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Abstract
Background: Genetic maps are based on recombination of orthologous gene sequences between
different strains of the same species. Therefore, it was unexpected to find extensive non-
collinearity of genes between different inbred strains of maize. Interestingly, disruption of gene
collinearity can be caused among others by a rolling circle-type copy and paste mechanism
facilitated by Helitrons. However, understanding the role of this type of gene amplification has been
hampered by the lack of finding intact gene sequences within Helitrons.

Results: By aligning two haplotypes of the z1C1 locus of maize we found a Helitron that contains
two genes, one encoding a putative cytidine deaminase and one a hypothetical protein with part of
a 40S ribosomal protein. The cytidine deaminase gene, called ZmCDA3, has been copied from the
ZmCDA1 gene on maize chromosome 7 about 4.5 million years ago (mya) after maize was formed
by whole-genome duplication from two progenitors. Inbred lines contain gene copies of both
progenitors, the ZmCDA1 and ZmCDA2 genes. Both genes diverged when the progenitors of maize
split and are derived from the same progenitor as the rice OsCDA1 gene. The ZmCDA1 and
ZmCDA2 genes are both transcribed in leaf and seed tissue, but transcripts of the paralogous
ZmCDA3 gene have not been found yet. Based on their protein structure the maize CDA genes
encode a nucleoside deaminase that is found in bacterial systems and is distinct from the
mammalian RNA and/or DNA modifying enzymes.

Conclusion: The conservation of a paralogous gene sequence encoding a cytidine deaminase gene
over 4.5 million years suggests that Helitrons could add functional gene sequences to new
chromosomal positions and thereby create new haplotypes. However, the function of such
paralogous gene copies cannot be essential because they are not present in all maize strains.
However, it is interesting to note that maize hybrids can outperform their inbred parents.
Therefore, certain haplotypes may function only in combination with other haplotypes or under
specialized environmental conditions.

Background
Gene sequences of closely related plant species as heterol-
ogous markers of genetic maps made it possible to align
chromosomal regions of these species according to the

order of genes conserved through speciation, also called
orthologs [1]. Although early genomic sequence analysis
of small orthologous regions of closely related grass spe-
cies already indicated that gene order is interrupted by
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genes that have moved around the genome [2-4], the
extent of gene mobility during or after speciation could
not be appreciated until the comparisons of larger chro-
mosomal intervals from maize and rice [5]. While the
extent of non-collinearity among closely related plant spe-
cies was surprising in view of the comparison of closely
related mammalian species, it was always assumed that
within the same species gene order was preserved. The
conserved gene order within the same species has been the
mainstay of genetic maps because meiotic recombination
occurs primarily within genes [6,7] or unique, but com-
plete homologous sequences [8].

However, several comparative sequence analyses among
maize inbred lines have now shown that haplotype varia-
bility within the same species did not only differ by trans-
posable element insertions but also by the presence of
non-allelic gene copies [9-11]. Although retrotransposi-
tions account for major dissimilarities between aligned
regions, more than one-third of the predicted genes (27/
72) are absent in one of the inbreds (B73 and Mo17) at
the loci 9002, 9008 and 9009 [11]. However, in all these
cases the inserted genes are incomplete and represent gene
fragments except at the z1C1 locus in BSSS53 [10]. At the
z1C1 locus, B73 has lost four gene copies of the zein gene
family that are present in BSSS53, while BSSS53 has
gained three additional copies compared to B73. One of
the lost genes and two of the added genes are functional
and expressed. Moreover, the two new genes have
changed in their transcriptional regulation [12]. While the
change in copy number of tandemly arranged genes is not
unexpected, there were also insertions of unlinked genes.
B73 had the insertion of a RAV-like B3-domain DNA-
binding protein putative gene, conserved on rice chromo-
some 3 (1e-143) and BSSS53 has the insertion of two
genes, a putative cytidine deaminase gene and a hypothet-
ical gene encoding part of a 40S ribosomal protein [10].
While the RAV-like gene in B73 is a gene fragment linked
to a transposable element (Xu and Messing, unpublished
data), reminiscent of the Pack-MULEs [13], the two genes
in BSSS53 appear to have complete open reading frames.

At this point, it is unclear how widespread non-collinear-
ity is among cultivars of other species. Comparison of
orthologous regions of two subspecies of rice, O. sativa
japonica and indica, in one study did not show insertion
or deletions of genes or gene fragments [14]. However,
comparison of rice chromosome 4 in those two subspe-
cies shows examples of insertion and deletion of genes
[15]. Comparison of orthologous regions around the
Rph7 locus of two barley cultivars also differed by at least
one gene that could encode a helicase [16]. Therefore, it
appears that maize inbred lines stand out in the degree of
intra-species gene non-collinearity among other species
studied so far. The underlying question is what is the

selective advantage of gene mobility and what is the
mechanism that allows genes to move from one location
to another?

One could hypothesize that moving genes into a different
chromosomal context could provide novel regulation of
an existing gene function or produce novel gene function
[17]. If it results from a "copy and paste" rather than a "cut
and paste" mechanism, it also could provide redundancy
of a critical function or could contribute to one of many
quantitative trait loci (QTLs). Recently, it was shown that
the imprinted gene Peg10, important for early mouse
development, is inserted into a retrotransposon [18]. Sim-
ilarly, a gene expressed during seed development [19], the
maize Fie2 gene, is also inserted into a retrotransposon
[20]. Since in both cases the genes contain introns and are
single copy genes, they could not have moved there by ret-
rotransposition. Both of these cases are likely derived
from a "cut and paste" mechanism, which is different to
the examples of non-collinear genes described in this
study. Sequence alignments of allelic and non-allelic gene
copies have shown that these insertions except for the
z1C1 genes were due to a novel type of DNA transposition
that is based on a "copy and paste" mechanism [21,22].
Because this mechanism requires a helicase to initiate a
rolling circle-type of replication, the transposed unit is
referred to as Helitron.

