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Objective: The brain relies on the glymphatic system to clear metabolic wastes

and maintain brain homeostasis to fulfill its functions better. Yet, the complexity of

the glymphatic flow and clearance and its changes in HIV infection and its role in

neurocognitive dysfunction remain poorly understood. This study aims to explore the

impact of HIV and combination antiretroviral therapy (cART) on the glymphatic system

and establish a potential biomarker of HIV-associated neurocognitive disorders (HAND).

Methods: Here, we examined the glymphatic profiles of middle-aged virosuppressed

patients with HIV (n = 27) receiving cART over 1–6 years and healthy controls (n =

28) along the perivascular space (PVS) using diffusion tensor image analysis along the

perivascular space (ALPS) with guided and unguided approaches. We later combined

data from these analyses to investigateMRI glymphatic correlates of cognitive impairment

and other clinical tests of HIV (CD4+ T-cell counts and CD4+/CD8+ ratio).

Results: We found that glymphatic function as measured by the ALPS index increased

significantly in the right and left PVSs of patients with HIV having cART. On antiretroviral

therapy, a changing pattern in glymphatic clearance function in patients with HIV having

cART correlated with attention and working memory. Duration on cART was also

associated with cognitive performances of abstract and executive function and learning

and memory.

Conclusion: These findings provide MRI evidence of the presence of HIV-induced

changes in the glymphatic flow and clearance, which might underlie cognitive impairment

among patients with HIV having cART. An increase in the glymphatic activity might reflect

a compensatory mechanism to regulate microenvironment homeostasis compromised

by HIV. This compensation might be necessary to maintain the proper functioning of

the brain while coping with HIV pathology. These findings also shed light on the clinical

importance of evaluating glymphatic function based on the ALPS index and suggest

that improving the glymphatic system may serve as an alternative therapeutic strategy

for HAND.
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INTRODUCTION

Human immunodeficiency virus neuroinflammation has
been associated with the pathogenesis of HIV-associated
neurocognitive disorders (HAND) (1). Studies have shown
that combination antiretroviral therapy (cART) can reduce
these inflammations (2), enhance functional circuits (3, 4),
and consequently improve cognitive functions (5). However,
despite antiretroviral therapy, several studies have reported
persisting cognitive dysfunction in patients with HIV having
cART, especially in attention and working memory, executive
function, motor control, and visual processing speed (6–8). We
hypothesize that the disruption of homeostasis of the neural
microenvironment, resulting from HIV-induced neurotoxins
and elevated metabolites, may contribute to subsequent cognitive
declines in HIV-infected individuals.

The regulation of fluid homeostasis in the brain is achieved
through the glymphatic system. The glymphatic system refers to
the drainage pathways through which metabolic waste products
and other undesirable components get flushed out of the
brain, thereby stabilizing microenvironmental homeostasis and
providing suitable working conditions for the brain parenchymal
cells (9, 10). The system relies on the bulk flow of cerebrospinal
fluid (CSF) produced by the choroid plexus. The CSF-pressure
and cerebrovascular pulsatility drive CSF into the deep para-
arterial spaces where CSF-interstitial fluid (ISF) exchange occurs.
CSF-ISF exchange is enabled by the polarization processes of
aquaporin-4 (AQP4) water channels at the end-feet of astrocytes.
This exchange facilitates the drainage of metabolic wastes and
other soluble particles such as glucose, lipids, signalingmolecules,
and apolipoprotein E (apoE) via paravenous channels (11, 12).

Presently, the role that the glymphatic system plays in cART-
treated HIV individuals is poorly known. Previous studies
have documented the mechanisms of the glymphatic system
and its roles in most neurodegenerative diseases (10, 13). An
impairment in the glymphatic clearance function has been shown
to accelerate the accumulation of abluminal protein deposits,
α-synuclein, Aβ and tau, and huntingtin, which, respectively,
underpin small vessel disease, Parkinson’s disease, Alzheimer’s
disease (AD), and Huntington’s disease (13, 14).

Studies have also hypothesized that the building up of these
protein aggregates can reciprocally further impair glymphatic
functioning (15). In a variety of research tests, impaired
glymphatic clearance has been associated with cognitive
dysfunction, with aged individuals being at higher risk due to
age-related alterations such as weakening of arterial pulsatility
and AQP4 polarization dysfunctions, and stiffness or flexibility of
large elastic arteries (16). A recent work published in 2020 by Liu
et al. provided evidence that restoring cognitive impairments was
only possible when the underlying disruptions of the glymphatic
system were normalized (10), suggesting a solid interdependence
between the two (17).

