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Abstract: We report the synthesis and thermoelectric transport properties of As-doped
layered pnictogen oxyselenides NdO0.8F0.2Sb1−xAsxSe2 (x ≤ 0.6), which are predicted to show
high-performance thermoelectric properties based on first-principles calculation. The crystal structure
of these compounds belongs to the tetragonal P4/nmm space group (No. 129) at room temperature.
The lattice parameter c decreases with increasing x, while a remains almost unchanged among the
samples. Despite isovalent substitution of As for Sb, electrical resistivity significantly rises with
increasing x. Very low thermal conductivity of less than 0.8 Wm−1K−1 is observed at temperatures
between 300 and 673 K for all the examined samples. For As-doped samples, the thermal conductivity
further decreases above 600 K. Temperature-dependent synchrotron X-ray diffraction indicates that
an anomaly also occurs in the c-axis length at around 600 K, which may relate to the thermal
transport properties.

Keywords: thermoelectric materials; mixed-anion compounds; crystal structure analysis;
transport properties

1. Introduction

A thermoelectric device is a solid-state device that can directly convert heat to electricity or
vice versa without any gas or liquid working fluid [1–5]. The efficiency of the thermoelectric device
is primarily governed by the material’s dimensionless figure of merit, ZT = S2Tρ−1κ−1, where T
is the absolute temperature, S is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the
thermal conductivity. Because these transport properties strongly correlate with each other, it is
not easy to achieve high-ZT thermoelectric materials. A promising approach to developing novel
thermoelectric materials is by utilizing the first-principles calculation of transport properties under
some assumptions, such as a constant relaxation time [6–13]. Indeed, several candidate materials
have been theoretically predicted to show high thermoelectric performance, and some have been
experimentally investigated. However, the verification of these theoretical predictions is insufficient
because some of the promising materials cannot be obtained in a thermodynamically stable phase.
Furthermore, even if the parent materials are obtained, tuning carrier density in order to optimize its
thermoelectric performance may be hampered by issues including self-compensation due to intrinsic
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point defects [14–16]. It remains important to experimentally investigate the new material systems to
develop high-performance thermoelectric materials.

The layered pnictogen oxychalcogenides REOPnCh2 (RE = rare earth, Pn = pnictogen,
Ch = chalcogen) are one of the materials predicted to show enhanced thermoelectric properties [17,18].
The crystal structure of REOPnCh2 is characterized by alternate stacks of PnCh2 conducting layers
and REO spacer layers, illustrated schematically in Figure 1. These compounds have been extensively
studied because of their superconductivity when Pn = Bi [19–21]. Moreover, the thermoelectric
figure of merit ZT reached 0.36 for LaOBiSSe [22]. Although the reported ZT is still moderate, their
striking features of (1) intrinsically low lattice thermal conductivity, 1–2 Wm−1K−1 at 300 K, and (2) a
tolerance for various elemental substitution, offer promise for efficient thermoelectric materials [23–26].
In particular, low lattice thermal conductivity is achieved due to the rattling motion of Bi, even though
these compounds have no oversized cage [27,28]. To enhance their thermoelectric power factor (S2ρ−1),
the guiding principles are indicated on the basis of first-principles calculation: (1) Small spin–orbit
coupling, (2) small Pn–Pn and large Pn–Ch hopping amplitudes, and (3) a small onsite energy difference
between the Pn–pxy and Ch–pxy orbitals [17,18]. Consequently, employing light Pn and heavy Ch is
believed to result in an increase in thermoelectric performance. It has been predicted that REOAsSe2,
which is yet to be synthesized, shows ZT exceeding 2 as a result of the above-mentioned optimization.

Figure 1. Schematic representation of the crystal structure of NdO0.8F0.2Sb1−xAsxSe2 (x = 0.6).
The crystal structure belongs to tetragonal P4/nmm space group (No. 129). The unit cell is represented
using the black line. Two crystallographic sites of Se are described as in-plane Se1 and out-of-plane Se2.
Pn indicates pnictogen (Sb and As).

So far, the replacement of Pn with a light element has been demonstrated using Pn = Sb [29–34].
We have reported the synthesis and transport properties of RE(O,F)SbSe2 for RE = La, Ce, and Nd [30,31].
Although aliovalent ion substitution of F at the O site implies electron doping in these compounds,
electrical resistivity was very high when Pn = Sb. Indeed, electrical resistivity drastically decreased
by Bi substitution at the Sb site, and a superconducting transition under ultra-high-pressure was
demonstrated in NdO0.8F0.2Sb1−xBixSe2 [34].

