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ABSTRACT
The global incidence of myopia is increasing, and high myopia increases
the risk of pathological myopia, which can lead to irreversible visual impair-
ment, posing a significant global health concern. Artificial intelligence (AI)
may be a solution to the myopia pandemic, with potential applications in
early identification, risk stratification, progression prediction, and timely
intervention to address unmet needs. AI has been developed to detect, diag-
nose, and predict the progression of myopia in both children and adults.
In this review, the current state of AI technology applications in the field
of myopia has been comprehensively reviewed, and the challenges, current
development status, and future directions of AI have also been discussed,
which hold great significance for the further application of AI in myopia
management.
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INTRODUCTION

Myopia is currently a critical public health issue,1 a
global prevalence of approximately 28.3% (2 billion) of
the world’s population and 4.0% (277 million) suffering
from high myopia. By 2050, the “myopia pandemic” is
projected to affect 49.8% (4.758 billion) of the global
population, with 9.8% (938 million) having high myopia
(≤ −5.00 dioper [D]).2 Any degree of myopia increases
the risk of adverse changes in ocular tissues, while high
myopia and pathological myopia significantly elevate the
risk of irreversible vision damage, such as glaucoma,
retinal detachment, myopic macular degeneration, and the
formation of choroidal neovascularization, which can even
lead to blindness.3 This not only reduces patients’ quality
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of life but also leads to a global medical and economic
burden. Therefore, it is of great significance to compre-
hensively conduct myopia healthcare services, including
detection, diagnosis, progression, prediction, and treatment
of myopia, as well as the management and prevention of
ocular complications and vision damage in patients with
high myopia.1

The concept of artificial intelligence (AI) was initially
proposed by John McCarthy in 1956, who defined AI as
the simulation of human intelligence through machines.4

With the continuous development of computer technology,
big data acquisition, and imaging methods, the application
of AI in the medical field is constantly expanding. The
development of multi-modal imaging, fundus photography,
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and optical coherence tomography (OCT) has provided
rich datasets for the development of AI models, making the
vigorous development of AI in ophthalmology.1 Machine
learning (ML), a subset of AI, primarily uses computer sys-
tem programming to perform tasks or predict outcomes.5

ML can also identify biomarkers that are difficult even
for human experts to identify, providing new opportunities
to improve the accuracy and efficiency of refractive error
detection and treatment.6,7 The diagnosis of many oph-
thalmic diseases requires not only symptom assessment
but also imaging information, a feature that has led to
the widespread application of AI technology represented
by deep learning (DL) in clinical ophthalmology.8 AI
models based on big medical data have the potential for
individualized treatment and help achieve precise diagnosis
and treatment of myopia.9,10

This paper reviews the clinical application and significance
of AI in the field of myopia prevention and control, includ-
ing the assessment of risk factors for myopia, myopia
detection, myopia prediction models, myopia control meth-
ods, behavioral interventions, and monitoring devices. It
also discusses the potential challenges and current devel-
opment status of AI in myopia prevention and control and
proposes future development directions.

ASSESSMENT OF RISK FACTORS FOR MYOPIA

In addition to the statistical analysis of myopia data, ML
can identify more relevant factors, facilitating better pre-
dictions of myopia. Based on questionnaire surveys, Xiao
et al.11 analyzed the relationship between living envi-
ronment, genetics, and living habits and myopia using
the following three ML methods: support vector machine
(SVM), logistic regression (LR), and XGBoost. They
found that age was the most significant risk factor for
myopia, while protective measures taken by children, such
as choosing not to look at the blackboard or promptly
reporting to teachers or parents when they could not
see the blackboard clearly, had the strongest protective
effect on vision compared with squinting to see the black-
board. An XGBoost-based model for myopia prediction
is recommended.11 Li et al.12 applied ML to longitudi-
nal, cycloplegic refractive data to explore risk factors for
myopia progression in primary school children, and found
that uncorrected distance visual acuity and spherical equiv-
alent (SE) were good predictors of myopia progression in
children during primary school. Parental myopia played
a significant role in the early stages of myopia progres-
sion but diminished with increasing age. Therefore, further
research on the impact of environmental factors on chil-
dren with myopia is needed to evaluate their interaction
and feasibility in different populations and individuals. Tu
et al.13 investigated key factors contributing to the preva-
lence of myopia among students by building ML models.