Ways to enhance brain-to-blood clearance include promoting
protein expressions for: (1) increasing CSF bulk flow; (2)
stimulating Aβ phagocytosis; and (3) reducing microglia
inflammatory activation (18–21). For example, osteopontin
expressions promoted by glatiramer acetate immunization

prove effective for macrophage-mediated Aβ clearance (20).
Lipoprotein receptor-related protein 1 (LRP1) expressions
promoted by omega-3 polyunsaturated fatty acids and lithium
chloride can upgrade CSF-bulk flow and accelerate Aβ42-
clearance (19, 21).

Whether there is a failure in the glymphatic functioning
across patients with HIV that might contribute to HIV-associated
cognitive decline among patients with HIV having cART remains
unexplored. It is also yet to be determined what magnitude of
glymphatic influx and clearance plays a pivotal role in cART
strategies to reverse neural dysfunction. Here, using diffusion
tensor imaging (DTI), we investigate whether the state of
the glymphatic system in HIV-infected individuals provides
additional prognostic information about the cause of HAND.
To this end, middle-aged, virologically suppressed patients (age
range, 36–55 years) were enrolled. The evaluation of glymphatic
clearance functioning was performed using “DTI-analysis along
the perivascular space” (DTI-ALPS) index. The DTI-ALPS index
has proven effective for the estimation of glymphatic function
in earlier studies (22–24). We hypothesize that the DTI-ALPS
index would offer new insights into understanding the impact of
HIV and cART on the glymphatic system and the role played by
glymphatic clearance in the pathogenicity of HAND.

METHODS

Participants
A total of 28 middle-aged healthy controls (mean ± SD age =

41.35 ± 4.85 years, range = 36–52 years) and 27 age-matched
patients with HIV-1 seropositive taking cART [tenofovir (TDF)
+ lamivudine (3TC) + efavirenz (EFV)] (mean ± SD age =

40.30 ± 4.80 years, range = 36–53 years) were enrolled at
Beijing YouAn Hospital, the capita Hospital, between March
2016 and November 2016. A set of clinical tests for blood
and neuropsychological assessment were administered to these
participants. The reports of the demographics, blood, and
neuropsychological profiles are given in Table 1. Each patient
sustained at least 1 year of stable cART-regimen. All the patients
had undetectable viral loads (copies/ml). The blood test reports
included CD4+ T-cell counts and CD4+/CD8+ ratio, which
serve as potential indicators of HIV disease severity (25). The
individuals who demonstrated any record of illicit drugs and
alcohol use, cerebral atrophy, brain lesions, head injury, or
neurological disorders were excluded from participation. This
study was conducted in compliance with the code of Ethics of
the World Medical Association (Declaration of Helsinki) for
human experiments. Each participant’s written informed consent
was obtained before participation. The Ethical Committee of the
Capital Medical University and the University of Science and
Technology of China reviewed and approved this study.

Neuropsychological Testing
A battery of neuropsychological (NP) tests for six cognitive
domains was administered to all patients according to Frascati
recommendations (26). The Continuous Performance Test
Identical Pairs (CPT-IP), the Wechsler Memory Scale-III (WMS-
III), and Paced Auditory Serial Addition Test (PASAT) were
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TABLE 1 | Demographic and clinical characteristics of patients with HIV and healthy controls.

Category HIV patients (n = 27) Healthy controls (n = 28) P-value

Age (mean ± SD years) 40.30 ± 4.80 (36–53) 41.35 ± 4.85 (36–52) 0.483

Gender (male %) 27 (100%) 28 (100%) N/A

Duration on antiretroviral therapy (days) (IQR) 1119.82 ± 671.265 (365–2,342) N/A N/A

