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Objectives: The molecular subtype plays an important role in breast cancer, which is the
main reference to guide treatment and is closely related to prognosis. The objective of this
study was to explore the potential of the non-contrast-enhanced chest CT-based
radiomics to predict breast cancer molecular subtypes non-invasively.

Methods: A total of 300 breast cancer patients (153 luminal types and 147 non-luminal
types) who underwent routine chest CT examination were included in the study, of which
220 cases belonged to the training set and 80 cases to the time-independent test set.
Identification of the molecular subtypes is based on immunohistochemical staining of
postoperative tissue samples. The region of interest (ROI) of breast masses was
delineated on the continuous slices of CT images. Forty-two models to predict the
luminal type of breast cancer were established by the combination of six feature screening
methods and seven machine learning classifiers; 5-fold cross-validation (cv) was used for
internal validation. Finally, the optimal model was selected for external validation on the
independent test set. In addition, we also took advantage of SHapley Additive
exPlanations (SHAP) values to make explanations of the machine learning model.

Results: During internal validation, the area under the curve (AUC) values for different
models ranged from 0.599 to 0.842, and the accuracy ranged from 0.540 to 0.775.
Eventually, the LASSO_SVM combination was selected as the final model, which included
9 radiomics features. The AUC, accuracy, sensitivity, and specificity of the model to
distinguish luminal from the non-luminal type were 0.842 [95% CI: 0.728−0.957], 0.773,
0.818, and 0.773 in the training set and 0.757 [95% CI: 0.640–0.866], 0.713, 0.767, and
0.676 in the test set.

Conclusion: The radiomics based on chest CT may provide a new idea for the
identification of breast cancer molecular subtypes.
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INTRODUCTION

Breast cancer has now overtaken lung cancer to become the
highest incidence of cancer in women, with about 2.3 million
(11.7%) new cases in 2020; it is the fifth-largest cause of cancer
death in the world, with an annual death toll of 685,000 (6.9%)
(1). Some commonly used clinical predictors, such as TNM grade
and histological grade, cannot fully reflect the heterogeneity of
breast cancer (2). In recent years, with the development of
molecular biology and sequencing technology, it has been
possible to analyze the gene expression profiles of different
breast cancer molecular subtypes, using immunohistochemical
analysis to further deepen the understanding of the disease at the
molecular level (3). There are great differences in the clinical
manifestation, treatment response, and prognosis among
patients with different subtypes; early identification of
molecular subtypes is of great significance for the choice of
treatment (4).

According to the expression level of different receptors, the
molecular subtypes of breast cancer are composed of luminal A,
luminal B, human epidermal growth factor receptor 2 (HER2)-
enriched, and triple-negative (TN) type (5). Among them, luminal
type (including luminal A and B) is sensitive to endocrine therapy,
which is often treated with chemotherapy and endocrine therapy,
and the prognosis is good.While the non-luminal type is ineffective
to endocrine therapy, the effect of chemotherapy is good,
neoadjuvant chemotherapy or targeted therapy and other
treatments can be chosen, and the overall prognosis is poor (6).
The traditional way to determine the molecular subtypes of breast
cancer is usually based on pretreatment biopsy or pathological
examination of postoperative tissue samples. But this examination
is invasive, time-consuming, and costly, and the limited sample size
makes it difficult to fully estimate the heterogeneity within the
tumor. Imaging examination is of great importance in the diagnosis
of breast cancer. However, traditional imaging examination can
only observe the disease from a limited perspective, and it is mostly
applied to judge the benign/malignantmass or calcificationor assist
in preoperative grading, which seriously depends on the experience
of radiologists, and it is difficult to describe the lesions from a
microscopic point of view (7).

