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BGRMI: A method for inferring 
gene regulatory networks from 
time-course gene expression data 
and its application in breast cancer 
research
Luis F. Iglesias-Martinez1, Walter Kolch1,2,3 & Tapesh Santra1

Reconstructing gene regulatory networks (GRNs) from gene expression data is a challenging problem. 
Existing GRN reconstruction algorithms can be broadly divided into model-free and model–based 
methods. Typically, model-free methods have high accuracy but are computation intensive whereas 
model-based methods are fast but less accurate. We propose Bayesian Gene Regulation Model 
Inference (BGRMI), a model-based method for inferring GRNs from time-course gene expression 
data. BGRMI uses a Bayesian framework to calculate the probability of different models of GRNs and 
a heuristic search strategy to scan the model space efficiently. Using benchmark datasets, we show 
that BGRMI has higher/comparable accuracy at a fraction of the computational cost of competing 
algorithms. Additionally, it can incorporate prior knowledge of potential gene regulation mechanisms 
and TF hetero-dimerization processes in the GRN reconstruction process. We incorporated existing 
ChIP-seq data and known protein interactions between TFs in BGRMI as sources of prior knowledge to 
reconstruct transcription regulatory networks of proliferating and differentiating breast cancer (BC) 
cells from time-course gene expression data. The reconstructed networks revealed key driver genes 
of proliferation and differentiation in BC cells. Some of these genes were not previously studied in the 
context of BC, but may have clinical relevance in BC treatment.

Cellular functions depend on the precise regulation of thousands of genes which are activated or silenced by 
transcription factors (TFs)1. The networks representing the interactions between TFs and their target genes are 
typically known as GRNs and can be reconstructed from temporal measurements of gene expressions2–5. The 
GRN reconstruction methods can be classified into two main categories; model-based and model-free methods. 
Model-based methods aim to capture the regulatory interactions by fitting mathematical models of gene regula-
tion to observed gene expression data2,4,5. On the other hand, model-free approaches use information-theoretic 
criteria to infer the structure of the network3,6. Though the performances of GRN reconstruction methods depend 
on several aspects such as data type, network properties of the GRN etc7., generally, model-based methods tend to 
be faster but have lower predictive performance than model-free methods 20156. However, model-free methods 
are often not scalable enough to reconstruct genome-wide GRNs5,6 in reasonable time. Typically, model-based 
methods formulate the expression of a gene as a function of its regulators, evaluate competing models containing 
different sets of regulators and chose those which closely predict the target gene expression4,5,8. Although vast 
majority of model based methods assume that the expressions of a gene and its regulators are linearly depend-
ent5,9–12, these methods use different model search algorithms e.g. Least Absolute Shrinkage and Selection 
Operator (LASSO), Dantzig Selector, elastic net, Markov Chain Monte Carlo and Heuristic search5,12–19. Some of 
these methods such as LASSO and elastic net choose the best model, others such as MCMC or Heuristic search 
based Bayesian Model Averaging (BMA) methods5,12,13,15,18 select multiple models that provide close fits to the 
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data and use these to estimate an average model along with its confidence interval. It is also possible to incorpo-
rate different types of existing data in BMA5,12,18 to increase the accuracy of the reconstructed GRN.

We developed BGRMI, a model-based method that relies on the principles of BMA for inferring GRNs from 
time course gene expression data. BGRMI uses discretized ordinary differential equation (DODE) based mathe-
matical models to formulate the interactions between each gene and its regulators. It formulates the rate of change 
in a gene’s expression as a function of the expressions of its regulators, takes basal expression and self-regulation 
into account and therefore provides a more realistic model of gene regulation than many existing methods. These 
models are then used in a Bayesian framework to evaluate how likely a set of TFs is to regulate a certain gene. We 
developed a greedy heuristic search algorithm to explore different combinations of TFs and find the most likely 
TF combinations for each gene. The proposed algorithm is faster and more scalable than many existing methods. 
The average of some of the most likely models was then used to represent the regulatory model of the gene. We 
compared the accuracy of BGRMI against other methods using in-silico and in-vivo benchmark datasets. BGRMI 
consistently out-performed most of the other competing methods in our benchmarking study. We then showed 
how additional data sources, e.g. ChIP-seq and the protein-protein interaction (PPI) between TFs can be incorpo-
rated as prior knowledge in the core BGRMI formulation. Finally, we applied BGRMI to study the transcriptional 
mechanisms that lead to proliferation and differentiation in BC cells by combining ChIP-seq, PPI and time course 
gene expression profiles. Our study uncovered previously unknown transcriptional mechanisms that drive phe-
notypic changes in BC cells.

