull
Korean Chem Soc 2013;34:1643–50. https://doi.org/10.5012/
bkcs.2013.34.6.1643.

[151] Masand VH, Mahajan DT, Patil KN, Chinchkhede KD, Jawarkar RD, Hadda TB,
et al. k-NN, quantum mechanical and field similarity based analysis of xanthone
derivatives as α-glucosidase inhibitors. Med Chem Res 2012;21:4523–34. https://
doi.org/10.1007/s00044-012-9995-z.

[152] Moorthy HN, Ramos MJ, Fernandes PA. Prediction of the relationship between
the structural features of andrographolide derivatives and α-glucosidase
inhibitory activity: a quantitative structure-activity relationship (QSAR) Study.
J Enzym Inhib Med Chem 2011;26:78–87. https://doi.org/10.3109/
14756361003724760.

[153] Lewis RA, Wood D. Modern 2D QSAR for drug discovery. WIREs Comput Mol Sci
2014;4:505–22. https://doi.org/10.1002/wcms.1187.

[154] Maharao N, Antontsev V, Wright M, Varshney J. Entering the era of
computationally driven drug development. Drug Metab Rev 2020;52:283–98.
https://doi.org/10.1080/03602532.2020.1726944.

[155] Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A deep
learning approach to antibiotic discovery. Cell 2020;180:688–702.e13. https://
doi.org/10.1016/j.cell.2020.01.021.

[156] Esmail S, Danter WR. DeepNEU: artificially induced stem cell (aiPSC) and
differentiated skeletal muscle cell (aiSkMC) simulations of infantile onset POMPE
disease (IOPD) for potential biomarker identification and drug discovery. Front
Cell Dev Biol 2019;7:325. https://doi.org/10.3389/fcell.2019.00325.

[157] Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, et al. Deep-learning-based
drug–target interaction prediction. J Proteome Res 2017;16:1401–9. https://doi.
org/10.1021/acs.jproteome.6b00618.

[158] You J, McLeod RD, Hu P. Predicting drug-target interaction network using deep
learning model. Comput Biol Chem 2019;80:90–101. https://doi.org/10.1016/j.
compbiolchem.2019.03.016.

[159] Zhu T, Li K, Herrero P, Georgiou P. Deep learning for diabetes: a systematic
review. IEEE J Biomed Health Inform 2021;25:2744–57. https://doi.org/
10.1109/JBHI.2020.3040225.

[160] Petrovic K. Deep learning in personalized medicine: advancements and
applications. J Adv Anal Healthc Manag 2023;7:34–50.

[161] Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning
approaches for multi-omics data analysis: a review. Biotechnol Adv 2021;49:
107739. https://doi.org/10.1016/j.biotechadv.2021.107739.

A.I. Odugbemi et al.

