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Breast cancer (BC), the most common malignancy in women, has a high

cancer-related mortality. Endoplasmic reticulum stress (ERS), a response to

the accumulation of unfolded proteins, has emerging roles in tumorigenesis,

including invasion, metastasis, immune escape, etc. However, few studies have

focused on the correlation between ERS with long non-coding RNAs (lncRNAs)

in BC. We attempted to construct an ERS-related lncRNA prognostic signature

and study its value in BC from tumor mutational burden (TMB), tumor immune

microenvironment (TIME), cluster, clinical treatment, and so on. In the present

study, transcriptomic and clinical data of BC patients were extracted from The

Cancer Genome Atlas (TCGA) database. Correlation test, Cox regression

analysis, least absolute shrinkage, and selection operator (LASSO) method

were performed to determine an ERS-related lncRNA prognostic signature.

Survival and predictive performance were analyzed according to Kaplan–Meier

curves and receiver operating characteristic (ROC) curves, while nomograms

and calibration curves were established. Then, an enrichment analysis was

performed to study the functions and biological processes of ERS-related

lncRNAs. TMB and TIME were also analyzed to assess the mutational status

and immune status. Additionally, by using consensus cluster analysis, we

compared differences among tumor subtypes. Drug sensitivity analysis and

immunologic efficacy evaluations were performed together for further

exploration. We identified a novel prognostic signature consisting of 9 ERS-

related lncRNAs. High-risk patients had worse prognoses. The signature had a

good predictive performance as an independent prognostic indicator and was

significantly associated with clinicopathological characteristics. Enrichment

analysis showed that metabolic pathways were enriched in high-risk

patients, while immune pathways were more active in low-risk patients.

Low-risk patients had lower TMB, higher immune scores, and stronger

immune functions. Cluster analysis clarified that cluster 2 had the most

active immune functions and was sensitive to more drugs, which may have

the best clinical immunological efficacy. A clinical efficacy evaluation revealed

that patients in the low-risk group may benefit more from chemotherapy,
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targeted therapy, and immunotherapy. The novel signature has significant

clinical implications in prognosis prediction for BC. Our study clarifies that

there is a potential connection between the ERS-related lncRNAs and BC, which

may provide new treatment guidelines for BC.
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Introduction

Breast cancer (BC) is the most prevalent malignant tumor

among females and the leading cause of female mortality

worldwide (Erratum, 2020). With the new molecular

hallmarks being extensively explored, significant progress for

BC drug therapy has been made in recent years, including

targeted therapies such as CDK4/6 (cyclindependent kinase 4/

6) inhibitors, anti-programmed cell death ligand 1 (PD-L1)

immunotherapy, phosphatidylinositol 3-kinase inhibitors

(PI3K), chemotherapy, and endocrine therapy (Loibl et al.,

2021). However, there is a big challenge in BC diagnosis and

treatment because of its high recurrence and metastasis rate (Liu

et al., 2017). The five-year survival rate for BC is about 85%, and

the prognosis for advanced BC is even worse (Mei et al., 2020).

Therefore, an in-depth understanding of the mechanisms

underlying the occurrence and progression of BC is essential

for developing more effective treatments and improving clinical

outcomes.

Endoplasmic reticulum stress (ERS) is the response to the

accumulation of unfolded proteins and an imbalanced Ca2+

concentration, which results in an ER homeostasis imbalance

(Yao et al., 2020a; Li et al., 2021). It is reported that ERS, as a

defense system, can be induced by multiple physiological and

pathological conditions such as hypoxia, oxidative stress, chronic

inflammation, and imbalance in calcium homeostasis

(Hotamisligil, 2010; Song et al., 2019); whereas, excessive or

persistent ERS will lead to autophagy and apoptosis (Lee et al.,

2020; Song et al., 2020). What’s more, ERS can activate a series of

signal transductions and regulations to restore the ER protein

balance, which is an adaptive response called the unfolded protein

response (UPR) (Hetz, 2012). The emerging role of UPR has been

observed in tumorigenesis, including angiogenesis, tumor growth,

invasion, metastasis, immune escape, and resistance to

chemotherapy and radiotherapy (Urra et al., 2016). The cell

defense mechanisms induced by stress are essential for

mediating tumor resistance. ERS has been associated with drug

resistance in several malignancies, including multiple myeloma

(Nikesitch et al., 2018) and BC (Zhong et al., 2017). Recent

research has shown that 5-fluorouracil (5-FU) upregulated the

expression of drug resistance-related regulatory factors in BC by

inducing ERS activation, thus enhancing cell resistance to 5-FU

(Yao et al., 2020b). Above all, it is indicated that ERS may be a

potential therapeutic target for malignant tumor treatment.

Long non-coding RNA (LncRNA), with a length

of ≥200 nucleotides, is a type of RNA molecule transcribed

from the genome and takes part in the regulation of protein

coding genes or other non-coding RNA family members (Rinn

and Chang, 2020; Tsagakis et al., 2020; Statello et al., 2021).

LncRNAs are abnormally expressed in a wide range of cancers

(Huarte, 2015; Peng et al., 2020), which participate in the

epithelial mesenchymal transition (EMT), vascular metastasis,

tumor colonization, and other processes, playing a key role in

regulating tumor metastasis, and may become a new target for

tumor treatment (Ming et al., 2021). LncRNAs are closely related

to the occurrence and development of BC. For example, Linc-

ZNF469-3 was found to induce EMT by regulating the expression

of ZeB-1 and promoting lung metastasis in triple-negative BC

(Wang et al., 2018). However, the association between BC- and

ERS-related lncRNAs is unclear, which is going to be further

explored in this study. Furthermore, the function and biological

pathway, and the immune microenvironment will be analyzed to

explore the underlying mechanism of ERS in BC. Finally, ERS-

related lncRNAs in predicting drug sensitivity and clinical

immune efficacy will be evaluated. This research aims to

clarify the role of ERS-related lncRNAs in BC, which not only

provides a theoretical basis for further exploration of ERS

molecules and mechanisms, but may also provide novel ideas

for the clinical prognosis and treatment of BC.