They found that urban living, parental myopia, high body
mass index, and engaging in intense near work were associ-
ated with a higher prevalence of myopia in children, while
increased outdoor activities helped reduce the prevalence
of myopia. Zhang et al.14 used ML techniques to screen
for risk factors associated with high myopia, including
74 factors related to demographics, physical examinations,
nutrition and serology, immunology, and past medical his-
tory. They found that high levels of serum vitamin A
appeared to be associated with an increased prevalence of
high myopia. Tong et al.15 analyzed the similarities and
differences in influencing factors of myopia for students
across different school stages (primary, middle, and high
school) using a myopia classification model based on ML
algorithms. They found that lower-grade students appeared
to be more susceptible to genetic or parental behaviors,
whereas eye health awareness and eye use behaviors may
influence higher-grade students. These findings are ben-
eficial for further guiding the prevention and control of
myopia in children and adolescents.

MYOPIA DETECTION

A traditional refractive examination is not only time-
consuming and labor-intensive but also relies on expensive
machines, experienced doctors, and technicians.1 People
with expression difficulties (such as young children, the
elderly, and patients with language communication bar-
riers) have difficulty cooperating during the examination
process.16 In developing or impoverished countries, due to
the lack of doctors and medical equipment, it is difficult to
accurately assess refractive errors so patients are likely to
miss the optimal treatment window, resulting in irreversible
visual loss.1 Therefore, it is necessary to provide timely
and high-quality refractive examination services that are
acceptable to the general population.1 With the continuous
update of AI technology, imaging-based ML or DL plays a
supporting role in the clinical management of myopia, fill-
ing the gap in AI algorithms for myopia and providing a
new direction for myopia detection.9 Mechanisms of ML
and DL in myopia application based on fundus images are
shown in Figure 1. Moreover, attention should be paid to the
related risks of myopia complications during ocular imag-
ing assessment, which may help reduce the overall burden
of myopia.17

A summary of the application of AI in myopia detection,
based on different types of images, is presented in Table 1.
Yang et al.18 trained a DL system to automatically detect
myopia from visual appearance images, which achieved
an area under the receiver operating characteristic curve
of 0.9270, providing a reference value for screening and
monitoring refractive status in children with myopia in
remote areas. Varadarajan et al.19 were the first to estimate
refractive errors with high accuracy based on retinal fundus
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FIGURE 1 Mechanisms of machine learning and deep learning in myopia application based on fundus images. DL, deep learning; ML, machine learning.

TABLE 1 Summary of artificial intelligence in myopia detection

References Modalities AI model Tasks Performance

Yang et al., 202018 Ocular appearance
images

DL Myopia detection and diagnosis AUC: 0.9270

Varadarajan et al., 201819 Fundus images DL SE assessment MAE of 0.56 D in the
UK Biobank data set
and 0.91 D in the
AREDS data set

Tan et al., 201920 Fundus images DL Prediction of SE and detection of
high myopia

MAE of 1.20 D for
SE prediction;
AUC of 0.942 for
high myopia detection

Tan et al., 202121 Fundus images DL Detection of myopic macular
degeneration and high myopia

AUC: 0.913

Yoo et al., 202222 OCT images DL Uncorrected refractive error
assessment

AUC: 0.813;
accuracy: 71.4%

Cao et al., 202323 Fundus images AI Detection of 7 fundus conditions in a
real-world setting with an AI-based
fundus screening system

AUC greater than 0.8
for pathologic myopia

Abbreviations: AI, artificial intelligence; AREDS, Age-Related Eye Disease Study; AUC, area under the curve; D, diopter; DL, deep learning; MAE,
mean absolute error; OCT, optical coherence tomography; SE, spherical equivalent.

photographs, demonstrating that DL can be applied to
make new predictions from medical images. This study
showed that the foveal region is one of the most important
areas for prediction, achieving a technological leap in
accurately predicting refractive errors from retinal fundus
images. Tan et al.20 also reported that a system consisting
of a convolutional neural network pre-trained with the
XGBoost algorithm can evaluate refractive errors with high
accuracy by using color fundus photographs. Tan et al.21

developed a DL algorithm based on retinal photographs
to detect high myopia. The DL algorithm is expected
to become an effective tool for risk stratification and
screening of myopia and high myopia in a large global
population, to identify individuals with the highest risk of
future complications, which may be important in address-
ing the global burden of myopia. In addition, existing
studies have developed DL models to predict uncorrected
refractive errors from OCT images, indicating that OCT
can also be applied to refractive error detection.22 Cao

et al.23 found that in the real world, AI-based fundus
screening systems have better performance in detecting
pathological myopia.