CD4+ cell count (cells/µl) (IOR) 503.15 ± 170.700 (148.0–804) N/A N/A

CD4+/CD8+ ratio (IQR) 0.72 ± 0.508 (0.15–2.09) N/A N/A

Undetectable viral load 27 (100%) N/A N/A

Learning and recall (memory) score 45.29 ± 8.85 (27.75–62) N/A N/A

Motor score 44.98 ± 13.26 (13–69) N/A N/A

Abstract/executive score 59.15 ± 9.73 (42.5–75.5) N/A N/A

Verbal and language score 48.30 ± 7.77 (36–60) N/A N/A

Attention/working memory score 47.43 ± 7.73 (37–77) N/A N/A

Information processing speed score 47.84 ± 8.36 (33–64) N/A N/A

Data are shown in mean ± SD; IQR, interquartile range; N/A, not applicable; and p-values were computed based on a two-sample t-test.

used to assess attention and working memory. The category
fluency and animal naming tests were used for testing verbal
and language, the Grooved Pegboard test for motor function,
and the Wisconsin Card Sorting Test-64 (WCST-64) for abstract
and executive function. The Hopkins Verbal Learning Test-
Revised (HVLT-R) and the Brief Visuospatial Memory Test-
Revised (BVMT-R) tested for learning and recall, while the
trail-making test part A evaluated the information processing
speed. Demographically adjusted T-scores were obtained by
standardizing the raw scores of each test. For the cognitive
domain assessed by multiple tests, an average composite T-score
was obtained across tests. NP test showing cognitive impairment
in at least two cognitive domains with normal day-to-day
functioning suggested ANI.

Imaging Acquisition
Neuroimaging data were obtained using a Siemens 3T MRI
Scanner (Allegra, Siemens Medical System, Erlangen, Germany)
equipped with a 32-channel head coil. Imaging protocols
include a 3D-T1-weighted anatomical image [TR/TE = 1,900
ms/2.52ms, inversion time= 900ms, flip angle= 9◦, field of view
(FVO) = 250 mm2 × 250 mm2, matrix size = 246 × 256, slice
thickness= 1mm, and voxel size=1 mm3 × 0.977 mm3 × 0.977
mm3] and a diffusion-weighted imaging [60 diffusion-encoded
(b = 1,000 s/mm2), 3 references (b = 0 s/mm2), TR = 3,300ms,
TE= 90ms, flip angle= 90◦, slice thickness= 4.2mm, voxel size
= 2 mm3 × 2 mm3 × 4.2 mm3].

Image Pre-processing
Data pre-processing was achieved using the FMRIB Software
Library (FSL) (https://fsl.fmrib.ox.ac.uk/) (27), which involves
correcting for susceptibility-induced distortions, eddy currents,
and subject movements. Diffusion tensor maps were generated
using the DTI-tensor fitting of the FSL. Other diffusivity maps,
i.e., fractional anisotropy (FA) and mean diffusivity (MD), were
also produced. Because all the neuroimaging data were collected
from middle-aged adults, each subject’s FA map was registered
to the Illinois Institute of Technology (IIT) version 3.0 template

of IIT Human Brain Atlas (28), using FMRIB’s Linear/Non-linear
Image Registration Tools (FLIRT/FNIRT), part of the FSL version
5.09 (27). The IIT v.3.0 template of the adult human brain is
a population-based FA template having a high signal-to-noise
ratio (SNR) and FA values and high image sharpness with visible
small white matter structures and spatial features (28). It also
has smaller intergroup FA differences and higher intersubject
DTI spatial normalization accuracy compared with other DTI
brain templates (28). Coregistration’s accuracy was confirmed by
visual inspection. Diffusion tensormaps of all of the subjects were
normalized to IIT version 3.0 template using the transformation
matrix obtained from the normalization of FA images to the IIT
version 3.0 template.

Glymphatic DTI-ALPS Analysis
Evaluation of diffusion tensor image analysis along the
perivascular space index (DTI-ALPS-index) was concordant with
earlier studies (24, 29, 30). We first registered JHU-ICBM DTI-
81 labels, including the areas of projection fiber (superior corona
radiata) and association fiber (superior longitudinal fasciculus),
to IIT version 3.0 template. Then, DTI-ALPS index was
computed as the estimate of water diffusivity along the x-axis of
projection and association fiber areas (Dxpro, Dxasc) modulated
by diffusivity along the y-axis of the projection and z-axis of
the association fibers (Dypro, Dzasc), reflecting the glymphatic
system in the medullary veins (Figure 1) (24, 32). The DTI-ALPS
index is given by “mean (Dxpro, Dxasc)/mean (Dypro, Dzasc).”
The DTI-ALPS index was calculated based on three paradigms.
(1) Using the DTI-unguided atlas-based approach (Method 1), in
which the regions of interest (ROIs) were set in the whole areas
of the projection and association fibers as delineated by the JHU-
ICBMDTI-81 Atlas (Figure 2A). (2) Using DTI-guidedmanually
delineated ROIs (Method 2) of these fiber areas, with color-
coded FA modulated by Illinois Institute of Technology (IIT)
median eigenvector 1 (V1) (IITmedian_V1) used as reference
(Figure 2B). (3) Using 5-mm-diameter spherical ROIs (Method
3) placed in the areas of the projection and association fibers, with
the reference slice being the center of these ROIs (Figure 2C).
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FIGURE 1 | Medullary veins. (A) Angiogram of the parenchymal venous system. (B) Phase images of susceptibility-weighted imaging (SWI) showing the deep

