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We have developed and evaluated a real-time reverse transcriptase PCR (RT-PCR) assay for the detection of human enterovirus D68
(EV-D68) in clinical specimens. This assay was developed in response to the unprecedented 2014 nationwide EV-D68 outbreak in the
United States associated with severe respiratory illness. As part of our evaluation of the outbreak, we sequenced and published the ge-
nome sequence of the EV-D68 virus circulating in St. Louis, MO. This sequence, along with other GenBank sequences from past EV-
D68 occurrences, was used to computationally select a region of EV-D68 appropriate for targeting in a strain-specific RT-PCR assay.
The RT-PCR assay amplifies a segment of the VP1 gene, with an analytic limit of detection of 4 copies per reaction, and it was more
sensitive than commercially available assays that detect enteroviruses and rhinoviruses without distinguishing between the two, in-
cluding three multiplex respiratory panels approved for clinical use by the FDA. The assay did not detect any other enteroviruses or
rhinoviruses tested and did detect divergent strains of EV-D68, including the first EV-D68 strain (Fermon) identified in California in
1962. This assay should be useful for identifying and studying current and future outbreaks of EV-D68 viruses.

Human enterovirus D68 (EV-D68) was first isolated from sam-
ples obtained in California in 1962 from four children with

pneumonia and bronchiolitis (1). The type strain isolated from
one of these children was designated the Fermon strain. Subse-
quently, only small numbers of EV-D68 cases were reported until
the early 2000s (2). However, from 2008 to 2012, outbreaks in
Japan, the Philippines, the Netherlands, and the United States
(Georgia, Pennsylvania, and Arizona) have revealed EV-D68 as an
emerging pathogen capable of causing severe respiratory illness
(2–7). During the 2014 enterovirus/rhinovirus season in the
United States, EV-D68 circulated at an unprecedented level (5).
From August 2014 to January 2015, Centers for Disease Control
and Prevention (CDC) and state public health laboratories con-
firmed a total of 1,153 cases of respiratory illness caused by EV-
D68, with �14 deaths. The spectrum of disease was diverse. Cases
of flaccid paralysis have been reported in association with EV-D68
infection, but as of the time of this report, a causal relationship has
not been proven (8). The infected individuals were primarily chil-
dren and resided in 49 states and the District of Columbia (5). The
CDC also reported that there were likely millions of EV-D68 in-
fections in which the etiology was not determined (5).

In mid-August of 2014, hospitals in Missouri and Illinois no-
ticed an increased number of patients with severe respiratory ill-
ness and reported the presence of EV-D68 (6). We also observed
this pattern at St. Louis Children’s Hospital in St. Louis, MO.
Because efforts to define the outbreak were hampered by the lack
of a test for EV-D68 that did not require nucleotide sequencing,
we undertook the development of a rapid and specific reverse
transcriptase PCR (RT-PCR) assay. We began by sequencing the
genome of a representative EV-D68 isolate from St. Louis to ob-
tain the sequence information required to define an assay with
optimal sensitivity and specificity (9). EV-D68 causes respiratory
illness, and the virus can be found in respiratory secretions, such
as saliva, nasal mucus, or sputum (7), of an infected person.
Therefore, an appropriate assay would primarily focus on evalu-
ating respiratory disease due to EV-D68 by targeting nasopharyn-
geal and other respiratory specimens.

The development goals for our EV-D68 RT-PCR assay in-
cluded (i) avoiding false-positive detection of closely related en-
teroviruses and rhinoviruses, (ii) increasing clinical and analytical
sensitivity compared to those of other available assays, and (iii)
retaining capability for sensitive detection of all known EV-D68
variants.