Method
A brief overview of the BGRMI algorithm is as follows. We first developed a mathematical model of TF-mediated 
gene regulations. The model can predict the temporal changes in the expressions of target genes using the tempo-
ral expression patterns of TFs as input. This model is then used to evaluate different combinations of TFs to find 
those that closely predict target gene expressions. This is done by iteratively exploring different TF combinations, 
calculating the posterior probability of each of these combinations to predict target gene expression, and selecting 
those with high probabilities. The average of selected gene regulation models for each gene is used as its regulation 
model. Below we describe each step of our algorithm in detail.

The mathematical model of gene regulation. We used a discretized form of ODEs to formulate the 
dependence of a target gene on its regulators as shown below.
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Here, mRNAi(t) is the expression of gene i at time t, αi is the basal gene expression rate, βi is a vector that con-
tains the coefficients of self regulation (by means of degradation, auto-activation/inhibition) and the regulation by 
a set of TFs (TFi), TFi(t −  Δ t) are the expressions of the TFs that regulate gene i at time (t −  Δ t). εi(t) is the model 
fitting error caused by the measurement noise in expression data. Since measurement noise is random εi(t) is a 
random variable and typically has Gaussian distribution with zero mean and variance σ2, i.e. εi(t)~N(0, σ2)12,18.  
The error variance (σ2) depends on many factors such as biological variability and measurement noise, and is 
typically unknown.

The posterior probability of a gene regulation model. We used Bayesian statistics to calculate this 
probability. There are two main components of Bayesian formulations; (a) the prior probability (p(Mk)) which 
represents how well a model (Mk) is supported by prior knowledge, and (b) the likelihood function (p(mR-
NAi|Mk)) which evaluates how well a model explains experimental data. By Bayes’ rule20, the posterior probability 
(p(Mk|mRNAi)) is proportional to the product of these two entities and represents how well a model (Mk) is sup-
ported by prior knowledge and experimental data combined.

In the absence of prior knowledge, we assumed that sparse regulatory models (i.e. those involving fewer TFs) 
are a priori more likely than dense models (i.e. those involving a large number of TFs). This assumption was for-
mulated by assigning the following prior distributions over regulatory models (Mk)5: p(Mk) =  L−2.66, where L is 
the number of regulators in the model. However, there is a wealth of publicly available information about GRNs of 
several organisms such as yeast, E. coli, humans etc. This information can be used to formulate more informative 
priors for reconstructing GRNs of these organisms. We shall discuss the formulation of priors for human GRNs 
using ChIP-seq data12 in a later section where we describe the implementation of BGRMI on human transcrip-
tomic data.

The likelihood of a gene regulation model (Mk) is the probability that the observed expression pattern 
(mRNAi) of gene i, can be predicted by the model (Mk), and has the following form5,12:
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The likelihood function in Eq. 2 depends on the model parameters (αi, βi σ2), whose values are typically 
unknown. Therefore, we evaluated the average of the likelihood (Eq. 2) over all possible values of the model 
parameters. The average likelihood is also called the marginal likelihood (P(mRNAi|Mk)). To analytically calculate 
the marginal likelihood we assigned conjugate prior distributions to each of the unknown variables. These distri-
butions represent our prior knowledge of how likely a parameter is to have a certain value. Following Fernandez 
et al.13 we assigned uninformative Jeffrey’s prior13,21 distribution to the basal expression rates αi, p(αi) =  1, which 
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implies that αi is equally likely to have any real value. The regulation coefficients (βi) were assigned Zellner’s g 
prior13,22.

β ′σ σ= −Z ZP g N g Z( , , ) (0, ( ) )i
2 2 1

=Z mRN A TF[ ] (3)i i

which implies that βi may have a wide range of positive and negative values depending on the Zellner’s constant 
g and error variance σ2. Note that σ2 is unknown, and therefore we assigned a non-informative Jeffrey’s prior13,21, 
σ =

σ
p( ) 1  which suggests that the probability of σ2 is inversely proportional to itself, i.e. it is more likely to have 
smaller values than larger ones. The marginal likelihood (P(mRNAi|Mk)) is calculated by integrating the product 
of the likelihood and the above priors with respect to the unknown parameters and has the following form5,12.
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Here p is the number of TFs in the model Mk, and n is the number of observations, SSE is the squared error 
between the observed expressions of gene i and those predicted by the model when its parameters are estimated 
using linear regression. The marginal likelihood in Eq. 4 depends on the Zellner’s constant g which is set to the 
following value recommended by Fernandez et al.13:
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The posterior probability (P(Mk|mRNAi)) of a potential regulatory model (Mk) of gene i, is then calculated 
using the following formula:
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Model Search. We developed a heuristic algorithm to search for models with high posterior probabilities. 
The proposed algorithm (Fig. 1) is inspired by Occam’s Up23 and Branch and Bound algorithms24. The procedure 
starts by evaluating the posterior probability of the null model (M0) which does not have any regulator except 
itself. In the next step, the null model is expanded by adding one TF. Each candidate TF is added one by one and 
the posterior probabilities of the new models with a single TF (M1) are evaluated. The models that have higher 
posterior probabilities than the null model are selected and their posterior probabilities are compared. The high-
est posterior probability is used as a cut-off for the next stage. The selected models are further expanded by adding 
a new TF. Each of the remaining TFs (the TFs other than the ones already in the model) is added one by one. The 
models which have higher posterior probability than the cut-off are then kept and compared, and the highest pos-
terior probability is then selected as the new cut-off for the next stage. This process is repeated until adding a new 
TF does not improve the posterior probability any further. Below we provide a pseudocode for our algorithm.