The Helitrons were first identified by computational anal-
ysis in Caenorhabditis elegans, Arabidopsis thaliana and
Oryza sativa [23]. Helitrons have conservative 5'-TC and
CTRR-3' and do not have terminal inverted repeats and
target site duplications. Instead, they contain 16- to 20-bp
hairpins 10–12 nucleotides upstream from the 3'-end and
transpose precisely between the 5'-A and 3'-T, with no
modifications of the AT target sites. Autonomous Helitrons
encode a 5'-to-3' DNA helicase and nuclease/ligase similar
to those encoded by known rolling-circle replicons.
Together with their multiple diverged non-autonomous
descendants, Helitrons constitute 2% of both the
Caenorhabditis elegans and Arabidopsis thaliana genomes. In
maize, non-autonomous Helitron insertions carrying gene
fragments are responsible for loss-of-function mutations
in the shrunken2 gene and the barren stalk1 gene [24,25].
Examination of donor and target sites between two inbred
lines of maize have then illustrated that at the donor site
a portion of an intact gene is copied and inserted into an
unlinked genomic location. While the donor site is con-
served with allelic versions of a regular gene in different
maize inbreds, the target site creates a disruption in gene
order and a non-allelic gene copy [22]. In all cases so far
the transposed genes by Helitrons are gene fragments or
pseudogenes [21].
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Here, we report an example where a Helitron contains an
intact gene that encodes a putative cytidine deaminase
(CDA). Cytidine deaminases are a superfamily, which
includes Cytidine deaminase, nucleoside deaminase,
deoxycytidylate deaminase and riboflavin deaminase.
They are enzymes that de-aminate cytidine to uridine and
play an important role in a variety of pathways from bac-
teria to man. Ancestral members of this superfamily were
only able to de-aminate cytidine of mononucleotides or
nucleosides. Recently, a family of enzymes, the APOBEC
family of mRNA editing enzymes, has been discovered
that have the ability to de-aminate cytidines not only of
RNA [26,27], but also of DNA [28,29]. However, the role
of CDAs in plants is still poorly understood. A CDA-
encoding gene from Arabidopsis has been characterized as
a housekeeping gene [30], but whether there are CDA
genes with other functions and in other plant species still
needs to be explored. We, therefore, took advantage of the
variability of maize haplotypes to examine not only the
contribution of Helitron action to CDAs in maize inbred
lines but also the organization of CDA-encoding genes in
the maize genome, their expression, and their putative
function by their phylogenetic relationship to other
CDAs.

Results and Discussion
A new Helitron at the z1C1+BSSS53 locus
To unravel the mechanisms by which haplotypes of maize
acquire the insertion of new sequences, we took advan-
tage of the recently sequenced regions of the z1C1 locus
on chromosome 4 from two inbred lines. The chromo-

somal region from BSSS53 is a contiguous sequence of
435,076 bp [GenBank:AF528565, AF090447] and from
B73 263,630 bp [GenBank:AC144717, AC144718].
When these two sequences are aligned, the two intervals
differ by about 100 kb in size. Expansion of the BSSS53
region is in part due to additional retrotransposition
events and in part due to gene insertions [10]. Insertions
can be classified by their target site sequences. We there-
fore aligned the B73 sequences surrounding the insertion
in the BSSS53 sequence to determine the end points of the
insertion and the sequences at the ends of the insertions.

Transposable elements were easily recognized by their tar-
get site duplications, but the amplification of zein genes
in BSSS53 did not show any specific target site sequences.
However, the result was different for the presence and
absence of putative genes that could encode a cytidine
deaminase and a partial 40S-ribosomal protein. This
insertion in BSSS53 is 5,233 bp long and exhibits the hall-
marks of a Helitron [23,24]. Based on sequence alignment
of the two inbreds the insertion occurred between the AT
target sequence. It lacks the target site duplication seen for
transposable elements, but it has the typical 5'-TCT and 3'-
CTAG ends. However, coding information for the helicase
is lacking and replaced by one putative intact gene encod-
ing a cytidine deaminase (CDA) and a hypothetical gene
encoding a part of an unknown and part of a 40S-ribos-
omal protein (Fig. 1A).

To further characterize this insertion in BSSS53, we
aligned the end sequences with the end sequences of other

Hel-BSSS53-z1C1 on maize chromosme 4SFigure 1
Hel-BSSS53-z1C1 on maize chromosme 4S. A) A physical map of Hel-BSSS53-z1C1 is presented. Putative genes are shown 
as pentagons pointing in the direction of transcription. Exons are shown in red and introns in yellow. Conserved nucleotides at 
the 5'-TCT and 3'-CTAG termini and 5'-a, 3'-t target sites are highlighted at the ends. B) Termini of the maize Helitrons Hel-
BSSS53-z1C1 from BSSS53 4S [10], HelA-1a and HelB from McC 9S [22], Mo17_14577 from Mo17 9L, B73_14578 from B73 6S 
[11], the Helitron insertions in mutants sh2-7527 [24] and ba1-Ref [25, 49]. Helitron sequences are in uppercase letters and the 
invariant host nucleotides, where the Helitrons inserted, are in italic lowercase letters. Conserved nucleotides at the 5' and 3' 
termini are in red bold uppercase letters and inverted repeats at the 3' termini are underlined.

Hel-BSSS53-z1C1 aTCTATACTACTCTATTAAG......TTTATATTCCGTGGCATCGCACGGGCACATACCTAGt

Sh2-7527 aTCTCTACTACT_TATTAAG......TATTCACTCCGTAGCAACGCACGGACATTCACCTAGt

ba1-Ref aTCTATACTACTCTATTAAG............TTCCGTAGCAACGCACGGGTATATACCTAGt

HelA-1a aTCTCTACTACTCTAT_AAG......TTTTACTCCCGTCGCAACGCACGGGCACTCACCTAGt

HelB aTCTAAAGTATTAAAACTTG......CCGATAGGGCGCCCGTATGGGCGCCCCATGTTCTAGt

Mo17_14577 aTCTCTACTACTCC_TTAAG......ATAGGTCCCCGTTGCAACGCACGAGCACTCGCCTAGt

B73_14578 aTCTATACTAC_CTATTAAG......ATAGGTCCCCGTTGCAACGCACGGGCACTCACCTAGt

B

A
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known Helitrons in maize. In addition to the 5' and 3' end
sequences we also can find a 16-bp region capable of
forming a hairpin structure that is conserved among the
maize Helitrons (Fig. 1B). We named this insertion Hel-
BSSS53-z1C1 (Helitron in maize BSSS53z1C1region).
While the sequence features of the end sequences of the
BSSS53 insertion are conserved with the other Helitrons, it
differs from them by having putative genes with complete
coding potential.