In this study, we report the synthesis of As-doped NdO0.8F0.2SbSe2, namely, NdO0.8F0.2Sb1−xAsxSe2

(x ≤ 0.6). The crystal structure of these compounds belongs to the tetragonal P4/nmm space group
(No. 129). Electrical resistivity significantly increases as a result of As substitution, and very low
thermal conductivity of less than 0.8 Wm−1K−1 is observed in all samples. We also discuss an anomaly
observed in the temperature dependence of the lattice parameter c and thermal conductivity at around
600 K.
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2. Materials and Methods

Polycrystalline samples were synthesized using solid-state reactions employing dehydrated
Nd2O3, NdSe, NdSe2, Sb (99.9%), As (99.999%), and Se (99.999%) as precursors. The dehydrated Nd2O3

was prepared by heating commercial Nd2O3 powder (99.9%) at 700 ◦C for 15 h in air. The mixture of
NdSe and NdSe2 was prepared by the reaction of Nd (99.9%) and Se in a molar ratio of 2:3, heated at
500 ◦C in an evacuated silica tube. A stoichiometric mixture of these precursors was pressed into a
pellet and heated at 600–700 ◦C for 20 h. These procedures were conducted in an Ar-filled glovebox
with a gas-purifier system. The samples were densified by hot pressing at 50 MPa at 600 ◦C for 30 min.
The relative density of the obtained samples was calculated as >95%.

The chemical compositions of the samples were analyzed using an energy dispersive X-ray
spectrometer (EDX; SwiftED3000, Oxford instruments, Abingdon-on-Thames, Oxfordshire, UK).
The phase purity and crystal structure of the samples were examined using powder X-ray diffraction
(XRD) with Cu Kα radiation (Miniflex 600 equipped with a D/teX Ultra detector, Rigaku, Akishima,
Tokyo, Japan). Synchrotron powder X-ray diffraction (SXRD) was measured at the BL02B2 beamline of
SPring-8 (proposal number 2019B1195). The diffraction data were collected using a high-resolution
one-dimensional semiconductor detector (multiple MYTHEN system, Dectris, Täfernweg, Baden,
Switzerland) [35]. The wavelength of the radiation beam was determined to be 0.496391(1) Å using a
CeO2 standard. The temperature dependence of SXRD was collected using a nitrogen gas blower up
to 694 K. The crystal structure parameters were determined by Rietveld analysis using the Rietveld
refinement program RIETAN-FP [36]. The crystal structure was depicted using VESTA [37].

The electrical resistivity ρ and Seebeck coefficient S were examined using the four-probe method
and quasi-steady-state method, respectively, under a helium atmosphere (ZEM-3, Advance Riko,
Yokohama, Kanagawa, Japan). The samples used for the measurements were rectangular bars
with a size of approximately 2 × 3 × 10 mm3. The thermal conductivity κ was obtained using the
relationship κ = DCpds, where D, Cp, and ds are the thermal diffusivity, specific heat, and sample
density, respectively. The thermal diffusivity was measured by a laser flash method (TC1200-RH,
Advance Riko). The samples used for the measurements were pellet-shaped disks with a diameter of
φ10 mm and a thickness of 2 mm. The value of Cp was estimated by the Dulong–Petit model, Cp = 3nR,
where n is the number of atoms per formula unit, and R is the gas constant.

3. Results and Discussion

3.1. Sample Characterization and Crystal Structure Analysis

Figure 2 shows XRD patterns for x = 0–0.6. Almost all the diffraction peaks are attributable to those
of the tetragonal P4/nmm space group (No. 129), indicating the samples are dominantly composed
of NdO0.8F0.2SbSe2-type phase. However, several diffraction peaks due to the impurity phases are
also observed. Rietveld analysis shows that the amount of impurities of x = 0.6 is as follows: Sb in

the P21/m space group (2.4 wt.%), NdO0.67F1.66 (2.0 wt.%), Nd4O4Se3 (1.4 wt.%), and Sb R
−

3m space
group (0.8 wt.%.) (Figure 3). Because the amount of impurities significantly increased for x = 0.7,
we employed x ≤ 0.6 in further studies. Figure 4 shows the chemical composition obtained using EDX.
With increasing x, the amount of analyzed Sb decreases, while that of As increases. The amount of Se
remains almost unchanged among the samples. The EDX confirms that the chemical composition of
the present samples is in reasonable accordance with the nominal composition of starting materials.
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Figure 2. X-ray diffraction (XRD) patterns of NdO0.8F0.2Sb1−xAsxSe2 for x = 0−0.6.