MATERIALS AND METHODS
Local specimens. After the EV-D68 outbreak was identified in August
2014 (6), clinical specimens testing positive for enterovirus/rhinovirus
with the BioFire FilmArray respiratory virus panel (BioFire Diagnostics,
Inc., Salt Lake City, UT) were provided for further testing by the Diagnos-
tic Virology Laboratory at St. Louis Children’s Hospital, consistent with a
protocol for testing of deidentified residual clinical specimen material
approved by the Washington University Human Research Protection Of-
fice. Fourteen enterovirus/rhinovirus-positive specimens from the 2014
season were identified as containing EV-D68 by sequencing of the 5=-
nontranslated region of each virus (10). Extracts of total nucleic acid were
prepared from 100-�l aliquots of original specimen using a bioMérieux
NucliSENS easyMAG automated extractor (bioMérieux, Durham, NC).
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Challenge panel from New York State Department of Health. We
received a challenge panel from the New York State Department of Health
(courtesy of Kirsten St. George and Daryl Lamson). The included viruses
are shown in Table S1 in the supplemental material. This panel included
nucleic acid extracts prepared using the NucliSENS easyMAG automated
extractor from clinical specimens containing the following viruses, iden-
tified at the Wadsworth Laboratory by VP1 sequencing: coxsackievirus
A16 (n � 2) and 21 (n � 2), echovirus 18 (n � 2) and 30, and enterovirus
71 (n � 2). The panel also included a collection of 20 EV-D68 viruses
selected to represent a range of sequence variants. A review of the VP1
sequences from this panel showed 93.8% to 99.4% sequence identity com-
pared to the St. Louis 2014 strain. In comparison, the 1962 Fermon strain
(see below) had 84.4% identity to the St. Louis 2014 strain in the se-
quenced VP1 region.

Challenge set from Children’s Hospital Colorado. We also received a
challenge set from Children’s Hospital Colorado (courtesy of Christine
Robinson) consisting of frozen aliquots of cultures positive for the follow-
ing viruses: coxsackievirus A7 and 9; coxsackievirus B1 to 5; echoviruses 1,
3, 4, 5, 6, 11, 19, and 30; and enteroviruses 68 (Fermon), 70, and 71. Most
of these viruses were obtained originally from the American Type Culture
Collection (ATCC). Others were derived from clinical specimens that had
been typed by the Centers for Disease Control (Christine Robinson, per-
sonal communication). All viruses received are shown in Table S1 in the
supplemental material. Total nucleic acid extracts were prepared at Wash-
ington University.

Washington University samples. Our Special Projects Laboratory at
Washington University provided an additional panel of challenge viruses.
These viruses had been detected in patient specimens from research proj-
ects carried out in the 5 years prior (11). Viruses in this panel had been
typed based on sequencing a region of the 5=-nontranslated region (10).
Total nucleic acid extracts were prepared using either the NucliSENS easy-
MAG automated extractor or Roche MagNA Pure compact system
(Roche Diagnostics GmbH, Germany). Viruses included echovirus 14,
coxsackievirus A16, and 59 rhinoviruses from species A to C. The rhino-
virus types and extraction methods are shown in Table S1 in the supple-
mental material. We verified that our assay could amplify EV-D68 from
total nucleic acid prepared on both extraction platforms.

EV-D68 St. Louis 2014 genome sequence. As previously described
(9), we used high-throughput sequencing on the Illumina HiSeq 2500 to
obtain one complete and eight partial sequences (GenBank accession no.
KM881710.2, BioProject no. PRJNA263037) from specimens obtained
during the 2014 outbreak in St. Louis. This genome sequence, along with
other concurrently sequenced/published 2014 EV-D68 genomes, was
used as a baseline for circulating EV-D68 sequence specificity.

PCR amplicon sequence selection. To create an assay with specificity
for EV-D68, we performed comprehensive in silico analysis of all viruses in
the NIH GenBank genetic sequence database using a k-mer approach
described below to identify unique and contiguous sequences for candi-
date RT-PCR primers and probes. The k-mer frequency-based methods
were originally used in whole-genome shotgun assembly algorithms to
remove reads containing frequently occurring subsequences of length k
during genome assembly (12, 13). We started by creating a consolidated
viral sequence database by collecting all Fasta nucleotide sequences from
viruses that infect vertebrate or invertebrate hosts, as found in the follow-
ing areas of GenBank: RefSeq, Genome Neighbors, and Influenza Virus
Resource. The database contained sequences from 34 viral families, which
consisted of 190 annotated viral genera and 337 species. By design, this
database contained only a single complete EV-D68 reference genome (St.
Louis [STL] 2014 strain, GenBank accession no. KM881710.2). Compre-
hensive k-mer analysis was performed on the database by indexing and
reporting all 20-mer subsequences using the Tallymer software (14). We
eliminated 20-mers that were not unique in the k-mer pool, thus leaving
20-mers that were unique to EV-D68 and those unique to other viral
species. EV-D68-unique 20-mers were collected using BLAST (15) to
align all unique 20-mers to the EV-D68 reference genome, requiring