medullary venous structures before (left) and after segmentation (right). (C) Diffusion tensor image showing the projection (Proj) and association (Asc) fiber areas where

the medullary veins run. Images (A,B) were adapted, with permission from Yan et al. (31).

FIGURE 2 | Regions of interest (ROIs) for ALPS index evaluation. (A) Axial (left) and coronal (right) visualization of the ROIs showing labels of the projection and

association fiber areas defined by the labels of JHU-ICBM DTI-81 atlas. On the atlas-based approach (unguided), these labels were used to extract ALPS values from

coregistered tensor maps. (B) Regions of the projection and association fiber areas along the periventricular space manually delineated, guided by diffusion maps

(color-coded FA). (C) 5-mm-diameter spherical regions placed on the projection and association fiber areas with the centers on the reference slice.

Notice that the term DTI-guided refers to the use of FA
color-coded maps to delineate the ROIs, while DTI-unguided
means otherwise. The DTI-ALPS index was first evaluated
separately for both the left and the right hemispheres at the
locations where the direction of the deep medullary veins was
perpendicular to the ventricle body. Then, the “bilateral DTI-
ALPS index,” a joint DTI index of the right and left PVSs,
was recorded.

For an intuitive understanding of the ALPS index at the
ventricular level, it is essential to note the organization of the
white matter (WM) fibers and their directions. The perivascular
WM fibers (on the axial plane; Figure 1C) consist of two

dominating fibers—the projection fibers (in the z-direction; blue;
Figure 1C) and association fibers (in the y-direction; green;
Figure 1C)—through which medullary veins run (Figure 1B).
The direction of the PVS at the ventricular level is the direction
of the medullary veins, which is also the x-direction (left/right
or right/left), parallel to the walls of lateral ventricles but
perpendicular to the projection and association fibers. Thus,
the PVS can be well-described by differences in water molecule
characteristics of the x-direction of the dominant fiber areas
(Dxpro, Dxasc) and other perpendicular directions (Dypro,
Dzasc) (22). This difference is mathematically presented as the
ratio of the mean of the x-direction diffusivities [mean (Dxpro,
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Dxasc)] to the mean of the y- and z-direction diffusivities [mean
(Dypro, Dzasc)].

Statistical Analysis
Statistical analyses were performed on SPSS software [IBM
SPSS Statistics for Windows, version 20.0 (IBM Corporation,
Armonk, New York, USA)]. Group differences in the DTI-
ALPS index were determined using the two-sample t-tests.
Corrections for multiple comparisons were performed using
a false discovery rate (p < 0.05, FDR). Correlation analyses
between imaging markers and clinical measures were determined
using Pearson’s correlations.

RESULTS

Demographic and Neuropsychological
Evaluation
Table 1 shows the demographic and clinical data of participants.
A total of 55 participants (HIV: 27, HC: 28, male: 100%) were
included. The average age of patients with HIV having cART
and healthy controls was 40.30 ± 4.80 and 41.35 ± 4.85 years
old, respectively, which did not reach the significant level for
the difference (p = 0.483: p > 0.05). The average duration
on cART for patients with HIV was 1,119.82 ± 671.265 days.
All the patients expressed an undetectable viral load. CD4+
cell counts (cells/µl) and CD4+/CD8+ ratios of patients were
503.15 ± 170.700 and 0.72 ± 0.508, respectively. Note that the
reference ranges used for CD4 cell counts and CD4+/CD8+
ratios were 544 to 1,212 cells/µl and 0.71 to 2.78, respectively.
The neuropsychological test scores of cognitive domains were:
learning and recall: 45.29 ± 8.85, motor function: 44.98 ±

13.26, abstract and executive function: 59.15 ± 9.73, verbal
and language: 48.30 ± 7.77, attention and working memory:
47.43 ± 7.73, and information processing speed: 47.84 ± 8.36.
These neuropsychological test scores did not indicate detectable
changes in cognitive functioning per Frascati criteria.