Self-monitoring equipment and applications enable con-
tinuous remote monitoring of diseases, providing new
strategies for myopia detection.17 SVOne is a portable
Hartmann-Shack wavefront aberrometer that uses a wave-
front sensor to measure eye aberrations. It can be connected
to a smartphone to objectively measure refractive errors
in the eye.24,25 Studies have found no significant differ-
ences in refractive error measurements of normal young
adults between the SVOne handheld aberrometer and other
subjective and objective programs. Therefore, this instru-
ment is valuable for vision screening and examinations
conducted outside clinical settings and can serve as an
auxiliary examination for standard optometry exams.24

Studies have developed a Web-based test to measure visual
acuity, as well as spherical and cylindrical refractive errors.
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The results indicated that the web-based ophthalmic test is
an effective and safe method for measuring visual acuity
and refractive errors in healthy eyes, especially for low
myopia. This tool can be used for screening purposes and
is an easily accessible alternative to subjective optom-
etry tests.26 These applications can be built on a large
database, providing personalized and frequent monitor-
ing of patients’ myopia status, while paving the way for
precision medicine in myopia treatment.17 Chi et al.27 pro-
posed a “self-service” intelligent vision screening system
based on an embedded AI platform, where individuals
can independently complete the task without any technical
assistance. The deployment of this intelligent system has
brought great convenience to large-scale and rapid vision
screening, and its effectiveness has been proven.

MYOPIA PREDICTION MODEL

Considering the potential burden of irreversible diseases in
adulthood, parents, clinicians, and policymakers are con-
cerned about the potential progression rate and risk of
developing myopia in children to high or even patholog-
ical myopia.28 Therefore, predicting the progression of
myopia can provide a basis for changing clinical practice,
health decision-making, and precise individualized inter-
vention measures for the practical control of myopia during
school age.1 In recent years, the development of AI technol-
ogy has provided new possibilities for myopia prediction
(Figure 1). The increase in the quantity and availability
of biomedical data, including biometric data, refractive
data, treatment responses, and ocular imaging data from
different modes, has enabled multimodal AI solutions to
capture the complexity of myopia, providing data support
for the establishment of myopia prediction models.17 This
study summarized the myopia prediction models devel-
oped in recent years and their significance, as shown in
Table 2.

Lin et al.29 used a random forest ML model to predict the
onset and progression of myopia in children and adoles-
cents over the next 10 years based on age, SE, and annual
myopia progression rate. The prediction performance was
good. This work provided evidence for changing clinical
practice, health policy development, and precise personal-
ized interventions for practical control of myopia in school-
age children. Yang et al.30 developed a prediction model for
myopia in adolescents based on the integrated data includ-
ing gender, measurement data (axial length and corneal
curvature), behavioral data (outdoor and indoor exercise
time, close visual work habits), dietary habits, and fam-
ily history data (number of parents wearing glasses). They
inferred a relationship between myopia and different fac-
tors. The model achieved reasonable performance and accu-
racy, which is beneficial for formulating policies to help
prevent myopia. Tang et al.31 studied the optimal model for