100% identity. The EV-D68-specific 20-mers were consolidated into con-
tiguous sequences by merging overlapping sequences with the BEDTools
suite of utilities (16). Contiguous sequences of �60 bp were identified as
promising regions for RT-PCR primer and probe design. Of these, a
141-bp region was selected based on its uniqueness, length, and relative
conservation among available EV-D68 nucleotide sequences. Notably,
this region was within the VP1 gene that is considered the gold standard
for enterovirus typing (17, 18).

Design of oligonucleotide primers and probes. In addition to the
VP1 gene sequence represented by our candidate 141-bp region from the
St. Louis 2014 strain of EV-D68, we also collected 396 other unique EV-
D68 VP1 sequences from GenBank. These nucleotide sequences were
mapped and visualized online using MUSCLE (19) at the National Insti-
tute of Allergy and Infectious Diseases (NIAID) Virus Pathogen Database
and Analysis Resource (ViPR) (http://www.viprbrc.org) website to pro-
duce a multiple-sequence alignment (MSA). Focusing on the candidate
141-bp region within the MSA, we evaluated single nucleotide polymor-
phism (SNP) frequencies and identified conserved segments appropriate
for primer and probe placement. The GenScript real-time PCR primer
design application was used to evaluate primer/probe options. The crite-
ria for ideal amplicon selection included primer sequences of �20 bp,
PCR amplicons of �100 bp in length, and melting temperature (Tm)
within a range of 55 to 70°C.

Based on this procedure, we selected an RT-PCR set consisting of two
primers and a single probe with complete sequence identity to the 2014
outbreak virus (WashU design 1). To broaden the detection of EV-D68
viruses, we made modifications based on SNP frequencies that included
the addition of degenerate bases and a second reverse primer (WashU
design 2). Both designs are shown in Table 1 and Fig. 1.

Additional specificity analysis. The selected RT-PCR primer and
probe sequences were aligned to the GenBank nt database while excluding
EV-D68 taxon (taxid 42789) sequences to evaluate possible homology to
non-EV-D68 sequences. Using the NCBI online BLAST interface (20, 21)
for highly similar sequence alignment (MegaBlast), �20 alignments (90
to 100% identity) were produced, with all having identity to EV-D68
partial coding sequences that had been submitted to the database without
full EV-D68 taxon designation (taxid 1193974). Using discontiguous
MegaBlast, the top alignments that were not related to EV-D68 had be-
tween 70 and 83% sequence identity to EV-D70.

Washington University EV-D68 RT-PCR procedure. Primers and
probes for the WashU assays were ordered from Applied Biosystems at
Life Technologies (Grand Island, NY). Other reagents included low-
EDTA Tris-EDTA (TE) buffer, AgPath-ID one-step RT-PCR kit (Life
Technologies), and H2O for negative controls. Mastermixes consisting of
10� primer/probe (4 �M primers/2 �M probe) were produced for each
assay, and 20 �l of mastermix was added to each well of a 96-well PCR
plate. For the clinical specimens and controls, 5 �l of each sample was
added to the reaction mixture. ROX passive reference dye was included in
the RT-PCR buffer to normalize well-to-well differences. The reactions
were run on the Applied Biosystems 7500 real-time PCR system and an-
alyzed using accompanying threshold cycle (CT) analysis software. The
thermal cycling conditions were 45°C for 10 min, followed by 95°C for 10
min, and then 45 cycles of 95°C for 15 s and 60°C for 45 s.

Modification of the CDC-published EV-D68 assay. In mid-October
2014, the CDC Picornavirus Laboratory made a new EV-D68-specific
RT-PCR assay available (Steve Oberste, Centers for Disease Control and
Prevention, Atlanta, GA, personal communication). We tested the CDC
EV-D68-specific RT-PCR according to the procedure available at that
time on the CDC website. In addition, we tested the same assay with Cy5
replacing 6-carboxyfluorescein (FAM) as the probe reporter dye (modi-
fied CDC assay) because of concerns for quenching of FAM by the gua-
nine base located at the 5= end of the probe (22) (Rangaraj Selvarangan,
Children’s Mercy Hospital, Kansas City, MO, personal communication).
The primers and probes for the CDC assay were ordered from Integrated
DNA Technologies, Inc. (Coralville, IA).