Pseudocode. P ←  0 N×N # Initialize probability matrix
For each gene Gi
{
Active ←  1 # Flag to terminate while loop
Th ← P(M0) # Non-normalized posterior probability of the null model
MQ ← {Gj, j =  1… N, j ≠  i} # Initialize Model queue which contains all genes but Gi.
NC ← 0 # Initialize normalization constant
AM ← ∅ # Initialize accepted models.
While (Active= = 1)
 {
  For each Mj in MQ # For each model in the model queue
   {
    PMj ← P(Mj) # Calculate non normalized posterior of model Mj
    if PMj >  Th

       { AM ∪  Mj # Add model j to the set of accepted models
      I M j

 ← Indexes of genes in Mj

      P(i, I M j
) =  P(i, I M j

) +  PMj # Update the posterior of an edge
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      NC ← NC +  PMj; # Update the normalization constant
     } #End of if
   } # End of for
MQ ← All models that can be generated by extending each model in AM with one more gene.

 if AM= = ∅ # If AM is empty
  {

   Active =  0 # set Active to zeros
  }# End of if
 AM ← ∅ # Empty AM
  } # End of while
  P(i,:) =  P(i,:)/NC;
  } # End of for

Model averaging. The models selected by the above algorithm are used to estimate the probability of each 
TF-gene interaction and its strength. The probability that a TF (j) regulates a gene (i) is the sum of the probabili-
ties of the models which include the TF (j)15, i.e.
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Here K is the number of selected models, δik =  1 if TF j is part of model k and δik =  0 otherwise. The interaction 
strength between a TF (j) and its target gene (i) is calculated by taking weighted average of its expected value in 
each selected model (Mk), the weight being the posterior probability P(Mk|mRNAi) of the model (Mk)15
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Here βi j
k
,  is the maximum likelihood estimate of the regulation coefficient of the TF j on gene i in model Mk. If 

βij is positive then we assume that the TF j is an activator of gene i and if it is negative, the opposite is true.

Figure 1. Workflow of the heuristic model search algorithm. On the first step the marginal likelihood of the 
null model is calculated. Then each TF is evaluated as a variable independently and only TFs whose marginal 
likelihood is higher than the null model’s are further expanded. The highest marginal likelihood of the single TF 
models is selected as a threshold or bound to evaluate the nested models with two TFs.
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Results
We first evaluated BGRMI’s accuracy on several in silico and in vivo benchmark datasets and compared its per-
formance with other algorithms. Then we applied BGRMI to study human BC transcription regulatory network. 
Below we discuss the results of our analysis in detail.

The DREAM4 In Silico Network Inference Challenge dataset. The DREAM4 In Silico Network 
Challenge contains ten in silico GRNs, five of which consist of 10 genes each and the remaining five have 100 
genes each. The dynamics of each of these networks in response to a series of perturbations were simulated and 
the resulting time course gene expression profiles were published by the DREAM consortium6 for benchmarking 
network inference methods. We used BGRMI to analyse these data and calculate the probabilities and strengths 
of all possible interactions in each of these networks. The interactions which have higher probabilities than a 
pre-determined threshold constitute the reconstructed GRNs. The accuracy of the reconstructed GRNs is esti-
mated by comparing these with the gold-standard networks and is dependent on the choice of the threshold prob-
ability. We used Precision Recall (PR) curve25 to estimate these accuracies in an unbiased manner, independently 
of particular choices of threshold probabilities. PR curve is calculated by gradually increasing the threshold prob-
ability from 0 to 1, and for each threshold, calculating the precision and recall of the GRN reconstructed at that 
threshold25. Precision and recall are the ratios of the numbers of correctly inferred interactions vs all interactions 
in the reconstructed and the gold standard networks respectively25. The Area under the PR curve (AUPR) pro-
vides an unbiased scalar estimate of the accuracies of the reconstructed GRNs5,6. The AUPR values of the 10 and 
100 gene networks reconstructed by the BGRMI algorithm are provided in Table 1. For comparison, we have 
also provided the AUPR values of the networks reconstructed by several other state-of-the-art algorithms, e.g. 
Jump3 the lagged time variant of GENIE33, CLR26, Inferelator4, G1DBN27, and ScanBMA5, which also claimed 
to have performed very well on the same datasets. BGRMI consistently performed well, achieving the highest 
AUPRs in 4 out of 10 networks (2 each of the 10 and 100 genes networks). It also achieved the highest average 
AUPR (0.401) across all ten datasets (Table 1), a noticeable improvement over its closest competitor Inferelator  
(avg. AUPR =  0.3605 across all ten datasets.)