Organization of cytidine deaminase (CDA) genes in maize 
inbred lines
Because the hallmark of Helitrons is a "copy and paste"
mechanism, one would expect that both B73 and BSSS53
would share a common donor site for the sequences con-
tained in Hel-BSSS53-z1C1. We decided to select the CDA
gene sequence rather than the sequence for the hypothet-
ical gene encoding part of the 40S ribosomal protein for
such an analysis because of the value of an intact gene

with a known function for tracing Helitron action. We first
cloned a CDA cDNA clone based on the CDA gene
sequences in the Helitron by reverse transcription of leaf
mRNA (Methods) and used it in Southern blot analysis of
these two inbreds along with other common inbreds
A188, B37, Mo17, and W64A (Fig. 2). As restriction
enzymes are chosen that do not cleave within the maize
CDA genomic sequence, we can find evidence for a small
multigene family as it has been observed in Arabidopsis as
well [30]. Therefore, screening of a putative donor site of
the CDA gene of the Helitron required a high stringency to
filter out CDA genes that are distantly related and possibly
have different specificities.

Higher stringency was afforded by BLAST search of BAC
end sequences (BESs) with the CDA gene of the Helitron
[31]. BESs are anchored to the genetic map through the
fingerprinted B73 physical map [32,33]. A single BAC
contig #299 on chromosome 7 was identified and a clone,

Analysis of genomic CDA-related sequences in maize inbred linesFigure 2
Analysis of genomic CDA-related sequences in maize inbred lines. Genomic DNA from various inbred lines have 
been digested with BamHI, HindIII and XbaI and subjected to Southern blot analysis as described under Methods. The names of 
each inbred line are marked above the lanes.

A188 B37 B73 BSSS53 Mo17 W64A A188 B37 B73 BSSS53 Mo17 W64A A188 B37 B73 BSSS53 Mo17 W64A
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b0390I10, was selected for sequencing that contained the
CDA sequence in the center of the clone. Indeed,
b0390I10 contained a putative gene encoding a complete
CDA [GenBank: EF106973]. If this putative gene on chro-
mosome 7 is the original maize CDA donor gene, one
would expect it to be present in all inbred lines. We there-
fore constructed a library of genomic sequences from 15
common inbreds that have been amplified with a set of
primers of CDA sequences conserved between the chro-
mosome 7 and 4 locations. From each inbred 24 clones
were sequenced to quantify the number of genes present
in each genome by sequence cluster analysis and insert
size [34]. Based on this analysis we obtain four different
CDA gene copies, which represent a subset of those
detected by Southern blot analysis. Only two genes were
present in all inbred lines (Table 1) including the one of
clone b0390I10 on maize chromosome 7. We named this
CDA gene ZmCDA1. It is not unexpected to find two cop-
ies in all inbred lines because maize formed by the hybrid-
ization of two closely related progenitors 4.8 mya [37].
We therefore named the second gene copy that is present
in all inbred lines ZmCDA2. While B73 seems to have
only these two copies of the CDA gene, other inbred lines
like BSSS53, Mo17, A654, B37 and CO159 have an addi-
tional copy that appears to be in common. Based on
sequence cluster analysis this copy corresponds to the
chromosome 4 location of BSSS53. We named this copy
ZmCDA3, which is the one contained in the Hel-BSSS53-
z1C1 Helitron. In addition, we can find at least one more
copy that is also present in A188, BSSS53, Tx303, CO159,
CM37, W64A, Mo17, A632 and A636. However, this copy
appears to have a 39-bp deletion in the last exon. Addi-
tional truncated copies could be present in some of the
inbreds as well. Therefore, the only intact genes of this
subfamily of CDA genes in maize are ZmCDA1, ZmCDA2,
and ZmCDA3.

Relationship of CDA genes in maize
We used the ZmCDA1 sequence for a BLAST search [31] of
the rice genome, Arabidopsis genome, and the sorghum
EST collections. We could identify one copy [GenBank:
AAR88587] on rice chromosome 3, which we named
OsCDA1. We also identified one related sequence on Ara-
bidopsis chromosome 5, which we named AtCDA10, and

one related sequence from sorghum EST data [GenBank:
CN133157.1, gi:45963787], which we named SbCDA1.
The three maize genes and the related sequences from rice,
Arabidopsis, and sorghum were translated and their
amino acid sequences compared (Fig. 3). Because rice
chromosome 3 contains orthologous regions to maize
chromosome 7 [35], it is likely that the rice OsCDA1 gene
and the maize ZmCDA1 gene are orthologous and derived
from a common ancestral chromosome. If that is the case,
then ZmCDA1 and ZmCDA2 should be closer to rice than
ZmCDA3. Indeed, based on amino acid homology
ZmCDA1 and ZmCDA2 are closer to rice than ZmCDA3
(not shown). Because ZmCDA3 appears to be closer to
ZmCDA1 than to ZmCDA2, the Helitron has probably cop-
ied ZmCDA1 rather than ZmCDA2. To further analyze the
relationship of ZmCDA1 and ZmCDA3, their genomic
sequences were aligned as well. From this comparison, it
appears that the deletion of the amino-terminal amino
acids is due to a deletion of a small part of the first exon
and a larger part of the first intronic sequence of ZmCDA1
(Fig. 4). Interestingly, a putative de-amination of the sev-
enth codon restored an ATG start codon and a complete
open reading frame for the ZmCDA3 gene. Otherwise, the
aligned sequences including the introns are highly con-
served (94.6%). From this analysis, it appears that the pro-
genitors of rice and maize had a common CDA gene that
got duplicated during the speciation of maize. The two
copies are therefore orthologous gene copies. Subse-
quently, a Helitron initiated the replication of one of the
copies, the one on maize chromosome 7. During this
process the 5' region got truncated and a new start-codon
generated. This third copy got integrated into a new chro-
mosomal location on maize chromosome 4 along with
other sequences including those that are part of a 40S
ribosomal protein gene. The third CDA gene copy is par-
alogous and arose after speciation and therefore contrib-
utes to a unique haplotype.