Figure 3. XRD pattern of x = 0.6 analyzed by the Rietveld method. The circles (red) and line (black)
denote the observed and calculated patterns, respectively. The line at the bottom shows the difference
between the observed and calculated intensities. The short bars represent the Bragg diffraction angles
for x = 0.6 (93.4 wt.%) and impurities, Sb in the P21/m space group (2.4 wt.%), NdO0.67F1.66 (2.0 wt.%),

Nd4O4Se3 (1.4 wt.%), and Sb in R
−

3m space group (0.8 wt.%.), from top to bottom.

Figure 4. Chemical compositions obtained using EDX. The results are normalized with respect to Nd
contents. The dashed lines represent the nominal compositions of the starting materials.
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Figure 5 shows the lattice parameters a and c as a function of x. With increasing x, the c decreases
almost monotonically, while a increases only slightly. The decrease of c is most likely due to the smaller
ionic radius of As than that of Sb. For example, Shannon’s ionic radius of As3+ and Sb3+ with six
coordinates is as follows: As3+ = 58 pm and Sb3+ = 76 pm [38], although the valence state of As and Sb
is still under investigation.

Figure 5. Lattice parameters (a) a and (b) c of NdO0.8F0.2Sb1−xAsxSe2.

Figure 6 shows the selected bond distances and angles. The bond distance for in-plane Sb/As
(Pn)-Se1 is almost independent of x, consistent with the almost unchanged lattice parameter a. The bond
distance for Pn-Se2 decreases almost linearly with increasing x, which is likely related to a decrease
of lattice parameter c. Bond distances for interplane Pn-Se1 tends to increase with an increase of x,
but shows a slightly complex behavior. This is likely due to the contribution of the following opposite
trends: (1) A decrease in c-axis length appears to reduce the interplane Pn-Se1 distance, and (2) the
Se1-Pn-Se1 bond angle tends to approach 180◦ with increasing x, as shown in Figure 6d, which tends
to increase the interplane Pn-Se1 distance.

Figure 6. Selected bond distances and angle for NdO0.8F0.2Sb1−xAsxSe2: (a) In-plane Pn-Se1 distance,
(b) Pn-Se2 distance, (c) interplane Pn-Se1 distance, and (d) Se1-Pn-Se1 angle.
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We deduce that the almost unchanged a and in-plane Pn-Se1 bond distance may originate from
its characteristic crystal structure, consisting of an alternate stack of (NdO0.8F0.2) and (Sb1−xAsxSe2)
layers. Although the a-axis of the (Sb1−xAsxSe2) layer tends to shrink as a result of As substitution,
this is hampered by (NdO0.8F0.2) layer with hard ionic bonding. The unchanged a results in a decrease
of in-plane chemical pressure, which is established for emerging superconductivity in this family of
compounds when Pn = Bi [39].

3.2. Thermoelectric Transport Properties

The temperature dependence of electrical resistivity is depicted in Figure 7a. The resistivity
is significantly increased as a result of As substitution, despite isovalent substitution of As into
Sb. Although the origin of the insulating nature in these compounds is not yet clear, the results
evoke the decrease of resistivity by Bi substitution into the Sb site in NdO0.8F0.2Sb1−xBixSe2 [31].
A negative Seebeck coefficient indicates the n-type polarity of these samples, as shown in Figure 7b.
The very high absolute value of the Seebeck coefficient is in agreement with the insulating behavior
observed in electrical resistivity. The magnitude of the Seebeck coefficient decreases rapidly with
increasing temperature, suggesting small amounts of minority carriers (holes) are also excited at
high temperatures.

Figure 7. Temperature dependence of electrical transport properties of NdO0.8F0.2Sb1−xAsxSe2:
(a) Electrical resistivity (ρ) and (b) Seebeck coefficient.

At first glance, the insulating nature observed in NdO0.8F0.2Sb1−xAsxSe2 seems to contradict
first-principles calculation, which indicates metallic band structure [34]. One may deduce that this is
due to insufficient electron doping through a spacer layer, because it is difficult to determine the O
and F contents using EDX or XRD. However, even if the actual F content is lower than the nominal
composition of starting materials, electron doping should trigger metallic conduction, as expected in a
conventional semiconductor.