As Figure 4 shows, duration of patients on cART was
significantly related to cognitive scores of the domains of
the abstract and executive function (p = 0.0009, r = 0.669,
Figure 4A), and learning and recall (p = 0.0338, r = 0.444,
Figure 4B). Neither CD4+ T-cell counts nor CD4+/CD8+ ratio
demonstrated a significant relationship with the duration of
patients on cART (p > 0.05).

DTI-ALPS Index Group Differences
Results of the group differences in the ALPS index are shown
in Figure 3. All three paradigms of ALPS index evaluation
reported significant group differences between patients with HIV
having cART and healthy controls (HCs). Specifically, there was
a significant increase in the ALPS index in the right, left, and
bilateral PVSs of theHIV group (Figures 3A–C). The ALPS index
computed using manually delineated guided-ROIs (Method 2,
Figure 3B) offered the highest group difference with p= 0.0367, t
= 2.16 (left); p= 0.0046, t= 2.99 (right); and p= 0.0090, t= 2.74
(bilateral), followed by 5-mm-diameter guided ROIs (Method 3,
Figure 3C) with p = 0.0409, t = 2.11 (left); p = 0.0068, t =
2.85(right); and p = 0.0110, t = 2.66 (bilateral), and lastly the

atlas-based DTI-unguided ROIs (Method 1, Figure 3A) with p=
0.0490, t = 2.03 (left); p = 0.0212, t = 2.12 (right); p = 0.0219,
t = 2.19.

Glymphatic Function and Cognitive
Function
The results of correlations between the ALPS index and
neuropsychological test scores are given in Figure 4. The

FIGURE 3 | Comparisons of the ALPS indexes in the periventricular white

matter (PVWM) veins between the HIV and HC groups. Two sample t-test with

false discovery rate correction was used (FDR, p < 0.05). The group

differences were based on (A) atlas-based approach, i.e., using labels from

JHU-ICBM DTI-atlas and manual approaches using, (B) manually delineated

regions of the lateral PVWM areas with reference to color-coded FA map, and

(C) using 5-mm-diameter spherical ROIs. Participants in the cART-treated HIV

group showed a significantly higher ALPS index than those in the HC group

(A–C). Boxes indicate the 25th−75th percentiles of the ALPS index, and the

lines and whiskers show the median and range of the ALPS index, respectively.
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FIGURE 4 | Correlation results. (A,B) Correlations of duration on cART with neuropsychological scores of patients with HIV. The duration of cART treatment was

positively correlated with cognitive performances of (A) abstract and learning function and (B) learning and recall. (C–E) Correlations between the ALPS indexes and

cognitive functions in HIV patients. (C) With JHU-ICBM DTI-81 atlas-based ROIs, the right (R, gray) and bilateral (B, green) ALPS indexes demonstrated positive

correlations with attention and working memory. (D) With manual DTI-guided ROIs, positive relationships were also exhibited between attention/working memory and

ALPS indexes of the right and the combined perivascular spaces (PVSs). (E) With 5-mm-diameter ROIs, similar correlations were manifested between the right and

bilateral indexes and the attention and working memory neuropsychological scores. All tests in correlation analyses were significant at p < 0.05. R, right; B, bilateral.

The term “bilateral index” refers to an index computed by combining ROIs of both sides (right and left) of the PVSs.

diffusion characteristics, as measured by the DTI-ALPS index,
along the PVWM were significantly associated with cognitive
functions of cART-treated patients with HIV. The significant
correlations were mainly between the ALPS index of the
right and bilateral PVSs and attention and working memory
(Figures 4C–E). From the DTI-unguided atlas-based approach
(Method 1), the right ALPS index and bilateral ALPS index
had significant correlations (p = 0.0128, r = 0.521; and
p = 0.0184, r = 0.498, respectively) with attention and
working memory (Figure 4C). From the manual whole-ROI
DTI-guided approach (Method 2), the ALPS indexes of the
right and bilateral reported respective associations (p = 0.0337,
r = 0.454; and p = 0.0328, r = 0.456) with attention
and working memory (Figure 4D). Similarly, the right and
bilateral ALPS indexes of the 5-mm-ROI-based approach
(Method 3) demonstrated significant associations with attention
and working memory with p = 0.0096, r = 0.539; and
p = 0.0288, r = 0.466 (Figure 4E). None of the other
cognitive domains indicated significant correlations with the
ALPS index.