BGRMI Jump3 GENIE3 CLR Inferel-ator Scan BMA TSN1 G1DBN

Switch -On Dataset 0.904 0.685 0.62 0.423 0.718 0.455 0.706 0.6

Switch-Off Dataset 0.574 0.682 0.347 0.372 0.649 0.232 0.511 0.313

Table 2.  AUPRs of the In Vivo IRMA Network. The numbers in bold represent the best performers.

Network No. of Genes No. of Observations No. of Regulators Running Time

IRMA 5 ~62 5 0.03 secs

DREAM4 10 10 105 10 0.32 secs

DREAM4 100 100 210 100 ~4 mins

Table 3.  Execution times of the BGRMI algorithm.

Size 10 Networks

BGRMI Jump3 GENIE3 CLR Inferelator ScanBMA G1DBN

Net1 0.635 0.498 0.555 0.465 0.643 — 0.564

Net2 0.524 0.396 0.351 0.447 0.443 — 0.392

Net3 0.566 0.44 0.407 0.414 0.509 — 0.499

Net4 0.751 0.584 0.519 0.555 0.653 — 0.76

Net5 0.615 0.646 0.787 0.885 0.637 — 0.77

Average 0.618 0.513 0.524 0.553 0.577 0.505 0.597

Net 1 0.245 0.27 0.228 0.179 0.126 — 0.089

Net2 0.118 0.11 0.096 0.109 0.101 — 0.055

Net3 0.185 0.2 0.23 0.238 0.198 — 0.155

Net4 0.213 0.18 0.157 0.154 0.147 — 0.153

Net5 0.154 0.174 0.168 0.163 0.148 — 0.117

Average 0.184 0.187 0.176 0.167 0.144 0.101 0.114

Overall average

All Nets 0.401 0.35 0.35 0.36 0.3605 0.303 0.3555

Table 1.  AUPRs for the DREAM4 Networks. The numbers in bold represent the best performer. The authors 
of the scanBMA algorithm published only the average AUPR for size 10 and size 100 category, therefore we 
showed only the average AUPRs for scanBMA.
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In Vivo benchmark data. To further test BGRMI we used time course gene expression data from a synthetic 
GRN, called In vivo Reverse-engineering and Modeling Assessment (IRMA) network, which was purposefully 
built to assess the performances of network reconstruction methods28. The IRMA network was synthesized in the 
yeast Saccharomyces cerevisiae. The network has 5 genes and 6 regulatory interactions and can be switched on or 
off by culturing cells in galactose or glucose, respectively. The expression levels of the genes in the network were 
measured using quantitative RT-PCR at different time points in two different sets of experiments. In the first set, 
cells were stimulated with galactose and the network was switched on, whereas in the second set the network was 
switched off by adding glucose.

Table 2 shows the AUPRs of the GRNs reconstructed by all methods which were used for performance com-
parison of in-silico data. Additionally, we added the performance of the TSNI algorithm29 which was originally 
used to reconstruct the IRMA network28. BGRMI had the highest accuracy for the Switch-On dataset by a large 
margin. However, on the Switch-Off dataset, Jump3 performed the best. These results suggest BGRMI performs 
well, not only on in-silico datasets but also on in-vivo experimental data.

Execution time of BGRMI. We measured the execution time of our method on the DREAM4 and IRMA 
networks. We used a 32-GB RAM, 1.7 GHz Intel core i7 computer. The results are summarized in Table 3.

Uncovering transcriptional mechanism governing proliferation and differentiation in BC 
cells. Several types of BCs are formed when breast tissue cells stop differentiating and keep proliferating30. 
Therefore, it is important to determine the molecular mechanisms that govern proliferation and differentiation 
in these cells. For this purpose, Mina et al.31 measured time course gene expression profiles of MCF-7 BC cells 
after artificially inducing proliferation and differentiation by stimulating these cells with Heregulin (HRG) and 
Epidermal Growth Factors (EGF), respectively31. We used the resulting data to reconstruct the GRNs that orches-
trate differentiation and proliferation in MCF-7 cells (Fig. 2). To increase the accuracy of reconstructed GRN we 
integrated ChIP-seq and PPI data12 into the core network reconstruction algorithm (Fig. 2). The ChIP-seq data, 
which give us quantitative measurements of bindings between TFs and DNA molecules, was used to formulate 
prior probabilities of different gene regulation models. Additionally, PPIs between TFs were used to incorporate 
TF-heterodimers into our gene regulation model. Below we describe our implementation of BGRMI on the afore-
mentioned dataset.