Wylie et al.

2642 jcm.asm.org August 2015 Volume 53 Number 8Journal of Clinical Microbiology

http://www.ncbi.nlm.nih.gov/nuccore?term=KM881710.2
http://www.ncbi.nlm.nih.gov/nuccore?term=KM881710.2
http://www.viprbrc.org
http://jcm.asm.org


Commercial and laboratory-developed assay testing. Commercial
multiplex panels that detect enteroviruses/rhinoviruses were tested ac-
cording to the manufacturers’ instructions. These assays included Lu-
minex xTAG respiratory viral panel (CE cleared-EU/ROW, analyzed with
the IS software version 2.3, which includes the FDA-approved Luminex
targets plus additional targets for coronaviruses and parainfluenzavirus
type 4 to be used for research purposes only) (Luminex, Austin, TX), the
GenMark Dx eSensor respiratory virus panel (GenMark Diagnostics, Inc.,
Carlsbad, CA), BioFire FilmArray respiratory panel (RP) (BioFire Diag-
nostics, Inc., Salt Lake City, UT), Cepheid GeneXpert EV IVD (Cepheid,
Sunnyvale, CA), and Focus enterovirus primer pair analyte-specific re-
agent (ASR) (Focus Diagnostics, Inc., Cypress, CA).

We also evaluated two laboratory-developed tests (LDTs), the panen-
terovirus assay described by Nijhuis et al. (23), and an assay described by
Piralla et al. (24) that targets the 5=-nontranslated region of EV-D68. To
determine the relative sensitivities of the different LDTs and commercial
molecular assays for detecting EV68, material from the original specimen

that yielded the full-length sequence of the St. Louis EV-D68 strain was
used. For the Cepheid GeneXpert and BioFire FilmArray assays, which
require raw unextracted specimen, a series of 10-fold dilutions of the
original specimen were made using universal transport medium (UTM)
(Diagnostic Hybrids, Athens, OH) as diluent. Three hundred microliters
of each dilution was then tested in the BioFire assay and 140 �l was used in
the GeneXpert assay, according to the manufacturers’ instructions. For
the LDTs and the GenMark and Luminex xTAG assays, which require
extracted nucleic acids, total nucleic acids were extracted from 100 �l of
original specimen using a bioMérieux NucliSENS easyMAG automated
extractor (bioMérieux, Durham, NC). A series of 10-fold dilutions of the
extract were then made using low-EDTA TE as a diluent, and each dilu-
tion was tested in each assay. For the Focus enterovirus ASR assay, 5 �l of
reaction mix and 5 �l of EasyMAG nucleic acid extract were added to the
wells of a 3M integrated cycler universal disc, and the amplification assay
was run using standard Focus Diagnostics assay parameters and a 3M
integrated cycler. For the panenterovirus assay, we used the AgPath-ID

TABLE 1 WashU EV-D68-specific RT-PCR assay primers and probes

ID by designationa Sequence (5=–3=) Strand Locationb Tm (°C)c Modificationd

WashU design 1e

L1-1 CACTGAACCAGAAGAAGCCA Forward 2475–2494 59.01 NA
R1-1 CCAAAGCTGCTCTACTGAGAAA Reverse 2551–2572 58.93 NA
P1-1 TCGCACAGTGATAAATCAGCACGG Forward 2502–2525 68.39 5=-FAM and 3=-TAMRA

WashU design 2f

L1-2 CAC(T/C)GAACCAGA(A/G)GAAGCCA Forward 2475–2494 58.38–59.01* NA
R1-2 CCAAAGCTGCTCTACTGAGAAA Reverse 2551–2572 58.10–59.75* NA
R2-2 CTAAAGCTGCCCTACTAAG(G/A)AA Reverse 2551–2572 58.10–59.75* NA
P1-2 TCGCACAGTGATAAATCAGCA(T/C)GG Forward 2502–2525 68.39–69.21* 5=-FAM and 3=-TAMRA

a ID, identification.
b EV-D68 St. Louis (STL) 2014 (GenBank accession no. KM881710.2) subregion positions, 5=-3= orientation.
c Tm ranges span all combinations of degenerate bases and mixed primers.
d NA, not applicable; FAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine.
e Distinct single-paired primer design. Amplicon size is 98 bp.
f Degenerate bases and mixed primers included in the design. Amplicon size is 98 bp.