Distance analysis of CDA genes
If the chronology of events is correct, we can determine
the timing of these events based on the nucleotide substi-
tutions of each gene pair. As molecular studies have sug-
gested an upper bound of 50 million years ago (mya) for
the origin of rice [36], we make the assumption that the

Table 1: Summary of ZmCDA patterns in 15 maize inbred lines*.

A632 A636 A654 B37 Mo17 W22 W23 W64A CM37 R232 CO159 Tx303 A188 B73 BSSS53

ZmCDA1 + + + + + + + + + + + + + + +
ZmCDA2 + + + + + + + + + + + + + + +
ZmCDA3 - - + + + - - - - - + - - - +
Truncated + + - - + - - + + - + + + - +

* Sequences of amplified genomic DNA from each inbred with primer pairs ZmCDAF3/ZmCDAR3 clustered as consensus sequences; presence of 
consensus sequence (+), absence of consensus sequence (-).
Page 5 of 13
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF106973
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAR88587
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN133157.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=gi:45963787


BMC Genetics 2006, 7:52 http://www.biomedcentral.com/1471-2156/7/52

Page 6 of 13
(page number not for citation purposes)

Alignment of the ZmCDA1 and ZmCDA3 genesFigure 4
Alignment of the ZmCDA1 and ZmCDA3 genes. The coding sequences of the ZmCDA1 and ZmCDA3 genes from B73 and 
BSSS53 are depicted graphically as bars to illustrate their common sequences. The start codons are highlighted. Exons are 
shown in red block, nucleotide change from G to A is shown in red letters.

94.6%

Alignment of amino acid sequences of related CDAs from maize, sorghum, rice, and ArabidopsisFigure 3
Alignment of amino acid sequences of related CDAs from maize, sorghum, rice, and Arabidopsis. The coding 
sequences of CDAs from maize and other organisms have been translated into single letter amino acid code and aligned using 
the Laser gene program as described under Methods. Gene names are marked at the beginning of the sequence. Conserved 
amino acid positions are highlighted by stars (*).

ZmCDA1 1 MDEAQVVESKDGTISVASAFAAHQEAVQDRDHKFLTKAVEEAYRGVDCGDGGPFGAVVVC 60
ZmCDA2 1 MDEAQVVESKDGTISVASAFAGFQEAVQDKDHKFLTKAVEEAYRGVDCGDGGPFGAVVVR 60
ZmCDA3 1 ------MESKDGTISFASAFAAHQEAVQDRDHKFLTKAVEEAYRGVDCGDEGPFGAVVVR 54
SbCDA1 1 MDEAQVVESKDGTISVASAFAGHQEAVQDRDHKFLTKAVEEAYRGVDNGDGGPFGAVVVR 60
OsCDA1 1 MEEAQVVESKDGTISVASAFAGHQEAVQDRDHKFLSKAVEEAYQGVDCGHGGPFGAVVVR 60
AtCDA10 1 MEEAKV-EAKDGTISVASAFSGHQQAVHDSDHKFLTQAVEEAYKGVDCGDGGPFGAVIVH 59

. .....*.******.****...*.**.*.*****..******.***.*..******.*.

ZmCDA1 61 NDEVVVSCHNMVLKHTDPTAHAEVTAIREACKKLGKIELSDCEIYASCEPCPMCFGAVHL 120
ZmCDA2 61 NDEVVVSCHNMVLKHTDPTAHAEVTAIREACKKLGKIELSDCEIYASCEPCPMCFGAVHL 120
ZmCDA3 55 NDEVVVSCHNMVLKHTDPIAHAEVTAIREACKKLGKIELSDCEIYASCEPCPMCFGALHL 114
SbCDA1 61 NDEVVVSCHNMVLKHTDPTAHAEVTAIREACKKLGKIELSDCEIYASCEPCPMCFGAVHL 120
OsCDA1 61 NDEIVVSCHNMVLDYTDPTAHAEVTAIREACKKLGKIELSDCEMYASCEPCPMCFGAVHL 120
AtCDA10 60 NNEVVASCHNMVLKYTDPTAHAEVTAIREACKKLNKIELSECEIYASCEPCPMCFGAIHL 119

*.*.*.*******..***.***************.*****.**.*************.**

ZmCDA1 121 SRIKRLVYGAKAEAAIAIGFDDFIADALRGTGFYQKANMEIKKADGNGALIAEQVFEKTK 180
ZmCDA2 121 SRIKRLVYGAKAEAAIAIGFDDFIADALRGTGFYQKANLEIKKADGNGALIAEQVFEKTK 180
ZmCDA3 115 SRIKRLVYGAKAEAAIAIGFDDFIADALRGTGFYQKANMEIKKADGNGALIAEQVFEKTK 174
SbCDA1 121 SRIKRLVYGAKAEAAIAIGFDDFIADALRGTGFYQKANMEIKKADGNGALIAEQVFEKTK 180
OsCDA1 121 SRIKRLVYGAKAEAAIAIGFDDFIADALRGTAYYQKANLEIRRADGNGALIAEQVFENTK 180
AtCDA10 120 SRLKRLVYGAKAEAAIAIGFDDFIADALRGTGVYQKSSLEIKKADGNGAAIAEQVFQNTK 179

**.****************************..***.. **..******.******..**

ZmCDA1 181 EKFQMY 186
ZmCDA2 181 EKFQMY 186
ZmCDA3 175 EKFQMY 180
SbCDA1 181 EKFRMY 186
OsCDA1 181 EKFRMY 186
AtCDA10 180 EKFRLY 185

*** .*
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progenitors of maize and sorghum separated from the
progenitor of rice 50 mya. Using this divergence date, we
estimated the average nucleotide substitution rate for the
maize CDA genes and determined the distance between
the ZmCDA1 and ZmCDA2 genes. They appear to have
diverged about 14.5 mya, which is higher than the 11.9
mya observed previously [37]. However, the previous
study also found that synonymous distances between dif-
ferent orthologs of maize and sorghum could vary 3.2-
fold. If we calculate the distance of maize and rice CDA
orthologs, they would have diverged 12.8 mya. Therefore,
the maize CDA orthologs are within the same range of
nucleotide substitution rates as previously studied ones
and support the allotetraploid model of the origin of the
maize genome.