predicting axial elongation based on integrated data includ-
ing demographics (gender and age), SE, corneal metrology
(average K value), corneal diameter (WTW), and central
corneal thickness, demonstrating that in the absence of clin-
ical data, ML algorithms can provide practitioners with a
reasonable model for estimating increases in axial length,
which is especially useful when monitoring the myopia pro-
gression in orthokeratology lens wearers. Li et al.12 estab-
lished an ML-based prediction model for myopia progres-
sion in primary school students based on uncorrected dis-
tance visual acuity, SE, axial length, flat corneal curvature,
gender, and parental myopia. The model has good accuracy
in predicting myopia progression. Foo et al.32 developed
models to predict the risk of high myopia (SE ≤ −6.00D) 5
years later during teenage years (aged 11–17) using clinical
data (age, gender, ethnicity, parental myopia, and baseline
SE), fundus image data, and a combination of the two based
on a DL system. The DL system in this study can predict
the development of high myopia in primary school stu-
dents during adolescence, which has the potential to serve
as a clinical decision-support tool to identify “high-risk”
children for early intervention. The performance of the fun-
dus image model has the potential to be translated and
implemented as a community or school project to identify
high-risk children for further assessment and intervention
when needed. Huang et al.33 used a time-aware long short-
term memory method based on historical visual records,
including uncorrected visual acuity, spherical power, astig-
matism degree, astigmatism axis, corneal curvature, and
axial length, to quantitatively predict SE of children and
adolescents over 2.5 years, facilitating the early identifica-
tion of myopia progression and allowing for targeted inter-
ventions and proactive preventive measures. Wang et al.34

developed different ML models to predict the best corrected
visual acuity of patients with high myopia over the next 3
and 5 years, as well as the risk of visual impairment over the
next 5 years. The data included general information, basic
ophthalmic information, and 34 variables such as the cat-
egory of myopic maculopathy based on fundus and OCT
images. The results showed that it is feasible to develop
accurate models for predicting long-term visual acuity in
patients with high myopia based on clinical and imag-
ing information, which can be used for clinical assessment
of future visual acuity. Barraza-Bernal et al.35 developed
ML-based models to predict the onset and progression of
myopia based on age, gender, biometrics, and refractive
parameters, which will help generate a high-quality algo-
rithm for predicting the development of refractive errors.
Zhu et al.36 predicted SE and axial length in students from
grades 1–6 based on ML and predicted children’s future
SE and axial length using ML, thereby assisting doctors
in making diagnoses and taking timely preventive mea-
sures based on the prediction results, which is significant
for the prevention and control of myopia in children. Some
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TABLE 2 Summary of artificial intelligence in myopia prediction

References Modalities AI model Tasks Performance

Lin et al, 201829 Integrated data ML Prediction of SE and
high myopia onset

AUC: 0.801–0.837

Yang et al., 202030 Integrated data ML Prediction of myopia
at 6th grade

AUC: 0.87–0.98

Tang et al., 202031 Integrated data ML Prediction of AL
elongation

Best model: Robust linear regression R2:
0.87

Li et al., 202212 Integrated data ML Prediction of myopia
progression for all 5
years

Combined weight of 77% and prediction
accuracy of over 80%

Foo et al., 202332 Integrated data DL Prediction of 5-year
high myopia risk

Image models AUC: 0.91–0.93; clinical
models AUC: 0.93–0.94; mixed models
AUC: 0.97–0.98

Huang et al., 202333 Variable-length
historical vision
records

DL Prediction of the
children’s and
adolescents’ SE
within two and a half
years

Overall error 0.103 D

Wang et al., 202334 Integrated data ML Prediction of BCVA
at 3 and 5 years and
the risk of developing
VI at 5 years

Support vector machines for BCVA at 3
years. R2: 0.682; random forest for BCVA at
5 years, R2: 0.660; logistic regression for VI
at 5 years, AUC: 0.870

Barraza-Bernal et al., 202335 Integrated data ML Prediction of
refractive error and its
progression

The Pearson correlation coefficient between
prediction and measured data was 0.77, the
bias was −0.05 D and the limits of
agreement were 0.85 D

Zhu et al., 202336 SE and AL ML Prediction of SE and
AL

OMP model for SE: R2 up to 0.8997; KR
and MLP models for AL: R2 up to 0.9072

Oh et al., 202337 UWF images DL Prediction of SE and
AL

R2: 0.815

Wang et al., 202438 UWF images DL Prediction of AL of
moderate to high
myopic patients

R2, MSE, and MAE were 0.579, 1.419, and
0.9043, respectively

Li et al., 202439 Integrated data ML Prediction of myopia
progression and high
myopia risk in
children

AUC: 0.80–0.96

Qi et al., 202440 Integrated data DL Prediction of myopia
onset

AUC: 0.769–0.908

Zhao et al., 202441 Age at baseline
and SE

ML Prediction of SE and
onset of myopia and
high myopia in a
specific year

R2 exceeding 0.729 for SE prediction,
AUC of myopia onset: 0.845–0.953 over 15
years, AUC of high myopia onset prediction:
0.807–0.997 over 13 years, with the 14th
year at 0.765