Formulating the prior probability of the gene regulation models. The prior probability of a gene 
regulation model (Mk) is formulated as the probability that a certain set of TFs (TFj, j =  1… K) regulate a specific 
gene and the probability of observing a certain number of TFs on a target gene. To calculate this probability, we 
first estimated the probability (Pij) that an individual TF (j) binds to gene (i). This probability (Pij) is defined as 
the product of two quantities:

=P Q R (9)ij ij j

where Qij is the probability that the position in which the TF (j) was bound affects the expression of the target 
gene (i), and Rj is the probability that the TF (j) binds to the same position across different cell-types. Qij was cal-
culated by combining different datasets from Gerstein et al.32 who built models of consensus human transcription 

Figure 2. Workflow of BGRMI implementation on time course gene expression profiles on human BC cells. 
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regulatory networks by analysing the ENCODE data. They generated three models of human transcription regu-
latory networks, a proximal unfiltered network, a proximal network, and a distal network. The unfiltered proxi-
mal network consists of TF-gene interactions where the TF binds close to the promoter of the gene. The proximal 
filtered network consists of only those TF-gene interactions where the TF binds close to the promoter of the gene 
and their expressions are significantly correlated. The distal network represents the TF- gene interactions where 
the TF binds to the enhancer region of the gene. Qij was assigned a value of 1 for the TF-gene interactions found 
in the proximal network, 0.5 for those found only in the unfiltered proximal and distal networks, 0.05 for those 
not found in any of the above networks. Rj was estimated from the ENCODE ChIP-seq data using an in-house 
MATLAB script (freely available from https://github.com/Luisiglesiasmartinez/Peak-Merging). It should be 
noted that the ENCODE database does not have sufficient data to estimate (Rj) for each individual TF. Therefore 
we selected CTCF, a TF which has the most ChIP-seq data (98 datasets) in the ENCODE database, calculated its 
Rj (≈ 0.26) and used this value for all TFs.

The probabilities (Pij) of individual TFs are then combined using the following formula5 to calculate the prob-
ability of a gene regulation model involving multiple TFs.

∏= −δ δ

=

− − .( )P M P P L( ) 1
(10)

k
j

k

ij ij
1

1 2 66ij ij

Here δij =  1 if the TF j is included in the model Mk and δij =  0 otherwise. L is the number of regulators in the 
model.

Incorporating TF-TF heterodimers in the formulation of gene regulation models. We gathered 
information about heterodimer formation between TFs from the literature33–48. Inspired by the interaction terms 
in linear regression models (https://en.wikipedia.org/wiki/Interaction_(statistics)), the expression of a heterod-
imer (TFj−l) composed of any two TFs, j and l is calculated by multiplying the expressions of their individual 
mRNAs, i.e.

= ×−T F mRN A mRN A (11)j l TFj TFl

The heterodimers were then treated as separate potential regulators, along with the monomer forms of TFs, in 
different gene regulation models.

Data pre-processing. Gene expressions in Mina et al.’s dataset31 were measured using cap analysis of gene 
expression (CAGE). CAGE uses tags from 5′  ends of cDNAs, which can be used to identify the specific expression 
of transcription start sites (TSSs) of the same gene49. For simplicity, we combined the normalized read counts for 
different isoforms of the same genes. The resulting data was then analysed using BGRMI. Note that the ENCODE 
database has ChIP-seq data for only 140 TFs, and therefore BGRMI inferred regulatory interactions involving 
these TFs only.

Post-processing of reconstructed networks. BGRMI estimated the posterior probabilities of each 
possible TF-DNA interaction for differentiating and proliferating MCF-7 cells. We kept only the interactions 
with posterior probabilities higher than 0.75. The interactions were assumed to be either inhibitory of activating 
depending on the sign of the regulation coefficients (βij).

Large differences between the GRNs that regulate differentiation and proliferation in MCF7 
cells. BGRMI found 22692 and 19016 regulatory interactions for the HRG and EGF stimulated cells 
(Fig. 3A,B). The complete list of interactions is available as Supplementary Data 1. 10804 and 8997 of all inter-
actions in the HRG and EGF induced networks were inhibitory regulations and the remaining were activating 
regulations. Surprisingly, only 286 of all the inferred interactions were common in both networks. However, the 
number of common interactions depends on the cut-off probability and for lower cut-offs more interactions were 
found common between these networks (Supplementary Fig. S1). The large difference between EGF and HRG 
induced GRNs suggests that the same genes are regulated by different sets of TFs in these two networks.

Transcriptional hubs in HRG and EGF induced GRNs. We sorted the TFs based on the number of their 
predicted targets (out-degree) in both GRNs and found that these networks have different sets of transcriptional 
hubs, i.e. TFs with a large number of targets (Fig. 3A,B).

