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Abstract
New methods, essentially based on hidden Markov models (HMM) and neural
networks (NN), can predict the topography of both β-barrel and all-α membrane
proteins with high accuracy and a low rate of false positives and false negatives.
These methods have been integrated in a suite of programs to filter proteomes of
Gram-negative bacteria, searching for new membrane proteins. Copyright  2003
John Wiley & Sons, Ltd.
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Introduction

Presently less than 1% of the PDB structures are
membrane proteins solved with atomic resolution.
Considering also that membrane proteins, even
when they belong to the same functional fam-
ily, share little sequence identity, it is still prob-
lematic to develop low-resolution models, with
very few exceptions. For this reason, efforts have
been directed towards the high accuracy predic-
tion of the location of transmembrane segments
along protein sequences (topography) as well as
the positions of the N- and C-termini of pro-
teins, with respect to the membrane plane [3].
These predictors take advantage of the fact that
membrane proteins are constrained by lipid bilay-
ers of different composition to just two known
types of architecture: the so-called all-α helical
proteins of the inner membrane, and the β-barrel
proteins of the outer membrane of Gram-negative
bacteria.

Among all the possible methods described to
predict the topology of all-α membrane proteins
[3], two are particularly interesting, and consider
two different approaches.

Transmembrane propensity scales indicate, on
the basis of physicochemical properties, the mem-
brane interacting segments along a protein chain.
Experiment-based scales (MPXe) make it possible
to account, for example, for the effect of buried
salt bridges on hydropathy plot results, which
is extremely important when considering proteins
involved in ion transport (contributed by Stephen
White [9,10]), and, used in combination with other
scales (MPtopo) can also predict membrane protein
topology.

Alternatively, prediction methods such as
TMHMM and HMMTOP [11,16], based on
automatic learning, can identify the helix bundle
membrane proteins encoded in fully sequenced
genomes with very high precision (sensitivity and
specificity both around 95%). Topology prediction
is also quite good (correct predictions 65–70%
of the time). Recently, new topologies have
been determined by a combination of topology
predictions and standard experimental approaches
such as PhoA- or GFP-fusions [5] (contributed by
Gunnar von Heijne).

We developed different predictors for the
all-β and one for the all-α membrane proteins,
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respectively [8,13]. Considering that these predic-
tors are presently among the best performing of
their type [3], we propose to integrate them into a
suite of predictors (Hunter) capable of filtering the
whole proteome for finding new membrane pro-
teins [1]. By this, it is proposed that structural
genomics tools can help in classifying ORFs into
structural classes.

Prediction of all-β membrane proteins

The outer membrane of Gram-negative bacteria
contains unique membrane proteins folded into β-
barrel-like structures, comprising an even number
of antiparallel β-strands. This type of architec-
ture is well conserved among prokaryotes [15].
Recently, it has also been proposed that in the
outer membrane of chloroplasts and mitochondria,
proteins containing a similar membrane interact-
ing portion can perform different functions, includ-
ing voltage-dependent anion channel (VDAC) [2]
and unfolded protein transport (TOM40) [7]. To
date, the development of methods suited to locat-
ing the membrane-spanning regions of these pro-
teins, starting from the sequence, has been scarce
[18].

We have implemented two different methods,
both based on machine learning, to predict the
topography of this type of membrane protein. The
first (IRENE, http://www.biocomp.unibo.it, [8])
is based on neural networks, and the second is
based on HMMs (CINZIA [13]). The two methods,
trained and tested with a jackknife procedure on
sequence profiles, and endowed with a dynamic
programming-based filter [6], perform similarly on
a set of 15 non-redundant all-β membrane proteins
taken from the PDB. The HMM-based method is
superior to NN only when both are trained with
sequence profiles [13].

However, when tested on a much larger set of
well-annotated sequences from the SWISS PROT
database, the rate of false positives is lower in the
case of the HMM-based predictor. This is due to
the intrinsic capability of HMMs to act as more
stringent filters than NN, especially when, as in
this case, patterns are rather difficult to discriminate
based only on the local context. Indeed, transmem-
brane β-strands are rather similar to the β-strands
of globular proteins in both composition and pat-
tern [8].