Duration on cART and DTI- Glymphatic
Metric
Figure 5 shows the results of the correlation between the
duration on cART and ALPS index. The duration on cART
exhibited a significant correlation with the ALPS index of the
patients with HIV. As with cognitive score and ALPS index,
the significant correlations of the duration on cART were
predominantly with the ALPS index of the right and bilateral
PVSs. The respective correlations scores were (p = 0.0044, r =
0.608, right) and (p = 0.0272, r = 0.493, bilateral) for ALPS
indexes of Method 1 (Figure 5A); (p = 0.0022, r = 0.643, right)
and (p= 0.0059, r= 0.592, bilateral) for ALPS indexes of Method
2 (Figure 5B) and (p= 0.0032, r = 0.625, right) and (p= 0.0104,
r = 0.559, bilateral) for ALPS indexes of Method 3 (Figure 5C).

DTI Glymphatic Characteristics and
HIV-Immunologic Function
The glymphatic characteristics did not demonstrate any
significant correlations (p > 0.05) with the HIV immunologic
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FIGURE 5 | Results of correlations between the duration of cART treatment and ALPS index. In all analyses (A,B), the duration of cART treatment correlated positively

with the ALPS index of the right (R) and bilateral (B) PVSs. (A) Correlation outcomes as evaluated between the cART period and ALPS index computed within the

areas defined by JHU-ICBM atlas-based ROIs. (B) Correlations as assessed between ALPS index calculated within areas determined by manual DTI-guided ROIs and

duration of cART treatment. (C) Correlation outcome of the duration of therapy and ALPS index measured within areas of 5-mm diameter. All correlation results were

significant at p< 0.05. In the figure legend, R, right; B, bilateral.

functions; that is, neither CD4+T-cell counts nor CD4+/CD8+
ratios were correlated with the ALPS index.

DISCUSSION

In this study, we evaluated the glymphatic system in cART-
treated patients with HIV using the DTI-ALPS index, which is
the ratio of diffusivity toward the PVS. First, we assessed the DTI-
ALPS index with the directionality consistent with earlier studies
(22), wherein the evaluation was conducted on the left sides of the
participants’ brains, which are considered to have thicker fibers
as all subjects were right-handed. Second, this study added the
evaluation of the right PVS, considering that patients with HIV
are susceptible to HIV pathology in both hemispheres rather than
one side (6, 33). In addition, we evaluated the average ALPS index
of bilateral sides in line with Zhang et al. (24), which we referred
to as bilateral ALPS index.

Herein, we found that the ALPS index of the right PVS showed
a higher group difference than that of the left PVS, suggesting that
a glymphatic change occurs differentially across PVSs, depending
on the severity of HIV injury, adding to the point that a complete
understanding of the neurobiology and status of glymphatic
system requires an extensive assessment of both hemispherical
PVSs than previously appreciated (22, 23). Nevertheless, we
cannot exclude that other factors such as cART penetrationmight
also account for the differences in glymphatic clearance function
observed between the left and right sides. It is also worth noting
that, of the three paradigms for evaluating glymphatic clearance
function, method 2 and method 3 (DTI-guided approaches)
offered higher statistical power than method 1 [DTI-unguided,
also referred to as atlas-based method (30)]. This was expected
since the DTI-unguided approach (Method 1) often incorporates
diffusivities of water molecules in areas beyond the PVS (34),
which could moderate the ALPS index values.

Glymphatic Clearance Function and Fluid
Homeostasis
Generally, the authors of this study have found that the ALPS
index, as evaluated by all three paradigms, increased significantly
in patients with HIV having cART compared to healthy controls.
One possible interpretation is that the increase in the ALPS
index suggests HIV-necessitated changes in glymphatic clearance
functioning, possibly as a compensatory mechanism to maintain
fluid homeostasis compromised by HIV.