In the EGF induced GRN, SIX5, CHD2, GATA2, ZEB1, NR4A1, ESRRA, and FOXA1 were found to be the 
largest hubs. GATA2, ZEB1, NR4A1, ESRRS and FOX1 are known to play crucial roles in the proliferation of 
BC cells50–54. In a recent study, SIX5 was shown to correlate with clinic-pathological parameters, e.g. tumour 
stage, size etc., of BC patients55. However, its specific role in BC cell proliferation is largely unknown. To the 
best of our knowledge, CHD2 was not previously studied in the context of BC. We analysed survival and gene 
expression data of BC patients from several sources, e.g. the TCGA database (http://cancergenome.nih.gov/) and 
all sources used by the kmplot webtool (http://kmplot.com/analysis/)56 to further investigate the role of CHD2 
and SIX5 in breast cancer progression. Firstly, in the TCGA dataset, the expression of the SIX5 and CHD2 were 
found to be significantly different (p-values 0.00000071, 0.0016 respectively, based on the Kruskal-Wallis test 
(Supplementary Figs S2 and S3) among patients of different BC subtypes including normal like, Luminal A, 
Luminal B, Her2 positive, and triple negative BC (TNBC), which vary in their aggressiveness. Also, in TNBC, 
the most aggressive and highly proliferative form of BC, patients survived significantly longer when they had low 

https://github.com/Luisiglesiasmartinez/Peak-Merging
https://en.wikipedia.org/wiki/Interaction_
http://cancergenome.nih.gov/
http://kmplot.com/analysis/
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SIX5 expression than when they featured high levels of SIX5 (Fig. 3C). In Liu et al.’s study57, SIX5 expression had 
a statistically significant association with the response of cancer cells to the HER2 inhibitor Lapatinib (p-value 
0.014) and the MEK inhibitor PD-0325901 (p-value 0.0184), both of which inhibit proliferation in cancer cells58,59. 

Figure 3. The EGF and HRG induced GRN in BC cells and the clinical relevance of some of its 
transcriptional hubs. (A,B) EGF and HRG induced GRNs in MCF7 cells with node size proportional to 
outdegree (number of targets). (C) Kaplan Meier plot for BC patient survival probability for different levels 
of SIX5 expression. (D) Kaplan Meier plot for survival probabilities of BC patients who underwent endocrine 
therapy for different levels of CHD2 expression. (E) Kaplan Meier plot for HER2 positive BC patient survival for 
different levels of RFX5 expression. (F) Kaplan Meier plot for TNBC patients survival probabilities for different 
levels of RFX5 expression. In (C–F) the red and black curves show survival probabilities for higher and lower 
expression of the corresponding markers respectively. (G,H) EGF and HRG induced GRNs in MCF7 cells with 
node size proportional to their betweenness centralities. (I,J) EGF and HRG induced GRNs in MCF7 cells with 
node size proportional to their page-rank.
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The expression of CHD2, a chromatin remodeller, did not correlate with BC patient survival. However, we found 
that patients who have undergone endocrine therapy, a chemopreventive measure targeting the estrogen receptor 
which promotes proliferation in BC cells, are significantly more likely to survive if they have relatively low level of 
CHD2 expression than those who have a high level of CHD2 (Fig. 3D). Furthermore, CHD2 expression has sta-
tistically significant association (p-value 0.029) with the response of cancer cells to CDK inhibitor PD-033299157 
which inhibits proliferation60. The above results not only supports our finding that SIX5 and CHD2 may play a 
crucial role in the proliferation of BC cells but also indicates that they may have potential clinical relevance in 
designing new BC treatments.

In the HRG induced GRN, MXI1, NFE2, RXRA-VDR complex, RXRA-NR1H3 complex, RAD21, RFX5 
and SREBF1 are some of the largest transcriptional hubs. HRG induced differentiation of mammary cells is 
characterized by the synthesis of lipid droplets. Interestingly, two of the aforementioned transcriptional hubs, 
RXRA-NR1H3 complex and SREBF1, have been previously described as master regulators of lipid synthesis in 
mammary epithelial cells61,62, corroborating our results. Among the remaining hubs, MXI1, NFE2, RXRA-VDR 
and RAD21 have known role in cell differentiation63–66. To the best of our knowledge, RFX5 does not have any 
previously known association with BC cell differentiation. Our analysis of gene expression and patient survival 
data reveals that RFX5 expression varies significantly (p-value 1.99415e−17, see Supplementary Fig. S4) among 
normal, Luminal A, Luminal B, Her2 positive and TNBC patients. Furthermore, patients of poorly differentiated 
BC subtypes, e.g. basal or HER2 positive BC67,68 with higher RFX5 expression are significantly more likely to 
survive longer than those with lower levels of RFX5 (Fig. 3E,F). These data reveal a potential clinical relevance of 
RFX5 in designing new BC treatment.