Because the ZmCDA3 gene also has an intact coding
sequence it provides us for the first time the opportunity
to determine when Helitron movement occurred. We
make the assumption that conservation of an intact gene
has the same substitution rate regardless whether is
expressed constitutively or under specialized conditions.
Based on the synonymous nucleotide substitutions of the
ZmCDA3 gene relative to the donor gene ZmCDA1 Heli-
tron movement occurred about 4.5 mya (Fig. 5), which is
just after the hybridization of the progenitors of maize,
estimated to be 4.8 mya [37]. Interestingly, it has been
shown that the majority of retrotranspositions also
occurred after the hybridization of the two progenitors in
maize as early as 4.6 mya but with 74% less than one mya
[20]. Similarly, paralogous copies of zein genes arose 4.3,
2, and 0.5 mya [12]. Therefore, within the same time
frame different mechanisms have triggered amplification
and integration of sequences into the maize chromo-
somes including Helitrons.

Cytidine deaminase gene expression in maize inbred lines
To investigate whether this subfamily of CDA genes is
expressed in maize, we tested tissues for these CDA tran-
scripts. We sampled total mRNA from leaf tissues of adult
plants from six typical inbred lines A188, B37, B73,
BSSS53, W64A and Mo17 and from 20-days old immature
endosperm of BSSS53 and B73. The mRNA was amplified
by RT-PCR, cloned and analyzed by sequence analysis
[GenBank: EF105328–EF105335]. Alignment of RT-PCR
products shows that the mRNA is derived from the
ZmCDA1 and the ZmCDA2 genes (Fig. 6). Having the
same genes expressed in all inbred lines is consistent with
our genomic analysis of CDA genes of maize inbred lines
that have the ZmCDA1 and ZmCDA2 gene copy in com-
mon (Table 1). The expression analysis also indicates that
plants have a CDA gene that is conserved through the
monocot-dicot divergence and that the Arabidopsis, rice,
and maize gene probably originated from the same ances-
tral gene. However, we could not find a transcript that

matches ZmCDA3. Although it has a complete open read-
ing frame, it is not unexpected that its regulation has
changed because of the new position in the genome. One
certainly would predict that its expression could not be
vital for plant development because its copy is absent in
B73. Therefore, it is quite possible that ZmCDA3 is
expressed either in very specialized tissue or under specific
environmental conditions. Given that this copy arose
about 4.5 mya, one would expect that it has maintained
its expression potential against deterioration of its
sequence. One reason could be that unique haplotypes in
the maize genome containing non-allelic gene copies are
potentially required for its heterotic properties [10].

Putative functions of CDAs in maize inbred lines
Function of CDAs is quite diverse, but can be classified by
protein structure. The cDNAs of ZmCDA1 and ZmCDA2
described here encode a protein of 184 residues; ZmCDA3
would be 6 residues shorter. Homology search against
databases of known protein sequences revealed signifi-
cant homology (39.4% amino acid identity and 74.8%
similarity) with B. subtilis nucleoside deaminase (Fig. 7A).
A database search revealed the presence of an active site
for nucleoside deaminases, which is conserved within the
cytidine deaminase super-family. The cytidine deaminase
super-family can be classified into RNA-editing deami-
nases, cytidine deaminases, nucleoside deaminases and
deoxycytidylate deaminases, based on substrate specificity
and homology of the active-site sequence [26]. To charac-
terize the putative function of the CDAs in maize, we per-
formed a phylogenetic analysis of CDAs from different
organisms with the active site protein sequences (Fig. 7B).
The cladogram shows that the active site of maize genes,
the rice and the Arabidopsis genes, form a clade, which is
close to the bacterial genes encoding nucleotide-modify-
ing enzymes (bootstrap value of 88), and constitute the
nucleoside deaminase family that is distinct from the
mammalian genes encoding RNA or DNA modifying
enzymes, cytidine deaminase, and deoxycytidylate deam-
inase families (Fig. 7C). In general, nucleoside deami-
nases include adenosine, guanine and cytosine
deaminases, which catalyze the de-amination of nucleo-
sides. The functional enzyme is a homodimer. Cytosine
deaminase catalyzes the de-amination of cytosine to
uracil and ammonia. Because it is found in bacteria and
fungi and not in mammals the enzyme is currently of
interest for antimicrobial drug design and gene therapy
applications against tumours [38-41]. Adenosine deami-
nases generate inosine at the first position of the antico-
don (position 34) of specific tRNAs, which is thought to
enlarge the codon recognition capacity during protein
synthesis. Guanine deaminases de-aminate guanine to
xanthine as part of the utilization of guanine as a nitrogen
source. Based on the clustering of ESTs from Arabidopsis,
another CDA gene, AtCDA1, has previously been isolated
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Origin of the ZmCDA1, ZmCDA2, and ZmCDA3 genesFigure 5
Origin of the ZmCDA1, ZmCDA2, and ZmCDA3 genes. The progenitors of rice and maize split about 50 mya and the two 
progenitors of maize about 11.9 mya. Each of the progenitors of maize contain a copy of the CDA gene shared with the pro-
genitor of rice (orthologs). When the two progenitors of maize hybridized at about 4.8 mya (allotetraplodization), the maize 
genome maintained two diverged orthologous CDA gene copies, ZmCDA1 and ZmCDA2. In addition, 4.5 mya the ZmCDA1 
copy on chromosome 7 got copied by the action of a helicase and inserted into chromosome 4S close to the z1C1 locus, 
resulting in the ZmCDA3 gene copy, which is therefore a paralogous gene copy.