FIG 1 WashU and CDC RT-PCR design comparison. WashU and CDC RT-PCR primers and probe locations are illustrated within the VP1 gene of the 2014
outbreak EV-D68 St. Louis (GenBank accession no. KM881710.2) reference genome. The dark green and dark blue areas, as well as the light yellow bounding box,
indicate the regions of the genome targeted by the respective assays and their associated PCR product lengths. Arrows indicate direction of priming for the left
(L) and right (R) primers. The yellow squares labeled F (fluorescent reporter) and the green squares labeled Q (quencher) show the relative orientation of the
fluorophores on the probes.
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one-step RT-PCR kit and recommended cycling conditions, using an Ap-
plied Biosystems 7500 real-time PCR system. For the assay targeting the
5=-nontranslated region of EV-D68, we followed the authors’ recom-
mended procedures and cycling conditions, using an Applied Biosystems
7300 real-time PCR system.

Analytic limit of detection. A 791-bp region of VP1 containing the
amplicon of the WashU assays was reverse transcribed, amplified, and cloned
from a clinical sample from the 2014 season from St. Louis using the primers
EV68-VP1-2325-fwn (GGRTTCATAGCAGCAAAAGATGA) and EV68-
VP1-3121-rvni (TAGGYTTCATGTAAACCCTRACRGT), which were pre-
viously described (25). The product was cloned using a TOPO TA cloning kit
(Life Technologies, Grand Island, NY). Sequence was verified by dideoxy
sequencing of the plasmid insert. The plasmid was linearized with SpeI prior
to its use as a template in the real-time RT-PCR assay. The analytic limit of
detection (LOD) was determined by testing up to 10 replicates of dilutions of
the linearized cloned VP1-containing plasmid on two separate days. Probit
analysis was carried out using the IBM SPSS Statistics Desktop (version 22)
software.

RESULTS
Comparison of WashU and CDC assays. We tested our two as-
says and the two versions of the CDC assay on a set of clinical
samples from the 2014 outbreak (Table 2). We also included the
Fermon strain of EV-D68 obtained from the Children’s Hospital
Colorado. The two WashU assays performed similarly on the sam-
ples, with �1 cycle difference between the two assays for 12 of the
14 samples. The published CDC assay (FAM reporter) performed
less well, failing to detect 6 of the 14 samples. However, the mod-
ified CDC assay (i.e., with the substitution of FAM with Cy5)
enabled the detection of all 14 samples. However, the CT values
were higher for the modified CDC assay than those for the WashU
assays. The WashU assays but not the CDC assays detected the
Fermon strain. Strikingly, the WashU design 2 assay detected Fer-
mon 6.7 RT-PCR cycles earlier than WashU design 1 assay, and

the amplification curve indicated improved amplitude and ampli-
fication efficiency (Fig. 2).

To follow up on this observation, additional clinical samples
from the 2014 season that had been tested with WashU design 1
were identified for comparison with the modified CDC assay (Ta-
ble 3). Only the modified assay was used because of its greater
sensitivity. The samples were selected to include 10 from each of 4
categories based on the CT of the WashU assay: �22, 22 to 27, �27
to 32, and �32. Twenty samples negative for EV-D68 were also
tested. In this test, the modified CDC assay detected all of the
samples with CT values of �32 but failed to detect those with CT

values of �32.
Other EV-D68 viruses. The WashU assays were used to test an

additional 20 specimens positive for EV-D68 from the New York
State Department of Health. Both WashU assays detected EV-D68
in each sample.

Analysis of specificity. The specificity of the WashU assays was
evaluated using test panels provided by the New York State De-
partment of Health, the Children’s Hospital Colorado, and our
own Special Projects Laboratory. These panels included 4 differ-
ent coxsackievirus A viruses, 5 different coxsackievirus B viruses, 9
different echoviruses, 3 enteroviruses, including EV-D70, which is
the enterovirus that is most closely related to EV-D68, and 59
rhinoviruses representing species A to C. All viruses tested are
shown in Table S1 in the supplemental material. The presence of
viral RNA was confirmed for each of these samples by amplifica-
tion of the nucleic acid extract with an alternative panenterovirus/
rhinovirus real-time RT-PCR assay. The WashU assays did not
amplify any of the test panel viruses.