Transcriptional junctions in HRG and EGF induced GRNs. In a typical GRN, information flows 
through intricate networks of successive activation and/or deactivation of TFs. Some TFs play crucial roles in 
the genetic information flow by residing at the junction of several transcriptional pathways. A network theoretic 
measure, ‘betweenness centrality’69, quantifies how busy a transcriptional junction is. The betweenness centrality 
(bi) of gene i is calculated as follows.

∑=
≠

b
n i

n
( )

(12)
i

j k

jk
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Here bi is the betweenness centrality of gene i, njk is the number of shortest paths from gene j to gene k, and 
njk(i) the number of shortest paths from gene j to gene k that pass through gene i. We calculated the betweenness 
centralities for each transcription factor in the EGF and HRG induced GRNs (Fig. 3G,H). Our results suggest that 
NR4A1, GATA2, ATF3, SUZ12 and FOXA1 are some of the busiest junctions (have highest betweenness central-
ities) in the EGF induced GRN. GATA2, FOXA1 and NR4A1 were also found as transcriptional hubs in the same 
network, whereas, ATF3 and SUZ12 were recently shown to play crucial roles in the proliferation of breast cancer 
cells70,71. In the HRG induced GRN, NFE2, SMARCA4, FOSL2, ZNF263 and MXI1 were found to be the largest 
junctions. Among these, NFE2 and MXI1 were also found to large hubs, whereas SMARA4, FOSL2 and ZNF263 
were previously shown to play important role in mammary cell differentiation72–74.

Transcriptional master regulators in EGF and HRG induced GRNs. Another important class of TFs is 
the master regulators which regulate large transcriptional hubs. These can be identified by calculating the ‘page rank’ 
(see Brin et al.75 for details) of each TF, and then find the TFs with the highest page ranks. SIX5, CHD2, GATA2, 
ZEB1, NR4A1 were found to have the highest page ranks in the EGF induced network, whereas, MXI1, NFE2, 
RXRA-VDR, RXRA-NR1H3, SREBF1 had the highest page-rank in the HGR induced networks, further highlight-
ing the importance of these molecules in proliferation and differentiation of breast cancer cells (Fig. 3I,J).

Discussion
Deciphering GRNs is fundamental to understanding cellular decision making. Experimental reconstruction of 
GRNs is not feasible since current experimental methods produce snapshots of the genomic activities, but such 
data do not reveal the underlying regulatory mechanisms. Several computational methods had been proposed 
to reconstruct GRNs from experimental data. Many of these methods fail to strike a balance between scalability 
and accuracy. In this paper, we presented BGRMI, a Bayesian algorithm that can reconstruct quantitative models 
of GRNs from time course gene expression data. The main advantages of BGRMI are its speed/scalability while 
having comparable or higher accuracy than the current state of the art methods. Additionally, BGRMI can incor-
porate prior information from other data sources such as ChIP-seq and PPI databases to increase the accuracies 
of the reconstructed GRNs. Many recent GRN reconstruction methods, e.g. RNEA76, PANDA77, PTHGRN78, 
APG79, CMGRN80, BVS12 also have this feature. However, these algorithms have their advantages and disad-
vantages. For instance, PANDA77 and RNEA76 use gene expression data to find co-expressed and differentially 
expressed genes respectively, which are then combined with ChIP-seq and PPI data to reconstruct GRN topolo-
gies. Therefore, these approaches are not suitable for reconstructing GRNs if there are no prior ChIP-Seq/PPI data 
available. While most algorithms use PPI data to determine transcriptional co-regulators, BGRMI uses this data 
to infer regulatory programs of TF-complexes. Arguably, this yields clearer and more realistic pictures of GRNs 
than those containing interactions between individual TFs and their target genes. To demonstrate the practical 
applicability of BGRMI, we used it to reconstruct the GRNs of proliferating and differentiating BC cells, revealing 
strikingly different regulatory programs governing these phenotypes. Topological comparison of reconstructed 
GRNs revealed a number of key transcriptional regulators which play essential roles in BC cell proliferation and 
differentiation. Three of these TFs, SIX5, CHD2 and RFX5, were not previously studied in these contexts and 
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therefore may shed new light in understanding how BC cells decide to proliferate or differentiate. Expressions 
of these TFs were found to be predictive of BC patient survival or their responsiveness to Endocrine therapy. 
Therefore, these molecules may have clinical relevance in treating BC patients. Furthermore, the reconstructed 
GRNs can potentially be used to predict new therapeutic targets for BC. For instance, recent studies81–84 demon-
strated that it is possible to predict therapeutic targets for different types of cancer by integrating the respective 
GRNs with mutation data, miRNA data and functional RNAi/phenotypic screens.