50 mya

11.9 mya

Allotetraploidization
4.8 mya

CDA2
CDA1

CDA1
CDA3

4.5 mya

Rolling Circle Replication



BMC Genetics 2006, 7:52 http://www.biomedcentral.com/1471-2156/7/52
and its function tested in vitro [30]. The AtCDA1 gene de-
aminates cytidine, but cannot use RNA as a substrate.
Therefore, it resembles the enzyme found in E. coli with
the same function and differs in its structure from the
mammalian proteins. Nevertheless, we know that RNA
editing occurs in plant organelles [42]. Moreover, bio-
chemical assays have shown that extracts contain an
enzyme activity consistent with the RNA-editing function
[43]. Because most proteins in chloroplast are derived
from the nuclear genome, one would also expect CDA
encoding genes in the plant genome that are closer to the
mammalian clade of CDAs capable of modifying RNA or
even DNA. As the Southern blot of genomic DNA from
different inbred lines indicates the maize genome con-
tains other CDA-related gene sequences that could
account for these other functions (Fig. 2).

Conclusion
A new Helitron has been discovered whose internal
sequences contain an intact coding sequence for a cytidine
deaminase. Because previous Helitron sequences were
missing intact coding sequences it was not possible to
determine when they were copied from their donor site.
From sequence alignments with the two orthologous cop-
ies of the maize genome and the copy of the rice genome,
it appears that the Helitron-based movement of the paral-
ogous CDA gene copy occurred about 4.5 mya. Conserva-
tion of the coding regions including intronic sequences of
94.6% between the orthologous and the paralogous gene
copies suggests that the paralogous gene copy is required
although not as an essential gene. Therefore, it is likely to
be conditionally induced and/or provides a quantitative
trait as a selective advantage rather than a typical house-

Alignment of CDA-related maize cDNAs sequencesFigure 6
Alignment of CDA-related maize cDNAs sequences. Leaf and endosperm tissue samples were used to extract mRNA, 
which were used to clone CDA-related sequences. They were sequenced and aligned with the genomic coding sequences to 
determine from which genes they were derived. Alignment was performed using the Laser gene program as described under 
Methods. Sequences are marked at their beginning.

B73-ZmCDA1(En) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCAGTTGCTTCTGCATTTGTTGCTCATCAGGAAGCTGTACAAGACAGGGATCACAAATTCTTGACAAAAGCAG 120
B73-ZmCDA1(L) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCAGTTGCTTCTGCATTTGTTGCTCATCAGGAAGCTGTACAAGACAGGGATCACAAATTCTTGACAAAAGCAG 120
BSSS53-ZmCDA1(En) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCAGTTGCTTCTGCATTTGCTGCTCATCAGGAAGCTGTGCAAGACAGGGATCACAAATTCTTGACAAAAGCAG 120
BSSS53-ZmCDA1(L) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCAGTTGCTTCTGCATTTGCTGCTCATCAGGAAGCTGTGCAAGACAGGGATCACAAATTCTTGACAAAAGCAG 120
B73-ZmCDA2(En) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCGGTTGCTTCTGCATTTGCTGGTTATCAGGAAGCTGTGCAAGACAGGGATCACAAATTCTTGACAAAAGCAG 120
B73-ZmCDA2(L) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCGGTTGCTTCTGCATTTGCTGGTTATCAGGAAGCTGTGCAAGACAGGGATCACAAATTCTTGACAAAAGCAG 120
BSSS53-ZmCDA2(En) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCGGTTGCTTCTGCATTTGCTGGTTTTCAGGAAGCTGTGCAAGACAAGGATCACAAATTCTTGACAAAAGCAG 120
BSSS53-ZmCDA2(L) 1 CAACCATGGATGAGGCGCAAGTTGTGGAGTCAAAGGATGGAACCATCTCGGTTGCTTCTGCATTTGCTGGTTTTCAGGAAGCTGTGCAAGACAAGGATCACAAATTCTTGACAAAAGCAG 120

************************************************* ****************.** * .************.*******.**************************

B73-ZmCDA1(En) 121 TGGAAGAAGCATACCGAGGAGTCGATTGCGGCGATGGAGGTCCATTTGGAGCAGTTGTCGTCCGTAATGATGAAGTGGTTGTTAGCTGCCATAACATGGTTCTGAAGCACACTGACCCTA 240
B73-ZmCDA1(L) 121 TGGAAGAAGCATACCGAGGAGTCGATTGCGGCGATGGAGGTCCATTTGGAGCAGTTGTCGTCCGTAATGATGAAGTGGTTGTTAGCTGCCATAACATGGTTCTGAAGCACACTGACCCTA 240
BSSS53-ZmCDA1(En) 121 TGGAAGAAGCATACCGAGGAGTCGATTGCGGTGACGGAGGTCCATTTGGAGCAGTTGTCGTATGTAATGATGAAGTGGTAGTTAGCTGCCATAACATGGTTCTGAAGCACACTGACCCTA 240
BSSS53-ZmCDA1(L) 121 TGGAAGAAGCATACCGAGGAGTCGATTGCGGTGACGGAGGTCCATTTGGAGCAGTTGTCGTATGTAATGATGAAGTGGTAGTTAGCTGCCATAACATGGTTCTGAAGCACACTGACCCTA 240
B73-ZmCDA2(En) 121 TGGAAGAAGCATATCGAGGAGTCGATTGCGGTGACGGAGGTCCATTCGGAGCAGTTGTCGTCTGTAATGACGAAGTAGTAGTCAGCTGCCATAACATGGTTCTGAAGCACACTGACCCTA 240
B73-ZmCDA2(L) 121 TGGAAGAAGCATATCGAGGAGTCGATTGCGGTGACGGAGGTCCATTCGGAGCAGTTGTCGTCTGTAATGACGAAGTAGTAGTCAGCTGCCATAACATGGTTCTGAAGCACACTGACCCTA 240
BSSS53-ZmCDA2(En) 121 TGGAAGAAGCATATCGAGGAGTCGATTGCGGTGACGGAGGTCCATTTGGAGCAGTTGTCGTCCGTAATGACGAAGTAGTAGTTAGCTGCCATAACATGGTTCTAAAGCACACTGACCCTA 240
BSSS53-ZmCDA2(L) 121 TGGAAGAAGCATATCGAGGAGTCGATTGCGGTGACGGAGGTCCATTTGGAGCAGTTGTCGTCCGTAATGACGAAGTAGTAGTTAGCTGCCATAACATGGTTCTAAAGCACACTGACCCTA 240