Several previous studies have reported disruption of fluid
homeostasis due to HIV (35, 36), wherein HIV has been
shown to elevate levels of CSF quinolinic acids and induce
abnormal microglial activation and neuroinflammation (also see
Figure 6). These processes generate excess viral proteins in CNS,
which attack neural and glial functions (35, 36) and metabolic
regulatory system (37), and in the long run cause the death of
the parenchymal cells (38). We hypothesize that such disruption
of fluid homeostasis and the functional impairment of the
glymphatic system might underlie cognitive deficits often seen
among patients with HIV, especially in attention and working
memory, executive function, and learning and memory (39, 40).
Meanwhile, we also underscore that higher-order mechanisms
of periventricular AQP4 polarization, arterial pulsatility, and
cerebrovascular compliance play a valuable role in cognitively
normal cART-treated patients with HIV to detox and cleanse
the brain from HIV-associated neurotoxins and metabolites to
maintain fluid milieu for normal functioning.

Glymphatic Clearance Function in
Antiretroviral Therapy
Our results differ from two earlier studies that examined the
causes of cognitive impairment in patients with type 2 diabetes
mellitus (23) or idiopathic normal pressure hydrocephalus (22)
which found a lowered ALPS index. This may be explained
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FIGURE 6 | Central nervous system (CNS) homeostasis and glymphatic clearance. HIV elevates the cerebrospinal fluid (CSF) quinolinic acid levels. It also induces

neuroinflammation, viral proteins that cause injury to neuronal and glial cells, including astrocytes, leading to the death of some cells. The metabolic activity and

functions of CNS cells become subject to ongoing HIV injuries. In response to the toxic homeostasis and infectious chemicals, the brain might recruit higher-order

mechanisms (AQP4 polarization processes, pulsatility, and cerebral vascular compliance) for homeostasis restoration.

by the fact that cART-treated patients with HIV in this
study did not manifest observable cognitive changes in the
neuropsychological battery tests, which may suggest that brain
injury might occur early before deficits could be detected in the
neuropsychological battery tests or might suggest stable cognitive
reserve in patients with HIV despite HIV neuropathology,
possibly favored by actions of the combination of [tenofovir
(TDF) + lamivudine (3TC) + efavirenz (EFV)]. This is contrary
to the patients (such as Alzheimer’s, diabetic, or small vessel
diseases) who are typically affected by constant accumulation and
deposition of Aβ, which affects the ISF bulk flow (13), leading
to a substantial decline of glymphatic functioning observed in
these diseases (24).

Previous studies have demonstrated that cART can
successfully penetrate the blood-cerebrospinal fluid barrier
(BCSFB) and subsequently promote neutrophil and phagocytic
activity, which is essential for the clearance of inflammatory
immune complexes (41). The cART has also been shown to
reduce the abnormal activity of viral proteins and glial activation,
which normally have a deleterious effect on synoptodentritic
structure and function (5, 42). So cART in our patients who have
been on cART for over 1–6 years might have been protective
against severe damage to cognitive reserve and thus allowed the

brain to recruit other strategies—including glymphatic system, to
cope with neuropathological damage due to HIV. Less protected
CNS is at higher risk of developing PVS inflammation, vascular
dysfunctions, and abnormal astrocytic AQP4 polarization,
leading to later suppression of the glymphatic pathways (10),
which collectively would weaken the brain capacity to modulate
glymphatic clearance functioning. Moreover, it is essential
to note that enhanced glymphatic functioning seen in our
patients with HIV having cART could be imperative to clean
the day-to-day remnants of the cART-drugs that crossed the
CNS (43).

Basal Ganglia, Glymphatic System, and
HIV Infection
Earlier studies of the glymphatic system have already shown that
the basal ganglia are entirely drained by deep medullary veins,
indicating the more close relationship between the glymphatic
system in the basal ganglia and the glymphatic clearance function
calculated from the diffusion of PVSs around the deep medullary
veins (24). The basal ganglia and the surrounding structures have
also been reported to be the primary targets of HIV infection
(7, 44–46). For example, following HIV infection, structural
MRI studies have found tissues worn away in the structures of
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basal ganglia, including the caudate nucleus, and in the walls
of lateral ventricles and the structures of the thalamus and
corpus callosum (44–48). Learning and memory-related deficits
in patients with HIV have been associated with injuries in these
structures, including the caudate nucleus (49, 50). A study of
white matter microstructures conducted in the USA in patients
over 60 years old has also detected HIV injury in the dominant
fibers (projection: corona radiata; and association: superior
longitudinal fasciculus) crossed by these medullary veins, leading
to abnormal diffusion and microstructural integrity (51).