Abbreviations: AL, axial length; AUC, area under the curve; BCVA, best corrected visual acuity; DL, deep learning; KR, kernel ridge; MAE, mean
absolute error; ML, machine learning; MLP, multilayer perceptron; MSE, mean square error; OMP, orthogonal matching pursuit; PM, pathological
myopia; SE, spherical equivalent; UWF, ultra-widefield; VI, visual impairment.

studies have developed DL-based models to predict AL
through Ultra-widefield images. These findings may aid in
better understanding the relationship between eye length
and retinal changes.37,38 Li et al.39 established models to
predict the progression of myopia and the risk of develop-
ing high myopia in children using various ML methods,

such as the K-nearest neighbor, XGBoost, decision tree
model, logistic regression model, and Gaussian NB model,
based on students’ basic information, parental myopia, and
their education level, and eye usage habits. These mod-
els achieved good performance. Qi et al.40 developed a
DL algorithm called DeepMyopia, which can predict the
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occurrence of myopia in the next 3 years and accurately
identify high-risk individuals by analyzing retinal fundus
images, axial length, gender, age, and other information of
children and adolescents, providing a reliable and efficient
tool for early detection of myopia in children and pos-
sessing tremendous potential in large-scale public health
screenings. Zhao et al.41 predicted the SE and onset of
myopia, and high myopia in specific years using random
forest and XGBoost. They found that the XGBoost pre-
diction model exhibited high accuracy in predicting SE
and the onset of myopia and high myopia in children and
adolescents aged 3–18 years. Their study emphasized the
importance of early and regular examinations to predict
high myopia, thus providing valuable insights for clinical
practice.

Genetic factors are also a non-negligible contributor to
myopia.3 In myopia prediction, the key advantage of
genetic data over refractive error lies in the fact that geno-
types are fixed. Genetic data can be combined with age,
sex, and other risk factors (such as parental SE) to predict
the risk of myopia at a very young age. However, existing
studies have shown that the added value of genetic data in
myopia prediction is very limited, and research results are
inconsistent.42 Wei et al.43 identified potential biomarkers
for myopia using ML algorithms and determined four key
biomarkers (NR1D1, PPP1R18, PGBD2, and PPP1R3D)
for myopia, providing a foundation for future clinical
and experimental validation studies and enhancing the
diagnosis and prognostic prediction of myopia. Studies
have found that the areas under the receiver operating char-
acteristic curve (AUROCs) for predicting myopia using
polygenic risk scores (PRS) were 0.67 (SE ≤ −0.75D), 0.75
(SE ≤ −3.00D), and 0.73 (SE ≤ −5.00D), respectively.
Including PRS in the level of education slightly improved
the AUROC for myopia, but had no effect on moderate and
high myopia.44 Chen et al.45 evaluated the effect of adding
genetic information to predict future myopia risk based on
cycloplegic data from 1063 pairs of first-born twins from
the Guangzhou Twins Eye Study. The results showed that
adding genetic risk score (GRS) data did not significantly
improve model performance. However, other studies have
found that GRS improved model fit compared to using the
number of myopic parents alone in predicting the incidence
rate of myopia.46 Therefore, further research is needed on
the application of genetic data in the field of myopia.

AI AND MYOPIA TREATMENT

The use of corneal parameters and AI models based on
corneal topography provides more accurate lens-wearing
and personalized treatment plans for children wearing
orthokeratology lenses. Fang et al.47 employed ML to
predict the treatment effects of orthokeratology based on
ocular parameters and clinical features. The C-statistic

of the prediction model was 0.821, indicating that this
auxiliary model can assist ophthalmologists in making clin-
ical decisions for patients, improving myopia control, and
predicting the clinical effect of orthokeratology treatment
through retrospective non-interventional trials. Fan et al.48

constructed an ML-based model for estimating the align-
ment curve of orthokeratology lens fitting. This model
can minimize the number of lens trials, enhance efficiency
while maintaining accuracy, and represent an improvement
over previous calculation methods. It can also provide clin-
icians with an effective approach to estimate the alignment
curve of visual reshaping treatment lenses and reduce the
probability of cross-infection caused by trial lenses. Zhang
et al.49 developed a DL-based automated model using
corneal topography to determine the treatment zone and
peripheral steep zone after orthokeratology treatment. This
system reduced the manpower, effort, and time required
for treatment effect assessment and follow-up, providing
a reliable detection tool for clinical research. Additionally,
some studies have identified the optimal intraocular pres-
sure monitoring module based on ML and established an
accurate baseline intraocular pressure as a clinical safety
reference for atropine treatment in patients with myopia.50