Comparison with laboratory-developed and commercial as-
says. We compared the sensitivity of the WashU EV-D68 assays
with that of 5 commercial enterovirus assays and 2 LDTs that

TABLE 2 Comparison of WashU and CDC assays using 2014 EV-D68 outbreak specimens and the Fermon strain

Test material

CT values fora: �CT

WashU design 1 WashU design 2 CDC assay
Modified
CDC assay

WashU design 1
and WashU
design 2

WashU design 2
and modified
CDC assay

EV-D68 specimens
WU-EV-1 21.0 21.3 Neg 23.7 0.3b 2.4
WU-EV-2 24.2 25.4 Neg 28.7 1.2 3.3
WU-EV-3 20.0 20.7 41.0 22.7 0.7 2.0
WU-EV-4 20.7 20.8 Neg 22.5 0.1b 1.7
WU-EV-5 22.2 22.7 34.6 24.4 0.5b 1.7
WU-EV-6 20.9 21.2 25.9 23.9 0.3b 2.7
WU-EV-7 20.5 20.0 Neg 23.4 �0.5b 3.4
WU-EV-8 27.3 27.3 Neg 30.8 0b 3.5
WU-EV-9 17.3 17.5 27.7 20.5 0.2b 3.0
WU-EV-10 21.4 22.1 37.2 23.8 0.7 1.7
WU-EV-11 26.3 26.8 Neg 30.8 0.5b 4.0
WU-EV-12 24.1 24.5 38.5 27.5 0.4b 3.0
WU-EV-13 11.2 11.0 23.9 14.7 �0.2b 3.7
WU-EV-14 20.3 18.5 32.7 20.6 �1.8b 2.1

Fermon strain 22.7 15.9 Neg Neg �6.8b NAc

Water Neg Neg Neg Neg NA NA
a CT, threshold cycle; Neg, negative. WashU design 1 was a distinct single paired-primer design, and WashU design 2 had degenerate bases and mixed primers included in the
design. The CDC assay had a published design with FAM. The modified CDC assay was modified by replacement of FAM with Cy5.
b �CT � 0.5.
c NA, not applicable.
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detect enteroviruses and/or rhinoviruses but do not specifically
distinguish subtypes (Table 4). We prepared 10-fold serial dilu-
tions of a clinical sample from the 2014 St. Louis outbreak and
tested each of the assays in parallel. We found that the WashU
assays were able to detect EV-D68 at a dilution of 10�5, which
was 10- to 100-fold more sensitive than the commercial Lu-
minex xTag, GenMark Dx eSensor, Biofire FilmArray, Cepheid

GeneXpert, and Focus enterovirus assays. The LDT targeting
the 5=-nontranslated region of EV-D68 showed equivalent sen-
sitivity for detecting Fermon to that of the WashU design 2
assay; however, it had higher CT values overall than those of the
WashU assays for detecting the 2014 outbreak strain and was
10-fold less sensitive in serial dilution testing. Only the panen-
terovirus LDT had comparable sensitivity to the WashU assays.

Analytic sensitivity. In order to determine the limit of detection
(LOD) of the WashU EV-D68 assay, the cloned 791-bp fragment of
VP1 was serially diluted in a range of 0.14 � 100 to 1 � 102 copies per
reaction and tested with the WashU design 1 assay. Up to 10 replicates
were carried out at each dilution on two separate days. The resulting
95% LOD determined by probit regression analysis was 4 copies per
reaction, with a 95% confidence interval of 3.1 to 6.6 copies.