Materials and methods

Data and gene acquisition

The RNA transcriptome dataset made up of 1,222 human

breast tissue samples was obtained from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov/), which includes

1,109 BRCA samples and 113 normal samples. Related clinical

information of BC samples and normal samples were also

downloaded from TCGA together. We obtained the gene

transfer format (GTF) files from Ensembl (http://asia.ensembl.

org) (Howe et al., 2021), which were used to distinguish lncRNA

and messenger RNAs (mRNA). From the Gene Set Enrichment

Analysis (GSEA) (http://www.gsea-msigdb.org/gsea/index.jsp)

database, 3 genesets related with ERS were acquired by

searching the keywords “IRE1”, “PERK”, and “ATF6”,

respectively, as the corresponding systematic names were
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“M10426”, “M42776”, and “M5987”. A total of 163 ERS-related

genes were obtained for the next identification (Supplementary

Table S1).

Identification of ERS-related lncRNAs and
construction of the prognostic signature

Gene expression matrices were constructed using the limma

R package. The Pearson correlation coefficient |cor|>0.5, p <
0.001 were viewed as the standards to identify ERS-related

lncRNAs. With the standard of |log2 fold change (FC)

| >1 and the false discovery rate (FDR) <0.05, we screened

ERS-related differentially expressed lncRNAs for further

analysis by running the limma R package. And, the pheatmap

R package was used to draw the heatmap and volcano plot for

visualization. In the interest of further exploring ERS-related

lncRNAs, we first used the univariate Cox regression analysis to

screen out lncRNAs that were significantly associated with the

prognosis of BC patients (p < 0.05). Also, we drew a forest map

and heatmap to clearly assess the impact of these screened

lncRNAs on the prognosis. Then, the LASSO regression

analysis was used to further filter the lncRNAs, which

prevented the risk model of overfitting. Finally, we performed

the multivariate Cox proportional hazards regression analysis to

construct an ERS-related lncRNA prognostic signature, which

was combined with the minimum Akaike Information Criterion

(AIC) value (Vrieze, 2012). The survival, caret, glmnet,

survminer, timeROC, and pheatmap R packages were used for

the aforementioned analyses. The risk score of BC patients was

calculated based on the following formula:

Risk score � ∑
16

k�1
Coef(k) × E(k)

Coef(k) and E(k) represent the abbreviations of the

prognostic ERS-related lncRNAs regression coefficient and the

expression level of lncRNAs, respectively. And meanwhile, the

median value of the risk score was used as a cutoff to classify BC

patients into high-risk and low-risk groups.

Internal validation of the ERS-related
lncRNA prognostic signature

For the purpose of assessing the prognostic role of the

signature, we conducted the Kaplan–Meier log-rank test to

compare the overall survival (OS) between different risk groups.

With the pheatmap R package, we also plotted risk curves, survival

status maps, and risk heatmaps of the complete, training, and

validation sets to further analyze the impact of selected ERS-related

lncRNAs on prognosis. Additionally, the independent prognostic

analysis was performed to identify the prognostic value of the

signature. During this process, 183 BC patients whose clinical data

were unable to be evaluated were excluded including 24 “stage”,

150 “M" stage, and 9 “N" stage as parts of the clinicopathological

characteristics. As a result, 914 BC patients were retained. Next, for

evaluating the predictive performance of the ERS-related lncRNA

prognostic signature and clinicopathological characteristics in

predicting the survival at 1, 3, and 5 years, we drew the receiver

operating characteristic (ROC) curve and calculated the area under

the curve (AUC) in the way of running the survival, survminer,

and timeROC package with the R software. For the sake of further

studying the value of the prognostic signature, we plotted

Kaplan–Meier survival curves to analyze the correlation

between clinicopathological characteristics and the OS in high-

and low-risk groups.

Construction of the nomogram and
calibration curves

The nomogram, a predictive tool, is widely used in oncology

and medicine (Balachandran et al., 2015). On the basis of the risk

score and clinicopathological characteristics including age,

gender, stage, and TMN stage, with the regplot, survival, and

rms R packages, we set up the nomogram of 1, 3, and 5-year OS.

Simultaneously, calibration curves were constructed according to

the Hosmer–Lemeshow test to judge the accuracy of the

nomogram for clinical prognosis by means of evaluating the

fitting degree of the predicted results and the actual observed

results.

Function and biological pathway
enrichment analyses

|log2 fold change (FC) > 1| and a false discovery rate (FDR) <
0.05 were used as the criteria to screen out differentially

expressed genes in the high- and low-risk groups. By running

the “ggplot2” R package, we performed the Gene Ontology (GO)

analysis to explore the functions and biological processes of ERS-

related lncRNAs, plotted the histogram, and bubble chart as well.

Furthermore, so as to identify the biological pathways associated

with the ERS-related lncRNAs, we used the GSEA to evaluate

differences between patients in the high- and low-risk groups,

and regarded P< 0.05 and FDR<0.05 as the criteria to analyze

these biological pathways, provided by the Kyoto Encyclopedia of

Genes and Genomes (KEGG).

Study of the correlation between TMB and
prognostic signature

TMB is the total number of somatic gene coding errors, base

substitutions, insertions, or deletions detected across per million
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bases (Zhang et al., 2019). In view of the Perl script, we calculated

the mutation frequency and the number of variants in each

sample, and divided all the samples into a high-TMB group and a

low-TMB group which were combined with the patients’ survival

information analyses. At the same time, we analyzed the

difference in survival between the two groups. We also

evaluated the mutational status of the genes in the high- and

low-risk groups and plotted waterfall plots for visualization. We

further conducted a TMB variance analysis and correlation

analysis for the high- and low-risk groups by using risk score,

limma, ggpubr, ggplot2, and ggExtra R packages. Moreover, in

order to exploring the effect of risk score and TMB on the

survival of patients, we jointly analyzed the survival differences

among the high TMB + high risk group, high TMB + low risk

group, low TMB + high risk group, and low TMB + low risk

group by means of plotting the Kaplan–Meier curve.