5G and 6G will support virtual reality (VR) technology,
where simulated presence is generated by computer graph-
ics, allowing users to interact with simulated elements
in a seemingly realistic way.51 Currently, the application
prospects of VR and augmented reality technology in
ophthalmology are still in their infancy. For myopia, VR
technology can simulate outdoor environments relatively
well, adjust the light intensity and spectral composition,
and maintain peripheral defocus in a VR environment.
Based on these principles, some have suggested that VR
devices may be a possible method for controlling myopia.52

Recently, researchers have designed a new optical system
based on augmented reality that enables sustained and
long-term reduction of axial length and refractive end-
points under specific myopic defocus stimuli, which is
beneficial for controlling myopia progression in adults.53

Some studies have found that the choroidal thickness of
young people increased significantly after wearing the VR
headset.54 However, further research is needed to deter-
mine whether this change affects myopia progression in
young people and its role in controlling myopia in children.

AI AND MONITORING DEVICES IN BEHAVIORAL
INTERVENTION

Effective behavioral interventions and early detection are
equally important for preventing myopia and limiting its
progression. Self-monitoring devices and applications such
as mobile health apps and web-based tools enable continu-
ous remote monitoring of the disease, potentially serving
as new methods for myopia prevention and control. To
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understand the behaviors associated with the onset and
progression of myopia, a study developed the Vivior mon-
itor (Vivior AG) using ML algorithms to investigate visual
behaviors related to myopia in children aged 6–16. This
wearable device can identify types of visual activity, such
as viewing handheld media, desktop work, and computer
work. The study found that older children spend less
time on distant vision and physical activities, and more
time on computers.55 Another research institute has devel-
oped a novel wearable fitness tracker that can record the
wearer’s time spent outdoors and send feedback to parents
and children.56 Clouclip (Grasen Technology Co., Ltd.)
is a cloud-based sensor device attached to both sides of
eyeglasses, which can objectively and dynamically mon-
itor the wearer’s near vision distance, duration, and light
intensity exposure levels. When the device detects myopia-
related risky behaviors such as excessively close vision
or sustained near vision activities, it can provide vibra-
tion alerts and significantly encourage changes in unhealthy
near vision behaviors among school-aged children. These
effects can persist for a period of time, making it a potential
strategy for managing myopia.17,57,58 Additionally, rely-
ing on Clouclip to assess differences in daily behaviors
between myopic and non-myopic participants can explore
protective factors for myopia, including longer exposure
to higher light intensities and engagement in visual activ-
ities at greater distances.57,58 Researchers have studied
the effectiveness of AI-based alerts in modifying screen
time practices, demonstrating that AI alerts are effec-
tive in prompting users to timely correct screen-related
behaviors.59 A recent study developed a DL-based AI sys-
tem called DeepMyopia, which has been proven to be a
reliable and effective AI-based decision support system for
intervention guidance in children at high risk of myopia.
Moreover, the intervention guidance provided by Deep-
Myopia can be flexibly adjusted based on individual risk
profiles and clinician assessments.40

CHALLENGES AND FUTURE DIRECTIONS OF
ARTIFICIAL INTELLIGENCE APPLICATIONS

Despite the great success achieved in the clinical applica-
tion of AI in the field of myopia, challenges and obstacles
still exist. In the face of challenges, clarifying future devel-
opmental directions and updating coping strategies in time
are conducive to promoting the application of AI in the field
of myopia prevention and control.