Expected
136-146
148-157
165-176
196-211
214-228
242-257
261-276
290-305
309-322
332-348
351-361
366-378
383-395
413-425
430-441
458-470
477-487
500-510
515-524
542-553
558-566
584-594

Predicted
140-146
152-159
164-175
199-211
214-225
244-257
261-273
292-305
309-320
335-347
351-361
369-378
383-394
414-425
429-441
459-471
475-486
500-510
514-527
541-554
559-568
584-594

Figure 1. Prediction the transmembrane domain of the
outer membrane cobalamin transporter from Escherichia
coli (1nqf) with CINZIA. The protein was not included in
the training set

Starting from the sequence of any outer mem-
brane protein of mitochondria and chloroplasts, it is
possible to locate the transmembrane strands along
the chain (Figure 1). If the number of strands is
equal to that of a known β-barrel in the database,
then threading is possible. The alignment can be
made with the constraint that the positions of the
β-strands are conserved. This procedure made pos-
sible the evaluation of the first model of a voltage-
dependent anion channel capable of fitting most of
the experimental data published so far [2].

Prediction of all-α membrane proteins

Membrane proteins in the inner membrane fold as
α-helix bundles [17]. Several predictors are avail-
able through the web [3,4]. However, none of
them have been specifically trained on the struc-
tures available with atomic resolution. Prompted
by the finding that most predictors fail in correctly
locating the positions of the membrane spanning
regions of recently crystallized proteins, we imple-
mented a tool integrating one neural network and
two HMMs, suited to predicting more and less
hydrophobic helices (ENSEMBLE) [12]. The pre-
dictor trained and tested with the sequence profiles
of 59 chains of well-resolved membrane proteins
with a jackknife procedure, correctly predicts the
topography of 53 proteins (Figure 2).
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Expected Predicted

8-28 9-28
329-357 339-360
361-385 362-388
391-423 390-417
437-458 436-459
463-496 468-497
538-558 534-558
872-892 872-893
896-919 895-921
924-956 923-950
972-991 969-991
997-1033 1003-1030

Figure 2. Prediction of the transmembrane regions of
the multidrug efflux transporter AcrBn from Escherichia coli
(1iwg) with ENSEMBLE. The protein was not included in
the training set. The predicted transmembrane regions are
shown as dark regions on the protein ribbon diagram

Proteome filtering

A requisite of any predictor used to screen a
whole proteome is that the rate of false predic-
tions is known. An estimate of this measure can
be obtained by filtering some 1000 non-redundant
chains including different structural classes of glob-
ular proteins, and a large set of well-annotated
chains of membrane proteins from the SWISS
PROT database.

The reported rate of false predictions for both
CINZIA [13] and ENSEMBLE [12] is rather low
(10% of false positives and 15% of false nega-
tives for CINZIA, 3% of false positives and 3%
of false negatives for ENSEMBLE, respectively).
A possible application of these predictors is there-
fore genome screening, with the specific aim of
fishing out new membrane proteins. This issue has
so far been addressed separately in the literature
for either type of membrane proteins. In our case,
we implemented a suite of predictors (HUNTER,
[1]) that also includes a signal peptide predictor of
the SignalP type [14], and is capable of screening
a proteome of some 5000 proteins in about 2 days,
on a 1GHz PC.

The results of this analysis, as performed on a
selection of freely available genomes of Gram-
negative bacteria, suggests that the approximate
content of alpha helical membrane proteins is
in the range of 20%, confirming the results of
other similar screenings with different predictors.

However, the novelty is that the amount of beta
barrel membrane proteins in the proteome is in
the range of 1–2% of the whole protein content
and that this is quite independent of the type of
bacterium, and of its pathogenicity. In this way,
complete lists of proteins in a given structural
class (membrane all-α, or all-β, and globular, as a
complement of the first two types) can be produced
and can then be aligned to the SWISS PROT
database. Using this procedure, those ORFs that
have not yet been assigned an annotation, that are
classified in either class of membrane proteins, can
be highlighted. The non-annotated protein list is
then available for experimental determination. We
suggest that this tool can help in focusing on those
proteins of the proteome that still lack annotation.
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