Evaluation of the tumor immune
microenvironment, immune cell
infiltration, and function

For the sake of comparing the abundance of cellular

infiltrations between the high- and low-risk groups, the

estimate and limma R packages were used to calculate the

immune cell and stromal cell fractions for each sample. It was

the Wilcoxon rank sum test that was used to analyze the

differences in StromalScore, ImmuneScore, and

ESTIMATEScore between the two groups. Then, so as to

further explore the differences in the tumor immune

microenvironment between the high-risk and the low-risk

groups, we calculated the proportion of infiltrating immune

cells in the BC samples on the basis of the CIBERSORT

algorithm (Newman et al., 2015). Along with the application

of various algorithms which included TIMER (Li et al., 2017),

CIBERSORT (Chen et al., 2018), CIBERSORT-ABS (Wang et al.,

2020), QUANTISEQ (Plattner et al., 2020), MCPCOUNTER (Shi

et al., 2020), XCELL (Aran, 2020), and EPIC (Racle et al., 2017),

we also explored the correlation between immune cells and risk

scores, and the result was displayed in a bubble chart. Meanwhile,

we performed survival analysis of immune cell infiltration using

limma, survival, and survminer R packages, screened the results

with P< 0.05, and drew Kaplan–Meier curves. In addition, we

scored infiltrating immune cells and immune-related functions

in the BC samples and plotted multi-box plots to analyze the

differences between the two groups.

Cluster analysis of ERS-related lncRNAs

According to the expression levels of 9 ERS-related lncRNAs

with predictive value obtained by the multivariate Cox regression

analysis and the “ConensusClusterPlus” R package, we

performed the consensus cluster analysis on the tumor

samples and divided them into different subgroups. The

cluster was performed in view of the following criteria. First,

the cumulative distribution function curve increased steadily.

Second, there were no groups with small sample sizes. Third, the

intra-group correlation increased while the inter-group

correlation decreased after the cluster. Then, we used the

survival and survminer R packages (Zhang et al., 2020) and

plotted the Kaplan–Meier curve to analyze the differences in

survival of the classified samples. Also, we run dplyr, ggplot2 and

ggalluvial to generate the Sankey plot in order to figure out the

relationship between sample subgroups and risk. Furthermore,

the t-distributed Stochastic Neighbor Embedding (tSNE) analysis

was performed on high- and low-risk groups and different

subgroups, which can visually observe the grouping of

samples. As the characteristics of the immune

microenvironment are closely related to the tumors, we

compared the StromalScore, ImmuneScore, and

ESTIMATEScore between the different subgroups. And using

the limma R package, combined with multi-algorithms including

TIMER (Li et al., 2017), CIBERSORT (Chen et al., 2018),

CIBERSORT-ABS (Wang et al., 2020), QUANTISEQ (Plattner

et al., 2020), MCPCOUNTER (Shi et al., 2020), XCELL (Aran,

2020), and EPIC (Racle et al., 2017), we analyzed the immune

response differences between different subgroups. With the

pheatmap R package, a heatmap was generated for

visualization. Furthermore, we analyzed the expression of

43 immune checkpoint inhibitor (ICI)-related

immunosuppressive molecules in different subgroups. It was

the pRRophetic package that was used to analyze a BC

patient’s response to treatment in different subgroups as

determined by the half-maximal inhibitory concentration

(IC50) on the Genomics of Drug Sensitivity in Cancer

(GDSC) (https://www.cancerrxgene.org/), and p < 0.001 was

set as the criterion to screen out potential drugs.

The role of ERS-related lncRNAs in
predicting drug sensitivity and clinical
immune efficacy

For a long time, the research and development of new drugs

has been a hot spot in BC treatment study. Based on IC50 of

GDSC, we evaluated all BC patients’ responses to treatment as a

result of using the pRRophetic R package, screened out

potential drugs (p < 0.001), and drew boxplots. We applied

the ggplot2, ggpubr, limma, and reshape2 R packages to analyze

the statistical differences in the aspect of expression levels of

common ICI-related immunosuppressive molecules. Apart

from it, by the Wilcoxon rank sum test, the differences in

immunotherapy efficacy of BC patients between the high- and

low-risk groups were assessed, and a boxplot was generated

as well.
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FIGURE 1
Identification of the prognostic ERS-related lncRNAs for BC patients. (A) Heatmap of 145 differentially expressed lncRNAs. (B) Volcano plot of
ERS-related lncRNAs. Red dots indicate upregulated lncRNAs in tumor tissues while the green dots indicate downregulated lncRNAs. (C,D) Forest
plot (C) and heatmap (D) of the prognostic ERS-related lncRNAs extracted by the univariate Cox regression analysis. (E,F) LASSO variable trajectory
plot for 1,000 cross validations(E) and LASSO coefficient profile (F). ERS, endoplasmic reticulum stress; BC, breast cancer.
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Statistical analysis

All analyses in study were conducted using the R software

(v.4.1.1). It was p value < 0.05 that was considered statistically

significant in all the analyses.

Results

Screening and identification of ERS-
related lncRNAs in BC patients

Based on the TCGA database, we extracted 1,039 cases as

those with the survival time missing or less than 30 days were

excluded for the follow-up survival analysis. Combining

163 ERS-related genes from public databases, 799 ERS-related

lncRNAs (Supplementary Table S2) were finally identified by

using the Pearson correlation algorithm. Passing through the

differential analysis, we acquired 145 ERS-related lncRNAs

(Supplementary Table S3) that were differentially expressed in

normal and tumor tissues (|log2 FC| >1 and FDR<0.05). The
heatmap showed the expression of 145 ERS-related lncRNAs in

normal and tumor tissues (Figure 1A). In the volcano plot of

Figure 1B, there were 82 upregulated lncRNAs in the tumor

tissue and 63 downregulated lncRNAs.