Our results support these earlier findings, and provide further
evidence of the drainage pathways of the lost tissues in the basal
ganglia (see Figure 6) and other regions next to the medullary
veins, which leads to reduction of basal ganglia and thalamic
volumes (44, 52), expansion of the lateral ventricles (48), and
thinning of the corpus callosum (46), which are usually detected
in among patients with HIV. The authors of this study also infer
that HIV injury might prolong to initiate infection in axons,
which may further lead to abnormal flow or diffusion of water
molecules in white matter tracts, and these changes may at least
partly underpin changes in glymphatic clearance.

Glymphatic System and Cognitive Function
The team of this study also found that increased glymphatic
function in patients with HIV having cART was related to the
cognitive function of attention and working. Previous studies
have already documented the relationship between glymphatic
function and cognitive function in patients with cerebral small
vessel disease, diabetes, and AD (18, 22–24). Increasing activity
or functions related to the cognitive function of attention and
working memory in patients with HIV has previously been
reported in a study performed by Chang et al., which investigated
the neural correlates of attention and working memory deficits
(53). The authors found that greater activation of the key brain
regions such as frontal areas was required to perform more
complex attention and working memory tasks, suggesting that
neural correlates of attentional deficits due to HIV injury may
be increased attentional modulation. Therefore, we infer that
increasing glymphatic function in patients with HIV having
cART might also reflect excessive modulation required for
attention and working memory following HIV neuropathology.

Again, from correlation analyses, we also observed a
significant correlation between the duration of cART treatment
and cognitive performance of the patients with HIV. The
longer the period on cART, the higher neuropsychological test
scores of learning and memory and abstract and executive
function. We speculate that this association may be mediated
by cART. However, further studies are required to validate if
this relationship is valid over the long term. This is because
there is still an ongoing debate whether long-term use of cART
has a detrimental effect on brain structure and function. For
example, some studies have reported improvements in basal
ganglia indicators in patients with HIV in the early use of cART,
but later these improvements started to decline after the long-
term use of cART, accompanied by cognitive deficits (54).

This study of middle-aged cART-treated patients with HIV
did not find any relationship between glymphatic changes

in the CNS compartments and HIV immunologic functions
(i.e., CD4+T-cell counts and CD4+/CD8+ ratio), suggesting a
generally healthy condition for these cART-treated individuals
living with HIV (49).

LIMITATIONS

This study has some limitations worth noting. First, all the
analyses were performed using data acquired with b = 1,000
s/mm2 because: (1) water molecules with high motivity in PVSs
are thought to have more significant influence in measurements
when the b value is lower; (2) the signal-to-noise ratio in b
= 1,000 s/mm2 is higher than in b = 2,000 s/mm2; and (3)
the cognitive function has previously been demonstrated to
correlate with ALPS index evaluated with b = 1,000 s/mm2

data than b = 1,000 s/mm2 data (23, 24, 29). However, the
absence of comparisons with b = 2,000 s/mm2 results may
limit our findings. Second, even though ALPS-index reflects the
instantaneous glymphatic function at the time of the scan, adding
the glymphatic evaluation at times of sleep demonstrated to have
the more active glymphatic system (55) should be considered
in further studies. It is also important to note that this study
did not include untreated HIV cases. Furthermore, large, both
gender, longitudinal data are warranted to validate conclusions
of our findings.

CONCLUSION

In conclusion, we found that the DTI-ALPS index in patients
with HIV having cART was high. The higher ALPS index
in cART-treated patients with HIV suggests enhanced
glymphatic function. Moreover, the higher ALPS index
was also associated with the cognitive scores of attention
and working memory. Authors infer that HIV-neurotoxins
disrupt the microenvironmental fluid homeostasis, which
necessitates changes in glymphatic flow and clearance. Such
changes in fluid homeostasis and glymphatic functioning might
underlie HAND seen among patients with HIV having
cART. These findings also suggest that the therapeutic
initiatives aiming at improving functions of paravascular
fluid exchange between CSF and ISF, cerebral arterial pulsatility,
and perivascular AQP4 polarization would be the best strategies
to maintain or normalize cognition despite the HIV pathology
of an individual.
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