In BiCh2-based layered compounds, which are structural analogs of the present compounds, it is
revealed that emerging bulk superconductivity requires the suppression of local disorder, as well as
electron doping [3]. That is to say, some BiCh2-based compounds do not show bulk superconductivity,
although the electron is sufficiently doped by a spacer layer. For example, the extended X-ray
absorption fine structure shows that mean square relative displacement (MSRD) of in-plane Bi-Ch
bond distance is a measure of local disorder [40–42]. Namely, a large MSRD indicates the existence of
disorder in the Bi-Ch layer, which is detrimental to inducing bulk superconductivity. Furthermore,
pair distribution function analysis using neutron and synchrotron X-ray diffraction also indicates
local symmetry lowering in the tetragonal structure [43–46]. Detailed crystal structure analysis using
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Rietveld refinement shows that this local disorder/distortion is also observed in terms of a large
atomic displacement parameter [47]. Indeed, first-principles calculation indicates the tetragonal
P4/nmm structure is not energetically favored, and shows the existence of imaginary phonons in this
structure [48–51]. All of these analyses strongly suggest that the doped electron is not activated because
of local disorder/distortion in these compounds.

To suppress the local disorder/distortion, it is believed that applying in-plane chemical pressure
that promotes overlapping between Pn p and Ch p orbitals is useful by chemical doping [3,39].
We briefly describe our preliminary doping study results below to achieve more conductive samples.
First, we examined Te doping into the Se site, but the solubility limit of Te was estimated at less
than 10%. We then investigated Gd/Sm doping into the Nd site to shrink the lattice parameter a
by using lanthanide contraction, and the solubility limit was approximately 30%. The decrease in
electrical resistivity as a result of this doping was not significant, suggesting that there was still local
disorder/distortion in these samples. Local structure analysis will help provide insights into the
insulating properties of samples in the present study.

Figure 8 shows the temperature dependence of thermal conductivity. Very low thermal
conductivity of less than 0.8 Wm−1K−1 is obtained for all samples. Because of its insulating
nature, the electronic component in thermal conductivity is negligibly small. According to the
Wiedemann–Franz relationship, electronic thermal conductivity is expressed as κe = LT/ρ, where L
is the Lorenz number (typically L = 2.44 × 10−8 V2K−2). The κe of the present samples is estimated
to be less than 1% of total thermal conductivity. Room-temperature thermal conductivity further
decreases as a result of As substitution, likely because of point defect scattering of the phonon in solid
solution [51–58]. The thermal conductivity decreases with increasing temperature, indicating that the
phonon scattering process is dominated by the Umklapp process. Notably, the thermal conductivity
of As-doped samples rapidly decreases above 600 K, as shown in the inset of Figure 8, suggesting a
change in phonon properties at this temperature. Here, the measurement results on the heating and
cooling run almost coincide.

Figure 8. Temperature dependence of thermal conductivity for NdO0.8F0.2Sb1−xAsxSe2. The inset
shows the expanded view of x = 0.2. The arrow indicates the temperature at which the thermal
conductivity rapidly decreases.

3.3. High-Temperature Synchrotron X-ray Diffraction

To further study this anomaly at around 600 K, we performed temperature-dependent SXRD
measurement for x = 0.2. Figure 9a shows SXRD patterns at temperatures between 350 and 694 K with
a heating rate of 30 Kmin−1. Diffraction peaks attributable to impurities are not significantly increased
during the measurements. The a-axis length increases monotonically with temperature because of
thermal expansion, as shown in Figure 9b. On the other hand, the c-axis length shows a kink at 600 K,
at which point thermal conductivity also changes anomalously (Figure 9c and the inset of Figure 8).
Although we measured SXRD in the heating run only, room temperature lattice parameters of the
recovered sample are consistent with those before the measurements. This strongly suggests that
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the obtained results are intrinsic properties of this sample. Note that this result is somewhat similar
to the phase transition from tetragonal to collapsed tetragonal phase, as demonstrated in 122-type
compounds such as CeFe2As2 and LaRu2P2 [59,60]. However, a more detailed study is required to
conclude this phase transition-like behavior as no anomaly is observed in resistivity and Seebeck
coefficient, which could be sensitive to phase transition. Detailed structural/transport analysis at
high-temperature will be investigated in our future work.

Figure 9. (a) Temperature dependence of synchrotron powder X-ray diffraction (SXRD) pattern of
x = 0.2 at temperatures between 342 and 694 K. (b,c) Temperature dependence of lattice parameters
(a and c) of x = 0.2. The arrow in (c) indicates the temperature at which an anomalous change in thermal
conductivity is observed.

4. Conclusions

We investigated the synthesis and transport properties of As-doped layered pnictogen oxyselenides
NdO0.8F0.2Sb1−xAsxSe2 (x≤ 0.6) for the first time. Despite the theoretical prediction of high-performance
thermoelectric properties in these compounds, the experimentally obtained products were still
insulators. We believe that local structure analysis will provide insights into the origin of the insulating
behavior. Such studies are in progress and will be presented in our future work.
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