Establishment and validation of an ERS-
related lncRNA prognostic signature

In the preliminary screening, we extracted 18 ERS-related

lncRNAs associated with the BC prognosis using univariate Cox

regression analysis. The forest plot (Figure 1C) exhibited the

expression difference (p value) and Hazard Rates (HR) of

18 ERS-related lncRNAs in BC tissues and normal tissues.

From Figure 1D, it can be seen that all other lncRNAs were

highly expressed in tumor tissues except AC025259.3 and

AC105046.1. Next, we carried out the LASSO regression to

penalize 18 ERS-related lncRNAs (Figures 1E,F). Finally, the

multivariate Cox regression analysis was performed. As a

consequence, the 9 best lncRNAs (LINC02446, JARID2-AS1,

AC025259.3, AC105046.1, TFAP2A-AS1, AC022898.2,

AC005757.1, TBL1XR1-AS1, and AC137932.2) were identified

as prognostic markers for model construction (Table 1). The risk

score for each patient was calculated based on the expression

level of each lncRNA and the correlation coefficient obtained by

the multivariate Cox regression analysis, and taking the median

of risk score as the threshold, the patients were separated into

high- and low-risk groups. The Kaplan–Meier survival curves

showed a statistically significant difference in the overall survival

(OS) between the two groups in the training, validation, and

complete sets, and the survival rate of the BC patients with high

risk was significantly lower than that of BC patients with a low

risk (Figures 2A–C), which preliminarily reflected the predictive

value of the signature in terms of prognosis for BC patients. The

risk score ranking distributions of BC patients are shown in

Figures 2D–F in accordance with 9 lncRNAs prognostic markers.

It is noteworthy that the scatterplots of the training, validation,

and complete sets revealed that the survival status of BC patients

was connected with the risk score, and as the risk score increased,

the mortality rate of the patients increased (Figures 2G–I).

Together with the 9 prognostic ERS-related lncRNAs, we

drew heatmaps to compare the expression levels of lncRNAs

in the high-risk group and the low-risk group for the training,

validation, and complete sets, from which it can be seen that

among the different sets, the expression tendency of each

lncRNA was basically the same, but the expression level was

different in two groups of the same set (Figures 2J–L). With the

purpose of confirming whether the prognostic signature can be

used as an independent prognostic indicator for BC patients or

not, we performed the Cox regression analysis and drew two

forest plots on the basis of risk scores and clinicopathological

characteristics. The univariate Cox regression analysis showed

that almost all factors including age, tumor stage, T stage, N

stage, M stage, and model could be used as independent

prognostic indicators for BC patients except gender

(Figure 3A, P< 0.001), while the multivariate analysis showed

that age and model were independent prognostic factors of OS in

BC patients (Figure 3B, P< 0.001). Furthermore, using the ROC

curve as a foundation, we observed that the AUC for the risk

score was 0.742, whose area was larger compared to other

clinicopathological characteristics (gender, stage, T stage, N

stage, and M stage) except for age, demonstrating a better

predictive performance (Figure 3C). From Figure 3D, we

knew that the AUC values for predicting the 1-, 3-, and 5-

year survival rates were 0.742, 0.703, and 0.645, respectively,

which suggested the potential predictive value of the prognostic

signature. As for the correlation between clinicopathological

characteristics and the prognostic model, as shown in Figures

3E–L, except for M1 stage (p = 0.083), BC patients in the high-

TABLE 1 The regression coefficient of 9 ESR-related lncRNAs acquired
by the multivariate Cox analysis.

id Coef

LINC02446 −0.666557169115816

JARID2-AS1 −1.01852389169384

AC025259.3 −0.494972345670693

AC105046.1 −1.70783864216911

TFAP2A-AS1 −0.549326255865056

AC022898.2 −2.95365678990592

AC005757.1 −2.66162430189308

TBL1XR1-AS1 −3.86616790061961

AC137932.2 2.26501183795505
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and low-risk groups with different clinicopathological

characteristics had significant differences in the OS (all P< 0.05).

Construction of the nomogram and
biological pathway analyses

Thenomogram, a quantitativemethod,was used to predict the 1-,

3-, and 5-year OS of BC patients, where the risk score and

clinicopathological characteristics were combined (Figure 4A).

Also, a BC patient was randomly selected for scoring, the results

of which are shown in Figure 4A. Calibration curves exhibited good

consistency between the nomogram predictions of 1-, 3-, and 5-year

OS with the actual observed value (Figure 4B). In order to explore the

biological processes of ERS-related lncRNAs, we performed the GO

enrichment analysis and GSEA analysis. As shown in Figures 4C, D,

in the biological processes (BP), ERS-related lncRNAs were mainly

enriched in immune response, B cell activation, and lymphocyte-

mediated immunity. In the cellular components (CC), ERS-related

lncRNAs were mainly enriched in the immunoglobulin complex and

the external side of plasma membrane. In the molecular functions

(MF), ERS-related lncRNAs were mainly enriched in antigen binding

and immunoglobulin receptor binding. The GSEA analysis

(Figure 4E) revealed that the citrate cycle, signaling pathways for

glycan and unsaturated fatty acid biosynthesis were mainly enriched

in the high-risk groups. For another, in the low-risk groups, immune

signaling pathways were more active, such as the T cell receptor

signaling pathway and intestinal immune network for IgA

production. The JAK STAT signaling pathway was also enriched

in the low-risk group.