Radiomics can use mathematical methods to quantify the
disease information contained in the medical images, and the
quantitative value extracted from images can represent the shape,
intensity, and texture of tumors; the quantitative value is called a
feature, which can be analyzed by different machine learning
methods (8). At present, it is not uncommon to use radiomics
methods to predict the molecular subtypes of breast cancer, and
many encouraging results have been obtained, most of which are
based on the radiomics features of breast mammography,
ultrasound, or MRI for model development and validation (9–11).
CT also plays an important role in the clinical practice of breast
Abbreviations: ICC, intraclass correlation coefficient; LASSO, least absolute
shrinkage and selection operator; ROC, receiver operating characteristic; AUC,
area under curve; SVM, support vector machine; RF, random forest; SHAP,
SHapley Additive exPlanations; XGBoost, extreme gradient boosting; MLP,
multilayer perceptron.
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cancer (12). Although most of the current guidelines do not
recommend the utilization of chest CT as a routine examination
for breast cancer diagnosis or early screening (13, 14), in the
actual diagnosis and treatment activities, because of the incidence
of lung and bone metastasis in breast cancer patients, especially
for patients with late clinical stage, chest CT is still one of the
routine examinations in most patients. In addition, many breast
cancer patients will undergo CT for other reasons (such as chest
pain) (15). You et al. explored the prevalence of initial distant
metastasis and the benefits of initial chest CT in detecting distant
metastasis based on molecular subtypes of breast cancer (16).
Song et al. investigated the usefulness of chest CT-based texture
analysis to predict overall survival in inflammatory breast cancer
patients (17). A prospective study confirmed that the texture and
perfusion characteristics of chest CT can effectively predict the
expression of histological biomarkers and treatment response in
patients with breast cancer (18). Thus, chest CT has great
application potential in breast cancer. If we can use the
quantitative information from chest CT images to predict the
molecular subtypes of patients before treatment, it is very
meaningful from the point of view of clinical usefulness and
patient economy. In our study, we hypothesized that the tumor
quantitative information contained in chest CT can overcome the
traditional limitations of qualitative observation by physicians
and thus contribute to the identification of the molecular subtype
of breast cancer. As far as we know, there is no such research
at present.

Therefore, based on the above background, we extracted
high-dimensional radiomics features from breast cancer
patients’ chest CT images and used this information to
establish and validate a machine learning prediction model to
recognize the luminal type of breast cancer, which provides new
ideas for clinical diagnosis and treatment.
MATERIALS AND METHODS

Patients
A total of 698 female patients with primary breast invasive ductal
carcinoma confirmed by pathology and examined by chest CT before
treatment in the Harbin Medical University Cancer Hospital from
January 2019 to June 2021 were retrospectively collected. This study
was approved by the Ethics Committee, and because it was a
retrospective study, informed consent of the patient was exempted.
Exclusion criteria: a) antineoplastic therapy before CT (n = 186); b)
poor image quality, lesion location or boundary difficult to judge,
incompletemass,orartifacts in the imagesothatacompleteROIsketch
couldnotbeperformed (n=48); c)diffuseormultiple lesions involving
the whole breast (n = 23); d) without immunohistochemical
examination (n = 38); e) combined with malignant tumors of other
organs(n=8);andf)distantmetastasisbefore treatment(n=19). Inthe
end, there were 376 eligible patients. To overcome the category
imbalance caused by the significantly different incidence of different
molecular subtypes, which will affect the fitting effect of the machine
learning algorithm, and to avoid selection bias at the same time, we
selected 220 consecutive patients composed of the same number of
luminal and non-luminal types from January 2019 to December 2020
March 2022 | Volume 12 | Article 848726
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as the training set, and the rest of the patients during this period were
abandoned. In addition, another80patients fromJanuary to June2021
were selected as a time-independent test set for external validation.The
case screening process is shown in Figure 1A.

CT Image Acquisition Protocol
Non-contrast-enhanced CT scan was performed using spiral CT
(GE16, Connecticut Fairfield City, USA) with patients in the
supine position. Scanning parameters: tube voltage, 100 kV; tube
current, 210 mA; 512 × 512 matrix; and slice thickness, 5 mm.
Reconstruction algorithm : filter type, BODY FILTER;
convolution kernel, STANDARD; reconstruction diameter, 390.

Pathological Assessment
Pathological reports included the expression status of estrogen
receptor (ER), progesterone receptor (PR), and HER2. The
pathological diagnosis was completed by two pathologists.
According to American Society of Clinical Oncology (ASCO)
guidelines (5), breast cancer is classified as “luminal A”, “luminal
B”, “HER2-enriched”, and “TN”. Samples with positive ER and/or
PR expression (more than 1%) were classified as luminal type
(including luminal A/B); HER2 enriched type (ER and PR negative,
HER2 3+) and triple-negative type (ER, PR, and HER2 negative)
were classified as non-luminal type. In addition, HER2 2+ type
required fluorescence in situ hybridization (FISH) to further
confirmation. Molecular subtypes were labeled independently by
a breast surgeonwithmore than 10 years of experience according to
the expression of receptors in the pathological diagnosis report.