https://doi.org/10.3390/ijms20030463
https://doi.org/10.3390/ijms20030463
https://doi.org/10.1021/acs.est.0c07040
https://doi.org/10.1021/acs.est.0c07040
https://doi.org/10.1080/07391102.2023.2172457
https://doi.org/10.1080/10799893.2020.1759092
https://doi.org/10.1371/journal.pone.0138767
https://doi.org/10.1016/j.molstruc.2016.02.005
https://doi.org/10.1016/j.molstruc.2016.02.005
https://doi.org/10.1007/s00044-018-2229-2
http://refhub.elsevier.com/S2001-0370(24)00237-X/sbref132
http://refhub.elsevier.com/S2001-0370(24)00237-X/sbref132
http://refhub.elsevier.com/S2001-0370(24)00237-X/sbref132
http://refhub.elsevier.com/S2001-0370(24)00237-X/sbref132
https://doi.org/10.1111/cbdd.13518
https://doi.org/10.2174/1570163817666201022111213
https://doi.org/10.2174/1570163817666201022111213
https://doi.org/10.1007/s11030-020-10164-5
https://doi.org/10.1007/s11030-020-10164-5
https://doi.org/10.3390/ph14050482
https://doi.org/10.3390/ph14050482
https://doi.org/10.1039/d0nj05298a
https://doi.org/10.52711/0974-360X.2022.00283
https://doi.org/10.52711/0974-360X.2022.00283
https://doi.org/10.1155/2022/9012943
https://doi.org/10.1021/acs.jafc.9b04943
https://doi.org/10.1016/j.compbiolchem.2017.12.003
https://doi.org/10.1016/j.compbiolchem.2017.12.003
https://doi.org/10.1016/j.compbiolchem.2018.07.019
https://doi.org/10.1080/14756366.2016.1250754
https://doi.org/10.1016/j.biopha.2017.07.139
https://doi.org/10.1016/j.biopha.2017.07.139
https://doi.org/10.1007/s00894-017-3438-1
https://doi.org/10.1007/s00894-017-3438-1
https://doi.org/10.1016/j.peptides.2015.12.004
https://doi.org/10.1039/c6ra08330g
https://doi.org/10.1016/j.ejmech.2015.10.017
https://doi.org/10.1016/j.ejmech.2015.10.017
https://doi.org/10.1016/j.ejmech.2014.04.018
https://doi.org/10.1016/j.ejmech.2014.04.018
https://doi.org/10.5012/bkcs.2013.34.6.1643
https://doi.org/10.5012/bkcs.2013.34.6.1643
https://doi.org/10.1007/s00044-012-9995-z
https://doi.org/10.1007/s00044-012-9995-z
https://doi.org/10.3109/14756361003724760
https://doi.org/10.3109/14756361003724760
https://doi.org/10.1002/wcms.1187
https://doi.org/10.1080/03602532.2020.1726944
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.3389/fcell.2019.00325
https://doi.org/10.1021/acs.jproteome.6b00618
https://doi.org/10.1021/acs.jproteome.6b00618
https://doi.org/10.1016/j.compbiolchem.2019.03.016
https://doi.org/10.1016/j.compbiolchem.2019.03.016
https://doi.org/10.1109/JBHI.2020.3040225
https://doi.org/10.1109/JBHI.2020.3040225
http://refhub.elsevier.com/S2001-0370(24)00237-X/sbref160
http://refhub.elsevier.com/S2001-0370(24)00237-X/sbref160
https://doi.org/10.1016/j.biotechadv.2021.107739

	Artificial intelligence in antidiabetic drug discovery: The advances in QSAR and the prediction of α-glucosidase inhibitors
	1 Introduction
	2 Quantitative structure-activity relationship
	3 Molecular descriptors in QSAR, the independent variable for machine learning
	3.1 0D and 1D molecular descriptors
	3.2 2D molecular descriptors
	3.3 3D Molecular descriptors
	3.3.1 Electronic descriptors
	3.3.2 Geometrical descriptors
	3.3.3 Alignment dependency in 3D descriptors
	3.3.3.1 Alignment-dependent method
	3.3.3.2 Alignment-independent method


	3.4 Higher dimensional QSAR
	3.5 Fingerprint descriptors
	3.5.1 Structural key fingerprints
	3.5.2 Topological fingerprints
	3.5.3 Circular fingerprints
	3.5.4 Pharmacophore fingerprints
	3.5.5 Protein–ligand interaction fingerprints (PLIF)


	4 Machine learning algorithms in QSAR
	4.1 Classical machine learning algorithms
	4.1.1 Linear models
	4.1.1.1 Multiple linear regression
	4.1.1.2 Partial least squares
	4.1.1.3 Binary logistic regression

	4.1.2 Tree-based models
	4.1.2.1 Decision trees
	4.1.2.2 Random forests

	4.1.3 Support vector machines
	4.1.4 K- Nearest neighbours
	4.1.5 Bayesian network
	4.1.6 Multi-layer perceptrons

	4.2 Modern machine learning algorithms
	4.2.1 Convolutional neural networks
	4.2.2 Recurrent neural networks
	4.2.3 Graph neural networks (GNNs)


	5 General approach to build QSAR machine learning models
	6 QSAR studies on α-glucosidase inhibitors
	7 Challenges and future directions
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