FIGURE 2
Prognosis and risk scoring analysis of 9 ERS-related lncRNAs in the different sets for BC patients. (A–C) Kaplan–Meier survival curves of BC
patients’OS in the high- and low-risk groups in the training (A), validation (B), and complete sets (C). (D–F) Risk score distribution in the training (D),
validation (E), and complete sets (F) for two groups. (G–I) Scatter plots of BC patient survival status distribution in the training (G), validation (H), and
complete sets (I). (J–L) Risk heatmaps of the 9 ERS-related lncRNA expression in the training (J), validation (K), and complete sets (L). Red
represents high expression and green represents low expression. ERS, endoplasmic reticulum stress; BC, breast cancer; OS, overall survival.
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FIGURE 3
Validation of the ERS-related lncRNA prognostic signature and its relationship with clinicopathological characteristics. (A,B) Univariate (A) and
multivariate (B) independent Cox regression analyses of the risk score and clinicopathological characteristics. (C) ROC curves and AUCs of the risk
score and clinicopathological characteristics. (D) ROC curves and AUCs for 1-, 3-, and 5-year survival rates of the complete set. (E–L) Kaplan–Meier
survival curves of BC patients’ OS on the clinicopathological characteristics between two groups in the complete set. ERS, endoplasmic
reticulum stress; AUC, area under the curve; ROC, receiver operating characteristic; OS, overall survival; T, tumor; N, lymph node; M, metastasis.
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FIGURE 4
Construction of the nomogram and calibration curves, enrichment analysis of the prognostic signature. (A) nomogram prediction model of the
combined risk score and clinicopathological characteristics for 1-, 3-, and 5-year OS rate in BC patients. (B) Calibration curves for the relationship
between predicted survival and the observed OS rate at 1, 3, and 5 years (C–D) The GO function enrichment analyses. (E) The GSEA pathway
enrichment analyses. OS, overall survival; BC, breast cancer.
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FIGURE 5
TMB analysis of the prognostic signature. (A,B) The waterfall plots of the tumor mutation rate in the high-risk group (A) and low-risk group (B)
based on the prognostic signature. (C) The bean plot for the differences in TMB between high- and low-risk groups. (D) The correlation curve
between TMB and the risk score. (E) Kaplan–Meier survival curves of BC patients between the H-TMB and L-TMB groups. (F) Kaplan–Meier survival
curves of BC patients across H-TMB + high risk, H-TMB + low risk, L-TMB + high risk, and L-TMB + low risk. TMB, tumor mutational burden; H,
high; L, low.
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FIGURE 6
Exploration of the tumor immune status. (A–C) The boxplots for StromalScore (A), ImmuneScore (B), and ESTIMATEScore (C) in the high- and
low-risk groups. (D) Estimation of immune-infiltrating cells in BC by using the Spearman correlation analysis. (E–I) Kaplan–Meier survival curves of
screened Bmemory cells (E), B naive cells (F), Macrophages M0 (G), Macrophages M2 (H) , and plasma cells (I) in BC patients. (J–K) The score of the
infiltrating immune cells (J) and immune-related functions (K) in the high- and low-risk groups. BC, breast cancer; *, p < 0.05; **, p < 0.01; ***,
p < 0.001.

Frontiers in Genetics frontiersin.org11

Cai et al. 10.3389/fgene.2022.949314

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.949314


Exploration of the correlation between
TMB and the ERS-related lncRNA
signature

Based on the risk score, we used the R package “maftools” to

analyze the gene mutation profile of BC patients, including a total

of 926 BC samples. The mutation rate in the high-risk group was

84.67% (Figure 5A), whereas it was 84.23% in the low-risk group

(Figure 5B). It can be seen from the waterfall charts that the

mutated genes in the high- and low-risk groups were mainly

PIK3CA, TP53, TTN, CDH1, GATA3, MUC16, MAP3K1,

MUC4H, and KMT2C, but the mutation rates of these genes

were different except for PIK3CA, GATA3, MUC16, and

KMT2C in the high- and low-risk groups. Patients in the

high-risk group had higher TMB than those in the low-risk

group, as the difference was statistically significant (Figure 5C,

p = 0.00043). The correlation curve in Figure 5Dmeans that TMB

was significantly positively correlated with the risk score (R = 0.1,

p = 0.0019). It is a TMB survival curve that illustrates low-TMB

patients have a better prognosis (Figure 5E, p = 0.0015).

Compared with the other groups, BC patients with a

combination of low risk and low TMB showed the best

prognosis (Figure 5F).

Analyses of the tumor-immune signature

From the scores of the tumor microenvironment in Figures

6A–C, we know that the StromalScore (p = 0.035), ImmuneScore

(p = 3.9e-11), and ESTIMATEScore (p = 6.9e-08) of patients in

the high-risk group were significantly lower than those in the

low-risk group. Using acknowledged methods, we studied

immune infiltration fluctuations between the groups. From

Figure 6D, we observed the negative correlation coefficients

were widespread, implying that patients with a higher

classifier index were immunosuppressed. A common

lymphoid progenitor in XCELL, uncharacterized cell in

QUANTISEQ, uncharacterized cell in EPIC, NK cell resting,

macrophage M0 and neutrophil in CIBERSORT-ABS, NK cell

resting, macrophage M0, macrophage M2, mast cell resting, and

neutrophil in CIBERSORT were negatively correlated with the

classifier index, while the other cells in different algorithms

showed a positive correlation with the classifier index. In

addition, survival analyses showed that as B memory cells

(Figure 6E, p < 0.001), macrophage M0 (Figure 6G, p =

0.045), and macrophage M2 (Figure 6H, p = 0.004)

infiltration, low-risk patients had significantly higher OS than

high-risk patients. Conversely, as B naive cells (Figure 6F, p =

0.004) and plasma cells (Figure 6I, p = 0.007) infiltrated, high-risk

patients had a significantly higher OS than low-risk patients. In

previous analyses, we have identified the immunosuppressed

status and survival disadvantage in high-risk patients. Along

with the ssGSEA enrichment score, we further investigated the

relationship between the risk score and different immune cell

subsets and functions. For the results, we realized that almost all

immune-related functional cells had significantly higher ssGSEA

scores in the low-risk patients except in immature dendritic cells

(iDCs) (Figure 6J). Similarly, the immune function scores of APC

co-inhibition, chemokine receptor (CCR), checkpoint, cytolytic

activity, human leukocyte antigen (HLA), inflammation

promoting, major histocompatibility complex (MHC) class I,

parainflammation, T cell co-inhibition, T cell co-stimulation, and

type II IFN responses in the low-risk group were all higher than

that in the high-risk group (Figure 6K). Therefore, it prompted

the low-risk group to have a higher immune activity.