************* *****************.**.***********.**************. ******* ***** **.**.********************.****************

B73-ZmCDA1(En) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAGCTCGGGAAAATCGAGCTCTCTGACTGCGAAATTTACGCGTCCTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360
B73-ZmCDA1(L) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAGCTCGGGAAAATCGAGCTCTCTGACTGCGAAATTTACGCGTCCTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360
BSSS53-ZmCDA1(En) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAGCTCGGGAAAATCGAGCTCTCTGACTGCGAAATTTACGCGTCCTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360
BSSS53-ZmCDA1(L) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAGCTCGGGAAAATCGAGCTCTCTGACTGCGAAATTTACGCGTCCTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360
B73-ZmCDA2(En) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAGCTTGGGAAAATTGAGCTCTCAGACTGCGAAATTTACGCGTCCTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360
B73-ZmCDA2(L) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAGCTTGGGAAAATTGAGCTCTCAGACTGCGAAATTTACGCGTCCTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360
BSSS53-ZmCDA2(En) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAACTTGGGAAAATTGAGCTCTCTGACTGCGAAATTTACGCGTCTTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360
BSSS53-ZmCDA2(L) 241 CTGCGCATGCTGAAGTAACTGCAATTAGAGAGGCTTGCAAAAAACTTGGGAAAATTGAGCTCTCTGACTGCGAAATTTACGCGTCTTGCGAGCCATGCCCAATGTGCTTTGGTGCAGTTC 360

*******************************************.** ******** ********.********************.**********************************

B73-ZmCDA1(En) 361 ATCTCTCCCGAATCAAGAGGCTGGTTTATGGGGCCAAGGCGGAGGCTGCCATCGCCATTGGGTTTGACGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACA 480
B73-ZmCDA1(L) 361 ATCTCTCCCGAATCAAGAGGCTGGTTTATGGGGCCAAGGCGGAGGCTGCCATCGCCATTGGGTTTGACGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACA 480
BSSS53-ZmCDA1(En) 361 ATCTCTCCCGGATCAAGAGGCTGGTTTATGGGGCCAAGGCGGAGGCTGCCATCGCCATTGGGTTCGACGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACA 480
BSSS53-ZmCDA1(L) 361 ATCTCTCCCGGATCAAGAGGCTGGTTTATGGGGCCAAGGCGGAGGCTGCCATCGCCATTGGGTTCGACGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACA 480
B73-ZmCDA2(En) 361 ATCTCTCCCGAATCAAGAGGCTGGTTTATGGGGCCAAGGCAGAGGCTGCCATCGCCATTGGATTTGATGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACT 480
B73-ZmCDA2(L) 361 ATCTCTCCCGAATCAAGAGGCTGGTTTATGGGGCCAAGGCAGAGGCTGCCATCGCCATTGGATTTGATGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACT 480
BSSS53-ZmCDA2(En) 361 ATCTCTCCCGAATCAAGAGGCTGGTTTATGGGGCCAAGGCAGAGGCTGCCATCGCCATTGGATTTGATGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACT 480
BSSS53-ZmCDA2(L) 361 ATCTCTCCCGAATCAAGAGGCTGGTTTATGGGGCCAAGGCAGAGGCTGCCATCGCCATTGGATTTGATGACTTCATTGCAGATGCTCTGAGAGGCACTGGGTTCTACCAGAAGGCCAACT 480

**********.***************************** ******************** **.** ***************************************************

B73-ZmCDA1(En) 481 TGGAGATCAAGAAGGCCGACGGCAATGGCGCACTGATCGCCGAGCAGGTCTTCGAAAAGACTAAGGAGAAGTTCCAGATGTACTGA 566
B73-ZmCDA1(L) 481 TGGAGATCAAGAAGGCCGACGGCAATGGCGCACTGATCGCCGAGCAGGTCTTCGAAAAGACTAAGGAGAAGTTCCAGATGTACTGA 566
BSSS53-ZmCDA1(En) 481 TGGAGATCAAGAAGGCCGATGGCAATGGCGCGCTGATTGCCGAGCAGGTCTTCGAAAAGACTAAGGAGAAGTTCCAGATGTACTGA 566
BSSS53-ZmCDA1(L) 481 TGGAGATCAAGAAGGCCGATGGCAATGGCGCGCTGATTGCCGAGCAGGTCTTCGAAAAGACTAAGGAGAAGTTCCAGATGTACTGA 566
B73-ZmCDA2(En) 481 TGGAGATCAAGAAAGCTGACGGCAATGGTGCATTGATCGCTGAGCAAGTCTTTGAAAAGACTAAAGAGAAGTTCCAGATGTACTGA 566
B73-ZmCDA2(L) 481 TGGAGATCAAGAAAGCTGACGGCAATGGTGCATTGATCGCTGAGCAAGTCTTTGAAAAGACTAAAGAGAAGTTCCAGATGTACTGA 566
BSSS53-ZmCDA2(En) 481 TGGAGATCAAGAAAGCTGACGGCAATGGTGCATTGATCGCTGAGCAAGTCTTTGAAAAGACTAAAGAGAAGTTCCAGATGTACTGA 566
BSSS53-ZmCDA2(L) 481 TGGAGATCAAGAAAGCTGACGGCAATGGTGCATTGATCGCTGAGCAAGTCTTTGAAAAGACTAAAGAGAAGTTCCAGATGTACTGA 566