Tumor Segmentation and
Feature Extraction
All chest CT images were exported from the picture archiving and
communication system (PACS) with DICOM format and
converted to Nifty for anonymization. A radiologist with 10
years’ experience in radiology drew the region of interest (ROI)
along the boundary of the breast mass manually in the mediastinal
window of chest CT, using the open-source platform: the medical
imaging interaction toolkit (MITK, https://www.mitk.org/).
Radiomics feature extraction was performed by the PyRadiomics
package Version2.1.0 (https://pyradiomics.readthedocs.io/) (19).
To test the repeatability of manual segmentation, 30 patients were
randomly selected. Fourteen days after the first segmentation, the
first radiologist and another radiologist with 5 years’ experience
performed a secondary segmentation and feature extraction
process. The features’ intra-observer and inter-observer
intraclass correlation efficient (ICC) were calculated, respectively,
and the features with ICC ≥ 0.80 were selected for subsequent
analysis. The two radiologists who sketched the ROI knew only
that the patient had breast cancer and were blinded to other
available clinical and pathological information. For feature
extraction, resampledPixelSpacing is [3, 3, 3]. Wavelet, LOG,
and LBP3D transform are used to filter the original CT images.
Extracted features can be divided into three categories—first order,
shape, and texture features—in which texture features include gray
co-occurrence matrix (glcm), gray run-length matrix (grlm), gray
size region matrix (glzm), gray correlation matrix (gldm), and
neighborhood gray difference matrix (ngtdm).
Frontiers in Oncology | www.frontiersin.org 3
Machine Learning and Model
Performance Evaluation
All features were standardized to a mean value of 0 and SD of 1. To
avoid information redundancyandmodel overfitting causedbyhigh-
dimensional features, in the training set, Spearman’s correlation
coefficient within each feature is calculated first, and the features’
coefficient greater than 0.90 was deleted. Then, Six feature selection
methods, including the least absolute shrinkage and selection
operator (LASSO), F test, Pearson’s correlation, mutual
information, tree model, and recursive feature elimination (RFE),
wereused to further reduce thedimensionoffeatures and to select the
most effective features for predicting luminal type breast cancer.

For the selected features, seven supervised machine learning
classifiers were used, including support vector machine (SVM),
random forest (RF), extreme gradient boosting (XGBoost),
Adaboost, LightGBM, GaussianNB, and multilayer perceptron
(MLP), to build radiomics signatures. The 5-fold cross-
validation (cv) was used for internal validation to evaluate the
robustness and select optimal hyperparameters. In this process, all
patients were randomly divided into five groups with the same
sample size, four of which were regarded as the initial training set
and the rest was the validation set. This process is repeated five
times, and the final performance of internal validation was taken
as the mean value of the 5-fold cross-validations. A total of 42
models (6 × 7 = 42) were established, and the effectiveness of the
model was evaluated in terms of differentiation (AUC, in which
closer to 1 means a better model), calibration (calibration curve,
which is used to describe the consistency between the predicted
results and the real state; the lower the brier score is, the better the
predictions are calibrated) and clinical application (decision
curve). According to the models’ performance in the internal
validation, the hyperparameters with the best model performance
were selected, and the whole data (all five groups) were used as the
final training set to retrain the model, the model of the optimal
combination is selected as the final model, and the independent
external validation is carried out in the test set. The above machine
learning classifiers are built using the Python3.7 version by the
scikit-learn library. The radiomics process is shown in Figure 1B.
To overcome the “black box” nature of machine learning models
and increase the interpretability, we visualized the final model with
the SHapley Additive exPlanations (SHAP) dependence plot,
which can explain how a single feature affects the output of the
LASSO_SVM prediction model. This is a uniform procedure for
interpreting the outcome of machine learning models. The SHAP
value can be used to estimate the contribution of each feature to
the predicted result (20).