Consensus cluster of ERS-related lncRNAs
identified three clusters of BC patients

Consensus cluster analysis was performed on the expression

level of 9 ERS-related lncRNAs for the sake of probing into the

roles of these lncRNAs in BC occurrence and development. k =

3 is an appropriate choice for the most stable aggregation. All

tumor samples were divided into 3 subgroups: cluster 1 (n = 676),

cluster 2 (n = 167), and cluster 3 (n = 196) (Figure 7A). The OS

among patients in the three subgroups had a significant

difference (Figure 7B, p = 0.010). Cluster 1 was mostly high-

risk patients, and clusters 2 and 3 were mostly low-risk patients

(Figure 7C). The t-SNE analysis of Figure 7D showed that there

were distinct dimensions between different subgroups. Similarly,

there were distinct dimensions between the high- and low-risk

groups (Figure 7E). As an important role in prognosis, the tumor

microenvironment is also worthy of attention. It can be seen that

in the StromalScore, there were significant differences between

cluster 1 and cluster 2 (p = 3.5e-06) and between cluster 1 and

cluster 3 (p = 1.5e-06), but there was no significant difference

between cluster 2 and cluster 3 (p = 0.72) (Figure 7F). In the

ImmuneScore and ESTIMATEScore, there were significant

differences between any two subgroups (Figures 7G,H). The

immune response heatmap reflected differences in immune

cell infiltration among the three subgroups, showing that

cluster 2 had the most immune cell infiltration (Figure 8A).

Considering the importance of immunotherapy, we continued to

explore the differences in the immune checkpoint molecule

expression among the three different subgroups. We can

know that the expression of 43 immune checkpoint molecules

had significant differences among the three subgroups from

Figure 8B. Among them, CD276 has the highest expression in

cluster 1, while TNFSF15, CD200, LAIR1, TMIGD2, TNFRSF8,

BTNL2, CD27, CD40, HAVCR2, TNFRSF4, LAG3, CD70,

CD48, TNFSF4, TNFSF9, CD160, CD200R1, TIGIT, CD28,

IDO2, TNFRSF25, KIR3DL1, TNFSF18, CD244, CTLA4,

TNFRSF9, BTLA, LGALS9, CD44, CD40LG, CD80, ICOS,

TNFSF14, PDCD1LG2, TNFRSF14, IDO1, and CD86 had the

highest expression in cluster 2. Also, cluster 3 had the highest
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expression for NRP1, VTCN1, TNFRSF18, ADORA2A, and

HHLA2. Screening of sensitive drugs can lay a good

foundation for clinical treatment. By means of a comparative

assessment of drug sensitivity by IC50, Figures 9A–T showed

20 drugs whose sensitivities were significantly different between

any two subgroups. Notably, BC patients in cluster 1 were more

sensitive to GW.441756 (TrkA inhibitor) and KIN001.135 (Lck

inhibitor), while those in cluster 3 were more sensitive to

BMS.754807(IGF-1R inhibitor), Bryostatin.1,

CCT007093(PPM1D inhibitor), GSK269962A (Rho-associated

protein kinase inhibitor), and LFM.A13(BTK inhibitor). More

drugs have high sensitivities for BC patients in cluster 2,

including AZD.2281(Olaparib), AZD6244(Selumetinib),

Bosutinib, CGP.60474(PKC inhibitor), CI.1040 (MEK

inhibitor), Etoposide, GDC.0449(Vismodegib), Gefitinib,

Gemcitabine, JNK.9L (JNK inhibitor), Pyrimethamine,

FIGURE 7
Survival, tSNE, and tumor microenvironment analysis of three distinct subgroups of BC divided by consensus clustering. (A) Consensus matrix
with optimal k = 3. (B) Kaplan–Meier survival curves of BC patients’OS among the three different subgroups. (C) Sankey diagram of the relationship
between the three different subgroups and risk score. (D) tSNE analysis among the three different subgroups. (E) tSNE analysis between the high-risk
and low-risk groups. (F–H) The boxplots for StromalScore (F), ImmuneScore (G), and ESTIMATEScore (H) among the three different subgroups.
tSNE, t-Distributed Stochastic Neighbor Embedding; BC, breast cancer; OS, overall survival.
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FIGURE 8
Infiltration of immune cells and the expression of immune checkpoints among the three different subgroups of BC. (A) Estimation of immune-
infiltrating cells by using the Spearman correlation analysis with multiple algorithms among the three different subgroups. (B) Differential expression
analysis of 43 immune checkpoint genes among the three different subgroups. BC, breast cancer; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Roscovitine, and Temsirolimus. Thus, it can be seen that BC

patients in cluster 2 have more sensitive clinical drugs worthy of

selection and development.

Clinical drug sensitivity analysis and
immunotherapy efficacy evaluation of the
ERS-related lncRNA prognostic signature

With broad study prospects, the drug treatment of BC

has attracted much attention. We calculated the IC50 of

drugs on BC to analyze the relationship between risk scores

and drug resistance. We noted that IC50 of GNF.2 (Bcr-Abl

inhibitor), KIN001.135 (Lck inhibitor), and PF.4708671

(S6 kinase inhibitor) in high-risk patients were higher,

while all other drugs had higher IC50 in the low-risk

patients (Figures 10A–T). We further identified the

expression of immune checkpoint genes between high-

and low-risk groups in consideration of the clinical

application and benefits of ICIs. As a result, only

CD276 was more highly expressed in the high-risk group

compared to the low-risk group, while the expression levels

of all other immune checkpoint genes were significantly

higher in the low-risk group than those in the high-risk

group (Figure 10U).