************* ** **.******** **. ****.** ***** ***** *********** *********************
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CDA-related genes according to their functionFigure 7
CDA-related genes according to their function. A) Alignment of amino acid sequences of maize cytidine deaminase and 
B. subtilis nucleoside deaminase. Identical and conserved amino acids are marked by asterisks and dots, respectively; hyphens 
represent gaps. B) Alignment of the active sites of cytidine deaminases. Accession numbers of amino acid sequences used here 
are as follows: [GenBank: APOBEC3, Q9HC16; AID, Q9GZX7]; mouse [GenBank: APOBEC1, U21951]; rat [GenBank: 
APOBEC1, L07114]; human [GenBank: APOBEC1, L25877]; rabbit [GenBank: APOBEC1, U10695]; B. subtilis cytidine deami-
nase [GenBank: P19079]; human cytidine deaminase [GenBank: L27943]; mouse cytidine deaminase [GenBank: P56389]; E. coli 
cytidine deaminase [GenBank: P13652]; H. influenzae cytidine deaminase [GenBank: U32814]; Arabidopsis cytidine deaminase 
[GenBank: AJ005687]; rice cytidine deaminase [GenBank: NP_916608]; B. cereus nucleoside deaminase [GenBank: 
NP_829925]; B. cereus nucleoside deaminase [GenBank: AAP07126]; B. fragilis nucleoside deaminase [GenBank: BAD48383]; B. 
subtilis nucleoside deaminase [GenBank: O34598]; Arabidopsis nucleoside deaminase [GenBank: NP_198157]; maize nucleo-
side deaminase, this work [GenBank: EF106973]; rice nucleoside deaminase [GenBank: XP_470319]; S. cerevisiae deoxycyti-
dylate deaminase [GenBank: P06773]; T2/T4 phage deoxycytidylate deaminase [GenBank: P00814]; human deoxycytidylate 
deaminase [GenBank: L12136]; mouse deoxycytidylate deaminase [GenBank: Q8K2D6]; Arabidopsis deoxycytidylate deami-
nase [GenBank: ABE66000]; rice deoxycytidylate deaminase [GenBank: BAD87146]. C) The phylogenetic tree was constructed 
based on the active site of cytidine deaminases using the PAUP 4.0b10 UPGMA method [50]. Numbers indicate bootstrap val-
ues (above 50% with 1000 replications).
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keeping function. One can envision that it is expressed
under certain environmental conditions. Another possi-
bility is that it is under the control of a regulatory factor
that itself is encoded by a paralogous gene sequence and
is only present in unique haplotypes. In such a scenario,
one would have to combine these two haplotypes by
crossing to enable the expression of the paralogous CDA
gene copy. While combinatorial regulatory circuits for a
CDA function still remains to be explored, it can serve as
a paradigm of how one could achieve unique phenotypes
that require the right inbred strains to form a hybrid.

Methods
Plant materials
Our laboratory stocks of maize inbred lines A632, A636,
A654, B37, Mo17, W22, W23, W64A, CM37, T232,
CO159, Tx303, A188, B73, and BSSS53 were obtained
from the NPG collection [44].

Identification of B73 clone b0390I10
The CDA gene sequence linked to the z1C1 locus on chro-
mosome 4S of BSSS53 was subjected to a BLAST search
[31] of the B73 BESs on our local server. One BAC end
sequence [GenBank: CG435284] had homology to the
coding region of a CDA gene. We searched the B73 maize
physical map for a BAC contig [45] containing the posi-
tive clone. Contig #299 on chromosome 7 was identified.
However, after positioning the CDA containing BES
within the FPC BAC clone b0390I10 was selected for
sequencing to obtain all CDA flanking sequences [Gen-
Bank: EF106973].

Southern blot hybridiztion
A total of 25 μg of maize genomic DNA was digested with
different restriction enzymes. DNA fragments were sepa-
rated on 1.0% agarose gels, blotted on Hybond-XL nylon
membranes (Amersham Biosciences), and the mem-
branes were hybridized with CDA cDNA sequences as a
probe that had been labeled as described previously [46].

Genomic PCR and Reverse-transcription PCR (RT-PCR)
CDA gene sequences were amplified from total genomic
DNA of 15 inbred lines by using primer pairs, covering
exon 2, intron 2, exon 3, intron 3, and exon 4:

ZmCDAF3, CATCTGGAACTTCTCCTTAG,

ZmCDAR3, ACAGGGATCACAAATTCTTG;

the last exon, exon 4, of the CDA gene was also amplified
with primer pairs:

ZmCDAF4, GACTTCATTGCAGATGCTCTG,

ZmCDAR1, TCAGTACATCTGGAACTTCTC.

Total RNA of mature leaves and immature endosperm 20
days after pollination of maize inbred lines was extracted
with the RNeasy Plant Mini Kit (Qiagen). We reverse-tran-
scribed RNA to cDNA using SuperScript First-Strand Syn-
thesis System (Invitrogen) with an oligo(dT) primer.

Amplification was then carried out for the ZmCDA1 and
ZmCDA2 genes with primer pairs:

ZmCDAF1, CAACCATGGATGAGGCGCAAG,

ZmCDAR1, TCAGTACATCTGGAACTTCTC, and for the
ZmCDA3 gene with primer pairs:

ZmCDAF2, ATGGAGTCAAAGGATGGAAC,

ZmCDAR1, TCAGTACATCTGGAACTTCTC.

DNA and cDNA sequencing and analysis
The BAC clone was sequenced by DNA shotgun sequenc-
ing with an Applied Biosystems 3730 × 1 DNA Analyzer
using universal primers [47]. PCR and RT-PCR products
were cloned and also sequenced with universal primers
[GenBank: EF105328–EF105335]. DNA sequences were
analyzed with the Laser gene application kit (DNAstar,
Madison, WI). Multiple sequence alignments were carried
out by the program ClustalW [34].

Estimation of the rate of synonymous substitution and 
divergence time
We used CDA gene exon sequences to estimate synony-
mous substitution rates (k) using standard methods [48].
The divergence time T between maize, sorghum, and rice
was set at 50 million years [36]. The substitution rate k
was calculated according to the formula k =
[Ks(a)+Ks(b)]/2'2T, where Ks(a) is the relative synony-
mous substitution rate between maize and rice, and Ks(b)
the relative synonymous substitution rate between sor-
ghum and rice.

For estimation of the divergence time t of two sequences,
we used t = ds/2k.
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