Statistical Analysis
R (V3.6.3, https://www.R-project.org/) and Python (V3.7,
https://www.python.org/downloads/) were used for statistical
analysis and figure plotting. The Kolmogorov–Smirnov test
was used to evaluate the normal distribution of continuous
variables. The data with normal distribution and homogeneity
of variance were tested by independent sample t-test and
expressed by mean [Standard Deviation (SD)]. Otherwise, the
data were analyzed by Mann–Whitney U test and expressed as
median [interquartile range (IQR)]. The chi-square test was used
March 2022 | Volume 12 | Article 848726
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to compare categorical variables between groups. Two-tailed p <
0.05 was defined as statistically significant.
RESULTS

Patients
In the total of 300 breast cancer patients (mean age: 61.5 years),
97 (32.3%) belonged to luminal A, 56 (18.6%) to luminal B, 61
(20.3%) to HER2, and 70 (23.3%) to TN. In addition, 16 cases
(ER-, PR- and Her2 2+) were categorized as non-luminal type. A
Frontiers in Oncology | www.frontiersin.org 4
total of 132 (44%) patients had positive lymph node metastasis.
The median time interval between the patient’s pathological
results and the CT images was 23 (IQR: 22–25) days. The
detailed clinical and pathological information is shown in
Table 1 and Supplementary Figure 1.

Machine Learning Model Construction
In the whole cohort, a total of 1561 manual radiomics features
were extracted, of which 78 features were removed because their
ICC was less than 0.80 (Supplementary Figure 2). Then, in the
training process, Spearman’s correlation analysis removed 987
TABLE 1 | Baseline information of the training and test sets.

Variables Total (n = 300) Training set (n = 220) Test set (n = 80) p-Value

Age (years) 61.5 ( ± 10.0) 61.3 ( ± 10.2) 62.2 ( ± 9.2) 0.451
Diameter (cm) 2.5 [1.9, 3.0] 2.5 [1.8, 3.1] 2.5 [2.0, 3.0] 0.249
Ki67 (%) 25 [15, 40] 25 [15, 40] 30 [15, 40] 0.877
T stage, n (%) 0.249
T1 77 (25.6) 61 (27.7) 16 (20.0)
T2 219 (73.0) 157 (71.3) 62 (77.5)
T3 4 (1.3) 2 (0.9) 2 (2.5)
Histological stage, n (%) 0.698
I 7 (2.3) 6 (2.7) 1 (1.3)
II 180 (60) 130 (59.1) 50 (62.5)
III 113 (37.7) 84 (38.2) 29 (36.2)
Positive lymph nodes, n (%) 0.598
0 168 (56) 122 (55.4) 46 (57.5)
1~3 80 (26.6) 57 (25.9) 23 (28.7)
≥4 52 (17.4) 41 (18.6) 11 (13.7)
P53, n (%) 0.225
Negative 171 (57) 130 (59.1) 41 (51.3)
Positive 129 (43) 90 (40.9) 39 (48.7)
Molecular subtype, n (%) 0.311
Luminal A 97 (32.3) 69 (31.3) 28 (35)
Luminal B 56 (18.6) 41 (18.6) 15 (18.7)
HER2-enriched 61 (20.3) 49 (22.2) 12 (15.1)
Triple-negative 70 (23.3) 47 (21.3) 23 (28.7)
Unclear (HER2(2+)) 16 (5.3) 14 (6.3) 2 (2.5)
March 2022 | Volume 12 | Article
Data are presented as mean ( ± SD) or median [interquartile range (IQR)] for continuous variables and n (%) for categorical variables.
HER2, human epidermal growth factor receptor 2.
A B

FIGURE 1 | Flowchart of the patient selection and study design. (A) Case screening and division of training and test set. (B) The radiomics workflow.
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highly related features from the training set and left 496 features,
of which 112 were first-order features, 4 were shape features, and
380 were texture features. For each feature screening method, no
more than 10 features were selected for further modeling to avoid
poor performance in the test set caused by overfitting. The AUC
values and accuracy of the models under different algorithm
combinations are shown in Figure 2. The AUC values of the 42
models ranged from 0.599 to 0.842, with the Recursive_MLP
model performing the worst and LASSO_SVM performing the
best in the internal validation. The accuracy ranged from 0.540 in
the Recursive_ LightGBM to 0.775 in the LASSO_ XGBoost
model. Therefore, the LASSO algorithm is the most superior as
a feature selection method.