Discussion

Viewing the bioinformatics analysis as a foundation,

identifying biomarkers through database mining can predict

the prognosis of BC (Ping et al., 2021). LncRNAs are

abnormally expressed in a wide range of cancers (Huarte,

2015), and it has been demonstrated that lncRNAs are

FIGURE 9
Comparison of potential therapeutic drug susceptibility among the three different subgroups as assessed by IC50. (A) AZD.2281. (B) AZD6244.
(C) BMS.754807. (D) Bosutinib. (E) Bryostatin.1. (F) CCT007093. (G) CGP.60474. (H) CI.1040. (I) Etoposide. (J) GDC.0449. (K) Gefitinib. (L)
Gemcitabine. (M) GSK269962A. (N) GW.441756. (O) JNK.9L. (P) KIN001.135. (Q) LFM.A13. (R) Pyrimethamine. (S) Roscovitine. (T) Temsirolimus. Top
20 significantly associations were displayed, as determined by the p-value. IC50, the half-maximal inhibitory concentration.
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involved in tumor-related cellular pathways, resulting in good

predictive power in terms of diagnosis and prognosis (Chi et al.,

2019). To the best of our knowledge, our study is the first

comprehensive elaboration of the relationship between ERS-

related lncRNAs and BC, starting from prognostic

identification, biological pathways, TMB, tumor immune

microenvironment, cluster, and clinical treatment. It can

provide an important reference for future in-depth research

on prognosis prediction and clinical individualized treatment

of BC patients.

FIGURE 10
Potential drug sensitivity analysis by IC50 and the immune checkpoint gene expression analysis between the high- and low-risk groups. (A–T)
The boxplots for the drug sensitivity analysis of (A) ABT.888. (B) AP.24534. (C) ATRA. (D) AZD6244. (E) Bosutinib. (F) Etoposide. (G) Gefitinib. (H)
GNF.2. (I) IPA.3. (J) KIN001.135. (K) Lenalidomide. (L) Methotrexate. (M) Nilotinib. (N) PAC.1. (O) PD.173074. (P) PF.4708671. (Q) Pyrimethamine. (R)
Shikonin. (S) Temsirolimus. (T) VX.702. Top 20 significantly associations were displayed, as determined by the p-value. (U) Differential
expression analysis of the immune checkpoint genes between the high-risk and low-risk groups. IC50, the half-maximal inhibitory concentration; *,
p < 0.05; **, p < 0.01; ***, p < 0.001.
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ERS is a condition triggered by mis-folded or unfolded

proteins in the endoplasmic reticulum and is directed by

activating transcription factor 6 (ATF6), inositol-requiring

enzyme 1α (IRE1α), and protein kinase RNA-like endoplasmic

reticulum kinase (PERK) mediated by signaling pathways

(Akman et al., 2021). In this study, we screened out the 9 best

ERS-related lncRNAs (LINC02446, JARID2-AS1, AC025259.3,

AC105046.1, TFAP2A-AS1, AC022898.2, AC005757.1,

TBL1XR1-AS1, and AC137932.2) as a prognostic model.

Training, validation, and complete sets of survival curves, risk

score plots, survival status plots, and heatmaps were used to

assess the prognostic value of signatures. Clearly, the prognostic

model has a good predictive value. It can be seen that the OS of

patients in the high-risk group is lower than that in the low-risk

group, reflecting that ERS as a cancer-promoting factor affects

the prognosis of BC, which is consistent with the results of

previous studies (Jiang et al., 2022). A series of data also suggest

that ER stress can promote tumor progression pass through

multiple mechanisms including cancer cell survival and

metastasis, therapy resistance, and angiogenesis (Lee, 2007;

Urra et al., 2016). Univariate and multivariate analyses

suggested that the risk score could be used as an independent

prognostic factor for BC patients (P< 0.001). The AUC value of

the prognostic signature was 0.742 and the AUC values of 1-, 3-,

and 5-year predicted survival rates were 0.742, 0.703, and 0.645,

respectively, which not only showed the better predictive

performance compared with other clinicopathological

characteristics (gender, stage, T stage, N stage, and M stage),

but also reflected the reliability and precision of the prognostic

signature. BC patients in the low-risk group with different

clinicopathological characteristics had significantly better OS,

except for the M1 stage. More importantly, the calibration curves

showed an excellent concordance between the 1-, 3-, and 5-year

survival rates predicted by the prognostic signature and the actual

OS rates. Taken together, the model we constructed can be

considered as a good prognostic signature whose mechanism

of action in BC deserves further exploration and validation.

By the GO enrichment analysis, we noticed that immune

response, B cell activation, and lymphocyte-mediated immunity

play key roles in the biological pathways of ERS. From the GSEA

enrichment analysis, we found that high-risk patients have

abundant metabolic pathways, such as citrate cycle, signaling

pathways for glycan and unsaturated fatty acid biosynthesis.

Needless to say, tumor progression is closely related to the

metabolism. IRE1-XBP1(X-box binding protein 1) signaling is

involved in the reprogramming of cancer metabolism during

endoplasmic reticulum stress (Chen and Cubillos-Ruiz, 2021).

XBP1 directly induces fatty acid synthase and citrate lyase to

regulate lipid metabolism (Lee et al., 2008; Xie et al., 2018). It can

be speculated that for ERS, BC in the high-risk group is more

likely to promote tumor progression by regulating tumor

metabolism, especially fatty acid metabolism, which is worthy

of further exploration as it is expected to be a new target for

treatment. In contrast, immune signaling pathways are more

active in low-risk patients. It can be seen that immune

surveillance inhibits the cancer-promoting effect of ERS,

which provides a theoretical basis for the study of

immunotherapy.