DISCUSSION

During the summer and fall of 2014, enterovirus D68 circulated at
an unprecedented level in the United States (4–6). Because no
molecular test was available for EV-D68-specific identification,
laboratories were forced to rely on amplification and partial se-
quencing of the structural protein genes, VP4 to VP2 or VP1 (17,

FIG 2 Amplification plot showing WashU RT-PCR assay EV-D68 sensitivity. The PCR amplification cycle number is displayed on the x axis while log(�Rn) is
shown on the y axis. Rn is the fluorescence of the reporter dye divided by the fluorescence of a passive reference dye. �Rn is Rn minus the baseline and is plotted
against PCR cycle number. The light green and light purple lines show detection of the 2014 EV-D68 outbreak strain using the WashU design 1 and design 2
assays, respectively. The brown and dark purple lines show detection of the more distant 1962 Fermon EV-D68 type strain using the WashU design 2 and design
1 assays, respectively. The incorporation of degenerate bases and mixed primers in WashU design 2 shows a significant increase in sensitivity (6.7 cycles earlier
detection) for the Fermon type strain (brown line), with minimal decrease in sensitivity to the 2014 outbreak strain (light purple) (�0.5 cycles difference).

TABLE 3 Comparison of sensitivities of WashU design 1 and modified
CDC assays using 2014 EV-D68 outbreak specimens

CT value range
(WashU design 1
defined)

No. of
samples tested

No. of positive test results
for:

WashU
design 1

Modified
CDC assay

�22 10 10 10
22–27 10 10 10
�27–32 10 10 10
�32 10 10 0
Nega 20 20 20
a Neg, negative.
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18), a much more cumbersome procedure than a specific real-
time RT-PCR assay. The lack of a rapid molecular assay resulted in
vast underrecognition and underreporting of cases of EV-D68 in-
fection, because the majority of clinical laboratories did not have
the ability to test specifically for EV-D68. Specific identification of
EV-D68 was primarily from the CDC and state labs. Several FDA-
approved multiplex assays for the detection of respiratory viruses
detect enteroviruses, but these systems are broadly reactive and do
not distinguish between enteroviruses and rhinoviruses; the re-
sults are typically reported as human rhinovirus/enterovirus.

In response to the 2014 nationwide enterovirus D68 outbreak
and the associated increase in severe respiratory illness presenta-
tions, we developed and evaluated a real-time reverse transcrip-
tase PCR assay for the detection of EV-D68 in clinical specimens.
The development of this assay was informed by sequencing the
complete genome of the EV-D68 virus circulating in St. Louis,
MO, during the outbreak. Our RT-PCR primer and probe se-
quences were derived computationally by k-mer-mediated filter-
ing of potentially cross-reactive non-EV-D68 viral sequences.
Broad detection of EV-D68 was achieved through multiple-se-
quence alignment review using all published EV-D68 VP1 regions
available through GenBank. Reduced sensitivity for the older and
more distant Fermon EV-D68 type strain, which has only 87.9%
identity to the genome sequence of the St. Louis virus, led us to
modify the assay, which then proved capable of efficiently ampli-
fying more divergent EV-D68 viruses as well.

The CDC released the design and protocol for an EV-D68-
specific RT-PCR on their website as a diagnostic resource for cli-
nicians and health care professionals in mid-October 2014. As
noted within the CDC protocol, the amplicon size of 272 bp is
larger than ideal for a real-time RT-PCR assay. Furthermore, their
selected TaqMan probe had a guanine (G) at the 5= end linked to
the fluorophore FAM, potentially incurring unwanted fluores-
cence quenching. The replacement of FAM with Cy5 significantly
improved the ability of the CDC assay to detect EV-D68 (Table 2).

We evaluated the CDC assay alongside our own, testing against

EV-D68-positive clinical samples (n � 35). Based on serial dilu-
tion testing of the 2014 outbreak virus, the WashU RT-PCR assays
were 100-fold more sensitive than the published CDC assay, and
the CDC assay failed to detect the Fermon strain. In addition, the
WashU assays were �10-fold more sensitive for detecting EV-D68
than the FDA-approved commercial assays (i.e., Luminex xTAG
RVP, GenMark Dx eSensor RVP, Biofire FilmArray RP, and
Cepheid GeneXpert) for enterovirus/rhinovirus detection (Table
4), with the further advantage of specific identification of EV-D68.
The WashU assays showed no evidence of amplification of other
enteroviruses, including the relatively closely related EV-D70 vi-
rus, or rhinoviruses.