In the LASSO algorithm, the result suggested that the number of
features is selected between 4 and 26 (Supplementary Figure 3A). To
ensure thebettermodel effectunder the conditionof the smaller feature
number, the variables in the final model include 9 radiomics features:
original_firstorder_10 Percentile, original_glcm_ClusterShade, log-
sigma-2-0mm-3D_glcm_Correlation, log-sigma-30-mm-
3D_firstorder_90Percentile, log-sigma-5-0-mm-3D_glszm_
SmallAreaEmphasis, wavelet-LLH_glszm_LowGrayLevelZone
Emphasis, wavelet-HLL_glszmSmallAreaEmphasis, wavelet-
HHH_glcm_InverseVariance, and lbp-3D-m1_firstorder_Maximum
(Supplementary Figure 3B). Supplementary Figure 4 shows the
ROC, calibration, and decision curves of the seven machine
learning models.

Model Performance Evaluation
The performance of seven machine learning classification models
based on the LASSO algorithm in external validation is shown in
Figure 3: SVM has the highest AUC value (0.757), LightGBM has
the highest sensitivity (0.93), RF has the highest accuracy (0.763),
and Adaboost has the highest specificity (0.703). The
hyperparameters of SVM were set as follows: regularization
factor, C = 1; kernel function, rbf; convergence measure, tol =
0.1. The mean AUC was 0.842 (fold 1–5: 0.791–0.921) in the
Frontiers in Oncology | www.frontiersin.org 5
validation set (Figure 4A). The learning curve of SVM is shown in
Figure 4B: with the increase of training samples, the performance
of the model in internal validation tended to be stable. The AUC of
the final model in the test set was 0.757, 95% CI: 0.640–0.866
(Figure 4C); and the calibration curve showed a good fitting effect
(Figure 4D, Brier score = 0.103). The model evaluation indexes of
the training set and test set are shown in Table 2. Figure 5 is the
SHAP plot of the visualization for the prediction model, which
described the relationship between the high and low features’
SHAP values of the training set. According to the LASSO_SVM
model, a dot is created for each feature value of the model for each
patient, so a dot is assigned to each patient on each feature line.
The dots were colored according to the feature values of their
respective patients and vertically accumulated to depict density.
Red indicates high feature values, and blue indicates low. The
higher the absolute SHAP value of a feature is, the more likely it is
luminal type breast cancer.

The predictive probability of each patient belonging to luminal
type based on the SVM model was used as a radiomics score. The
boxplot (Figure 6) further showed the differences in age, tumor
diameter, Ki67 expression level, and SVM radiomics scores between
luminal andnon-normal patients. Among them,Ki67 and radiomics
scores were statistically different. Supplementary Figure 5 shows
four typical cases that correspond to the labeled andmodel predicted
molecular subtype classification of the LASSO _SVMmodel.
DISCUSSION

Radiomics is a new technology in recent years. In this
retrospective study, we constructed a diagnostic model based
on the LASSO_SVM classifier containing 9 radiomics features, to
explore the application potential in distinguishing luminal from
non-luminal breast cancer.

A newly published meta-analysis has shown that there are
currently more than 40 studies concerning the radiomics
A B

FIGURE 2 | Heatmap of the model performance under different algorithm combinations of feature selection methods (rows) and classification algorithms (columns).
(A) Area under the curve (AUC) values of the 42 models in the cross-validation. (B) Accuracy values of the 42 models.
March 2022 | Volume 12 | Article 848726
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assessment of molecular subtypes of breast cancer, most of which
are based on mammography, ultrasound, and MRI (21). Huang
et al. found that the combination of radiomics and machine
learning based on multi-parameter MRI provides a promising
method for the non-invasive prediction of molecular subtypes
and androgen receptor expression of breast cancer. The MLP
classifier showed the best performance in discriminating triple-
Frontiers in Oncology | www.frontiersin.org 6
negative breast cancer (TNBC) vs. non-TNBC (AUC, 0.965;
accuracy, 92.6%) (22). Choudhery et al. found that MRI
radiomics features were associated with different breast cancer
molecular subtypes in patients treated with neoadjuvant
chemotherapy. Significant differences were found in the
median volume, median longest axial tumor diameter, and
median longest volumetric diameter among different tumor
A B