Challenges faced by AI

First, the quality control of datasets poses a challenge
to the application of AI owing to the diversity of data
obtained through various inspection methods. Recall bias
in questionnaire-based data collection poses a signifi-
cant challenge to both the quality and quantity of data,

especially regarding environmental and lifestyle risk
factors.9 Image-based AI requires large volumes of stan-
dardized and labeled data. However, the currently available
ophthalmology datasets are relatively small,60 and some
publicly available datasets used in some studies contain
numerous images of poor quality.61,62 Therefore, the
acquisition of large-scale and high-quality data represents
a significant challenge. Second, the reference value of the
currently researched models in clinical settings is limited.
Because most AI systems trained in tertiary hospitals have
not undergone large-sample testing in primary health-
care environments, there may be discrepancies in disease
types and conditions between real-world and training
populations.63 Hence, further validation of these models is
necessary before their practical clinical application. Third,
AI, as a subdomain of computer science, lacks the ability
to explain test results and provide an accurate basis for
judgment of test results, leading to the so-called “black
box phenomenon”.1,61 This may reduce the acceptance
of test results by ophthalmologists and patients.64 Fourth,
with the increasing use of AI, concerns about safety and
privacy have arisen.65 Due to the potential for AI models
to cause medical-legal issues,66 there is currently a lack
of legal protection and regulatory systems related to AI
technology.61,67 In case of errors, who will be responsible
for the legal consequences of adverse outcomes resulting
from misjudgments made by AI algorithms?68 These
issues contribute to difficulties in implementing AI in
real-world clinical practice. Lastly, the lack of infrastruc-
ture and resource constraints, especially in developing and
less-developed regions, affect the implementation of new
technologies.9,17 The direct and indirect costs associated
with the development, implementation, and maintenance
of AI-related equipment and technologies may also pose
significant obstacles in less-developed regions.69

Future directions

Accurate identification of children at risk for myopia is
crucial for myopia management, allowing the formulation
of appropriate prevention strategies. Future AI research
should focus not only on the improvement of myopia-
related models, but also on their implementation, and
finally promote the establishment of a personalized myopic
management model.

First, the optimization and implementation of myopia-
related models are crucial. In terms of model optimization,
combining AI technology with multi-dimensional models
of genetic, environmental, and socio-economic factors
is a good way to improve the prediction accuracy of
myopia identification. In addition, the various currently
established models require further research to be validated
for widespread implementation. When the models need
to be refined, it is also necessary to solve the “black-box
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phenomenon” of AI to improve the acceptance of test
results by ophthalmologists and patients. The emergence
of explainable AI (XAI) technology has the potential
to address the obstacle of explainability in AI.70,71 An
XAI framework for diagnosing macular diseases based on
OCT images has already been studied.72 This provides a
reference for the application in the field of myopia because
there is no research using XAI in the field of myopia.
Secondly, the development of relevant standards or guide-
lines is quite essential. Therefore, it is necessary to utilize
multi-ethnic genetic samples for research to advance new
insights into myopia management, due to the diversity
of myopia across different environments, geographies,
and cultures.9,73 The combination of AI and blockchain
technology is a new development direction, which can
achieve data collection and sharing across regions or
platforms on the basis of maintaining data integrity.74

Thirdly, individualized management of myopia is also a
new model of myopia management. The development of
AI technology and 5G networks has made telemedicine
new insights for myopia management, especially in remote
areas.75 Researching the application of AI-integrated
remote platforms in the prevention and control of myopia
will promote personalized management models and may
also help to solve eye care problems in remote and under-
developed areas.75,76 At last, before implementing AI, it is
necessary to establish standards and norms, improve confi-
dentiality agreements and data safety, and strengthen legal
supervision. The emergence of federated learning provides
new possibilities for data privacy protection and has not
been applied to the field of myopia.77 The combination
of AI and blockchain technology enables international
data collection and sharing across various platforms with
accountability and transparency, which is expected to pro-
vide technical support for improving the relevant liability
system.74

CONCLUSION

Our review shows that significant progress has been made
in the clinical application of AI in myopia, especially
in facilitating personalized management of risk assess-
ment, treatment, behavioral intervention, and monitoring.
However, attention still needs to be paid to unresolved
technological challenges, such as building high-quality
datasets, improving the processing capability of multi-
modal inputs, designing new algorithms, and exploring
new application scenarios. In addition, the explainability,
human-computer interaction capabilities, generaliza-
tion, and robustness of AI models should be optimized,
clinical standards should be established, large-scale
datasets should be integrated, and evaluation frameworks
should be developed to promote their widespread clinical
application.
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