Studies have shown that TMB is a reliable biomarker for

predicting the treatment outcome in cancer patients treated with

ICIs (Cao et al., 2019). Our study showed that the mutation rate

of gene TP53 was highest in high-risk patients, while the

mutation rate of gene PIK3CA was highest in low-risk

patients. Mutations in the TP53 gene are associated with a

poor treatment effect and prognosis in BC (Hu et al., 2018;

Takahashi et al., 2021). TMBwas significantly associated with the

risk score. High-risk patients had higher TMB and a worse OS.

For the immune cell and stromal cell fractions, we can predict

that both of them play an important role in the effects of TIME.

Risk scores were inversely associated with most tumor-

infiltrating immune cells. Infiltration of B memory cells,

macrophage M0, and macrophage M2 resulted in a higher OS

in low-risk patients, whereas B naïve cells and plasma cells

resulted in a higher OS in high-risk patients. B memory cells

function as antigen-presenting cells in both naive and memory

T cell responses, inducing anti-tumor immune responses to kill

tumor cells (Helmink et al., 2020). By using ssGSEA, we probed

the immune status of different groups, revealing that the low-risk

group had more immune cell infiltrations and a stronger anti-

tumor immunity. Studies have shown that the intrinsic ERS

responses of cancer cells can influence the malignant progression

by altering the function of immune cells co-existing in the tumor

microenvironment (Chen and Cubillos-Ruiz, 2021). How

immune functions such as T cell co-inhibition, T cell co-

stimulation, type II IFN responses, and so on affect the

survival of tumor cells deserve further exploration. As a

consequence, we speculate that one of the reasons for the

poor prognosis of high-risk BC patients may be due to low

immune cell infiltration and low anti-tumor immune function.

Next, we divided the BC patients into 3 subgroups to explore the

relationship among tumor subtypes. Cluster 2, mainly consisting of

low-risk patients, had the highest immune score and the most

immune cell infiltrations, which reflects the most active immune

function in cluster 2. According to the study of Duan et al., we know

that CD8+ T cells can kill cancer cells, break immune tolerance, and

promote immunotherapy pass through the PD-1/PD-

L1 immunosuppressive axis (Duan et al., 2020). Cluster 2 had

the highest degree of CD8+ T cell infiltration among the three

subgroups, and had high expression of themost immune checkpoint

molecules. It can be speculated that BC patients in cluster 2 may

have a better clinical immune efficacy. It is important to study the

relationship between subgroups and sensitivity to molecularly

targeted and chemotherapeutic agents. We found that BC

patients in cluster 2 were most sensitive to some of the drugs

already in clinical application such as olaparib, etoposide, and

gemcitabine. The OlympiAD study showed that Olaparib
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significantly prolonged PFS compared with chemotherapy in

patients with BRCA-mutated HER-2-negative advanced BC

(Robson et al., 2017; Robson et al., 2019). Gemcitabine can be

used as a single agent in the treatment of advanced BC (Seidman,

2001). For those drugs that have not been applied to BC in clinics,

our research provides a certain theoretical basis for their

development. The aforementioned results suggest that, for one

thing, tumor subtype may be a potential predictor to guide

targeted therapy and chemotherapy in BC patients; for another,

ERS may have high research value in the late progression of BC.

Oncology treatment is an important area of concern.

Through the IC50 screening analysis of potential drugs, we

realized that high-risk patients may be sensitive to the Bcr-

Abl inhibitor, Lck inhibitor, and S6 kinase inhibitor, but may

be resistant to ABT.888 (Veliparib), AP.24534(Ponatinib), ATRA

(All-Trans Retinoic Acid), AZD6244 (Selumetinib), Bosutinib,

Etoposide, Gefitinib, IPA.3 (Pak1 inhibitor), Lenalidomide,

Methotrexate, Nilotinib, PAC.1 (procaspase-3 activator),

PD.173074 (FGFR1 inhibitors), Pyrimethamine, Shikonin,

Temsirolimus and VX.702 (p38α MAPK inhibitor). Hypoxia

and UPR act synergistically in inducing chemoresistance.

ATF6, IRE1α, and PERK are jointly involved in

chemoresistance (Akman et al., 2021), prompting that it is of

interest to explore potential links between drugs and them. In

addition, some immunotherapy drugs have been applied in

triple-negative BC (Cortes et al., 2020), but not all BC patients

can benefit from them (Adams et al., 2019; TCGA, 2022). And,

more scholars have proposed that the combination of TMB and

other biomarkers can better predict the efficacy of tumor

immunotherapy. Therefore, based on the ERS-related lncRNA

prognostic signature, we found that low-risk patients are

sensitive to the vast majority of immunotherapy drugs and

may have a better efficacy. We speculate that low-risk patients

are more favorable for inducing anti-tumor immune responses

and are more likely to benefit from immunotherapy. In

summary, on one hand, we think out the ERS-related lncRNA

prognostic signature can serve as a new indicator for evaluating

the applicability of ICIs. On the other hand, combined with drug

sensitivity and immune efficacy analyses, we predict that low-risk

patients will benefit more from the combination of

chemotherapy, targeted therapy, and immunotherapy,

providing a basis for the individualized treatment of BC

patients. And meanwhile, there are also more drugs worthy of

selection and development for low-risk patients. Beyond all

doubt, our study has the following limitations. First, the

prognostic signature is based on the TGCA public database,

lacking validation of samples from other databases. Second, our

study confirms that the prognostic signature has a good

predictive value, but in vitro basic experiments are still needed

to confirm the mechanism of ERS in BC. Third, the relationship

between prognostic characteristics and the effects of targeted

therapy, chemotherapy, and immunotherapy in BC patients need

to be urgently studied through a large number of clinical trials.

This study constructed an ERS-related lncRNA prognostic

signature, and described its correlation with TMB, immunity,

and clinical treatments (targeted therapy, chemotherapy, and

immunotherapy), which can provide reference for the

individualized and precise treatment of BC.
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