DC

FIGURE 4 | The model training and testing process. (A) The area under the curve (AUC) values of LASSO_SVM in internal validation [5-fold cross-validation (cv)].
(B) The variation trend of the model’s AUC value with the increasing sample size. (C) The AUC value of LASSO_SVM in external validation (test set). (D) Model’s
calibration curve shows good fitting effect.
FIGURE 3 | Bar plot of the seven models’ performances in the time-independent external validation based on least absolute shrinkage and selection operator (LASSO).
March 2022 | Volume 12 | Article 848726
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subtypes (p = 0.008, 0.009, and 0.01, respectively) (23). Lee et al.
(24) investigated the machine learning approaches based on
radiomics to predict the molecular subtypes of breast cancer,
using the quantitative features extracted from MRI, including
perfusion and texture parameters. The RF model achieved the
best performance (AUC = 0.80). Although breast MRI has a very
high sensitivity, due to the limitations of a regional medical
condition and patients’ economic levels, the popularization rate
in China is very low. It has been studied that synthetic
mammography from digital breast tomosynthesis radiomics
signature could discriminate TN, HER2, and luminal subtypes
of breast cancer, which yielded an AUC of 0.838, 0.556, and
0.645, respectively, in the validation cohort (25). Niu et al. have
studied the evaluation of molecular subtypes of breast cancer by
intra-tumor and peritumoral radiomics based on mammography
and MRI and constructed signatures using LASSO regression.
The AUC of identifying HER2 breast cancer in the validation set
can reach 0.907. According to the results of the study, the
peritumoral area can provide some supplementary information
for prediction, and compared with MRI, the mammography had
a higher AUC for distinguishing luminal A from luminal B
subtype breast cancer (26). However, although mammography is
very common in breast examination, because of its low spatial
Frontiers in Oncology | www.frontiersin.org 7
resolution and in young patients with rich glands, the display
effect of mass is not satisfactory. At present, it is often used to
assist in the diagnosis of benign and malignant calcification.

Chest CT, although morphological, so far cannot be used for
routine screening of breast masses, but for most patients, it is still
one of the routine examinations for admission. It is non-invasive
and time-saving does not need a contrast agent, and because of its
tomographic characteristics, it also has the potential to provide
relatively rich focus information, with the improvement of big
data’s analytical ability. It will be beneficial to the full mining of
this information and to explore their correlation with the
biological characteristics of the disease. Yang et al. (27) used
manual and deep radiological features based on multi-detector
CT (MDCT) to evaluate the status of HER2 in breast cancer
patients. The combined model with handmade and deep
radiological signatures showed good discrimination, and the C
index in the main cohort reached 0.829. These features can
provide supplementary help for radiological assessment of the
HER2 status of breast cancer. In another radiomics study based on
chest CT images, the LASSO logical method was used to construct
a prediction model. The AUC values to distinguish TNBC from
non-TNBC were 0.881 and 0.851 in the discovery and validation
groups, respectively (28). In our study, we tried 42 different feature
FIGURE 5 | Each point on the graph is a SHapley Additive exPlanations (SHAP) value for a feature and sample. The position on the y-axis is determined by the
feature, and the position on the x-axis is determined by the SHAP value. In this graph, log-sigma-3-0-mm-3D_firstorder_90Percentile, as the most important feature,
has a high SHAP value. The color represents the value of the feature from low to high. Overlapping points jitter along the y-axis, so we get the distribution of SHAP
values for each feature. The features are listed in order of their importance.
TABLE 2 | Performance of the LASSO_SVM model in the training and test sets.