There are two limitations of this study. First, we were not able
to test the specificity of this assay against every known enterovirus
or rhinovirus subtype. It is possible that the assay cross-reacts with
another subtype, although that is not likely based on in silico anal-
ysis of the genome sequences. It is also possible that the assay
cross-reacts with a subtype that has yet to be discovered. Second,
although we have tried to show that our assay evaluated a broad
range of EV-D68 strains, EV-D68 strains may exist or emerge with
mutations in the PCR target region that cause the assay to miss
that strain of the virus.

The development of another EV-D68-specific RT-PCR by Pi-
ralla et al. (24) was communicated in March 2015. This under-
scores the international interest in EV-D68 detection stimulated
by the global reemergence of the virus in 2014. The assay targets a
60-bp region of the 5=-nontranslated region of EV-D68. A com-
parison of the assay to the CDC RT-PCR and commercially avail-
able enterovirus/rhinovirus clinical assays was not reported in
their paper. In our dilution tests, the assay was 10-fold less sensi-
tive in detecting the 2014 outbreak strain of EV-D68 than the
WashU assays. Furthermore, the WashU assays detected the un-
diluted outbreak specimen 7 cycles before the 5=-nontranslated
region-targeting assay reached detection. Because these assays de-
tect completely different segments of the viral genome, they may
have complementary value in future applications.

TABLE 4 Comparison of detection of EV-D68 using laboratory-developed and commercial assays

Test material

CT for laboratory-developed assays Commercial assays

WashU
design 1

WashU
design 2

Modified
CDC

5=-nontranslated
regiona Panenterovirusb

Luminex xTAG
RVP MFIc

GenMark
Dx eSensor
RVP nAd

BioFire
FilmArray
RP resulte

Cepheid
GeneXpert
CT

Focus
enterovirus
ASR CT

EV-D68 dilutionsf

10�1 21.3 22.9 23.5 30.0 27.1 4,415 10.5 Pos 28.1 28.2
10�2 24.0 25.5 28.0 33.0 30.1 5,112 3.4 Pos 31.2 31.6
10�3 28.5 29.9 34.2 36.1 33.7 5,405 6.9 Pos 34.1 35.9
10�4 31.8 33.1 Neg 41.0 38.1 1,132 Neg Pos Neg 38.1
10�5 36.2 37.0 Neg Neg 37.1 Neg Neg Neg NT Neg
10�6 Neg Neg Neg Neg Neg Neg Neg Neg NT Neg

Fermon straing 20.0 15.4 Neg 15.2 18.5 4,775 Neg NT NT 20.7
EV-D70g Neg Neg Neg Neg 14.5 3,023 6.8 NT NT 13.7
Water Neg Neg Neg Neg Neg Neg NT NT NT Neg
a Protocol was as described by Piralla et al (24).
b Protocol as described by Nijhuis et al. (23). The modifications are described in Materials and Methods.
c Luminex mean fluorescence index (MFI) values: negative, �150; equivocal, 150 to 300; positive, �300.
d GenMark nanoampere (nA) values: positive, �3, with �100 being strong positive.
e Pos, positive; Neg, negative; NT, not tested.
f Nucleic acid extracted from nasopharyngeal swab from EV-D68-positive patient. See Materials and Methods for details.
g ATCC strains; total nucleic acid extracted from infected cell culture.
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While there are no specific treatments for EV-D68 and cur-
rently no antiviral targets available, rapid and accurate diagnosis
of current and future EV-D68 infections is of great concern to
clinicians and public health authorities. The EV-D68-specific RT-
PCR assay we have developed can be used for epidemiological
studies of the EV-D68 outbreak and for virus monitoring in sub-
sequent seasons. It is unclear at this time whether typing EV-D68
will be useful for patient management. However, some FDA-ap-
proved multiplex respiratory panels may not detect EV-D68 op-
timally or at all. In laboratories using those assays, an additional
assay that detects EV-D68 will be useful for laboratory documen-
tation of EV-D68 infection, which may help with prognosis, anti-
biotic use, and appropriate isolation. The ongoing importance of
improved diagnostic capability for EV-D68 is underscored by the
recent decision by the Department of Health and Human Services
to encourage the development of EV-D68 testing capability by
authorizing the emergency use of new in vitro diagnostics for
EV-D68 detection (http://www.gpo.gov/fdsys/pkg/FR-2015-02-2
7/html/2015-04121.htm).
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