Training set Test set

AUC 0.842 (0.728–0.957) 0.757 (0.640–0.866)
Accuracy (%) 0.773 (0.681–0.865) 0.713 (0.614–0.812)
Sensitivity (%) 0.818 (0.733–0.903) 0.767 (0.674–0.860)
Specificity (%) 0.773 (0.681–0.865) 0.676 (0.573–0.779)
Positive predictive value (%) 0.772 (0.680–0.864) 0.727 (0.629–0.825)
Negative predictive value (%) 0.781 (0.690–0.872) 0.694 (0.593–0.795)
F1 score 0.792 (0.703–0.881) 0.747 (0.652–0.842)
March 2022 | Volume
The range of values in parentheses indicates the 95% CI.
AUC, area under the curve.
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screening and machine learning classifiers for modeling to predict
luminal breast cancer. The AUC, accuracy, sensitivity, and
specificity in the test set are 0.757, 0.713, 0.767, and 0.676,
respectively. About feature dimensionality reduction methods,
the overall performance of the LASSO algorithm is better than
other dimensionality reduction algorithms in terms of AUC and
accuracy, whether internal or external validation. LASSO is a kind
of compressed estimation, which obtains a more refined model by
constructing a penalty function. The basic idea is to minimize the
sum of squares of residuals when the sum of absolute values of
regression coefficients is less than a certain constraint so that some
regression coefficients that are strictly equal to 0 can be produced,
and an interpretable model can be obtained. It is a biased
estimation for complex collinear data, so it can screen variables
and reduce the complexity of the model (29, 30). At present,
LASSO is the most widely used dimensionality reduction method
that can effectively prevent overfitting in different application
scenarios (31–33). In the machine learning classifiers based on
LASSO dimensionality reduction, the performances of the models
are still different. SVM has the highest AUC value in both internal
and external validations. In the internal validation, the accuracy of
XGBoost is slightly higher than that of SVM, while in the external
validation, the two have the same accuracy. Although LightGBM
has the highest sensitivity (0.93) in the external validation, the
specificity is relatively low (0.486). SVM is a binary classification
model, and the core idea is a hyperplane defined in the feature
space, which can maximize the geometric interval between
different categories, but at the same time, it can also carry out a
variety of kernel transformations. This also makes it an essentially
Frontiers in Oncology | www.frontiersin.org 8
non-linear classifier, which is widely used in a variety of scenarios,
especially showing great advantages for biomedical classification
problems (34–36). SVM is also widely used in breast cancer
research. The accuracy of a breast cancer diagnosis can be
improved by using radiomics and SVM of multi-parameter
breast MRI (37). Zhang et al. constructed a prediction model
based on the LASSO feature selection method and SVM classifier
by using multimodal MRI radiomics, which could distinguish
benign and malignant breast cancer with an AUC value of 0.836
(38). In a study of preoperative MRI radiomics in patients with
oropharyngeal squamous cell carcinoma, the LightGBM model
showed an AUC of 0.8333 in predicting human papillomavirus
(HPV) status and 0.857 in predicting disease recurrence (39). The
XGBoost algorithm has been used for feature selection and model
building to predict axillary lymph node metastasis in breast cancer,
achieving an accuracy of 80%, using the F-18 fluorodeoxyglucose
PET/CT (40). MLP is a kind of artificial neural network with a
forward structure, which maps a set of input vectors to a set of
output vectors. It can follow the principle of the human nervous
system to learn and predict data (41). According to Yun (42), a
robust classificationmodel was constructed by using the radiomics
features based on MRI, which can distinguish glioblastoma from
primary central nervous system lymphoma. MLP classifier served
a high-performing and generalizable model. Mao et al. (43)
constructed multi-classifier-based ultrasound radiomics models,
which can be used to identify primary and metastatic liver cancer,
in which the logistic regression model outperforms MLP (AUC
0.816 vs. 0.790). In our study, the performance of MLP is the worst
among all performance indicators, and the possible reason may be
A B

DC

FIGURE 6 | Boxplot of the relationships between different variables and molecular subtypes. (A) Age. (B) Diameters of breast mass. (C) Ki-67 expression level.
(D) Radiomics score of the LASSO_SVM model.
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that the final effect of the algorithm is closely related to the
generalization ability of the network and learning samples,
which is particularly obvious in the neural network. If the
sample set is poorly representative, there are many contradictory
or redundant samples, and it is difficult for the network to achieve
the expected performance (44).

As the first exploratory research, our study inevitably has
limitations. First of all, as a research on the development and
validation of predictive models, although time-independent
external validation has been carried out, our data came from a
single center; and the application value of CT in breast cancer is still
controversial, which needs to be verified on a larger scale and in
more centers. Secondly, the slice thickness of our images is large,
whichmay lead to the exclusion of small tumors from the study. In
the next work, we plan to prospectively collect thin-slice images to
verify the applicability of small tumors. Finally, due to the nature of
the retrospective study, there is selection bias, which can also be
compensated by future prospective validation. Despite the above
limitations, our research is still enlightening and has potential.
CONCLUSION

This study explored the potential of non-contrast-enhanced CT
imaging in predicting the luminal type of breast cancer and
achieved encouraging results, which has some implications for
clinical work, but further prospective validation and studies
combined with other examinations are still needed.
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