Nevertheless, BGRMI has some limitations. Firstly, it uses mRNA levels of TFs as proxy for their activities. 
This can lead to spurious results since the activity of a TF can depend on posttranslational modifications of its 
protein form and may not always be directly related to its expression85. Secondly, changes in gene expressions 
may be induced by mechanisms other than transcription regulation, e.g. epigenetic regulation. However, BGRMI 
cannot differentiate between the mechanisms of gene regulation and assumes that any observed change in the 
gene expression is caused by transcriptional regulation. Finally, BGRMI uses prior knowledge on DNA binding 
preferences of TFs and PPIs among TFs, which is available for a limited number of TFs. However, other data such 
as gene ontology (GO) annotations, protein abundance, protein phosphorylation datasets may provide important 
clue in the transcriptional activities of relatively less studied TFs, but are not currently used by BGRMI.

References
1. Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics 13, 

613–626, doi: 10.1038/nrg3207 (2012).
2. Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de 

novo. Genome Biology 7, doi: 10.1186/gb-2006-7-5-r36 (2006).
3. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring Regulatory Networks from Expression Data Using Tree-Based 

Methods. Plos One 5, doi: 10.1371/journal.pone.0012776 (2010).
4. Madar, A., Greenfield, A., Ostrer, H., Vanden-Eijnden, E. & Bonneau, R. The Inferelator 2.0: a scalable framework for reconstruction 

of dynamic regulatory network models. Paper presented at Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society Washington DC, USA.New York, USA, IEEE, doi: 10.1109/iembs.2009.5334018 (2009, Nov 1–4).

5. Young, W. C., Raftery, A. E. & Yeung, K. Y. Fast Bayesian inference for gene regulatory networks using ScanBMA. Bmc Systems 
Biology 8, doi: 10.1186/1752-0509-8-47 (2014).

6. Huynh-Thu, V. A. & Sanguinetti, G. Combining tree-based and dynamical systems for the inference of gene regulatory networks. 
Bioinformatics 31, 1614–1622, doi: 10.1093/bioinformatics/btu863 (2015).

7. Madhamshettiwar, P. B., Maetschke, S. R., Davis, M. J., Reverter, A. & Ragan, M. A. Gene regulatory network inference: evaluation 
and application to ovarian cancer allows the prioritization of drug targets. Genome Medicine 4, 41, doi: 10.1186/gm340 (2012).

8. Michailidis, G. & d’Alche-Buc, F. Autoregressive models for gene regulatory network inference: Sparsity, stability and causality 
issues. Mathematical Biosciences 246, 326–334, doi: 10.1016/j.mbs.2013.10.003 (2013).

9. Huang, X. & Zi, Z. Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Molecular 
BioSystems 10, 2023–2030 (2014).

10. Kim, H. & Gelenbe, E. Reconstruction of Large-Scale Gene Regulatory Networks Using Bayesian Model Averaging. IEEE 
Transactions on NanoBioscience 11, 259–265, doi: 10.1109/TNB.2012.2214233 (2012).

11. Li, Z., Li, P., Krishnan, A. & Liu, J. Large-scale dynamic gene regulatory network inference combining differential equation models 
with local dynamic Bayesian network analysis. Bioinformatics 27, 2686–2691, doi: 10.1093/bioinformatics/btr454 (2011).

12. Santra, T. A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks. Frontiers in 
Bioengineering and Biotechnology 2, doi: 10.3389/fbioe.2014.00013 (2014).

13. Fernandez, C., Ley, E. & Steel, M. F. J. Benchmark priors for Bayesian model averaging. Journal of Econometrics 100, 381–427, doi: 
10.1016/s0304-4076(00)00076-2 (2001).

14. Ghanbari, M., Lasserre, J. & Vingron, M. Reconstruction of gene networks using prior knowledge. BMC Systems Biology 9, 1–11, doi: 
10.1186/s12918-015-0233-4 (2015).

15. Hoeting, J. A., Madigan, D., Raftery, A. E. & Volinsky, C. T. Bayesian model averaging: A tutorial. Statistical Science 14, 382–401 
(1999).

16. Omranian, N., Eloundou-Mbebi, J. M. O., Mueller-Roeber, B. & Nikoloski, Z. Gene regulatory network inference using fused 
LASSO on multiple data sets. Scientific Reports 6, 20533, doi: 10.1038/srep20533 (2016).

17. Ruyssinck, J. et al. NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms. PLoS 
ONE 9, e92709, doi: 10.1371/journal.pone.0092709 (2014).

18. Santra, T., Kolch, W. & Kholodenko, B. N. Integrating Bayesian variable selection with Modular Response Analysis to infer 
biochemical network topology. BMC Systems Biology 7, 1–19, doi: 10.1186/1752-0509-7-57 (2013).

19. Vignes, M. et al. Gene Regulatory Network Reconstruction Using Bayesian Networks, the Dantzig Selector, the Lasso and Their 
Meta-Analysis. PLoS ONE 6, e29165, doi: 10.1371/journal.pone.0029165 (2011).

20. Bayes, M. & Price, M. An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. 
Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philosophical Transactions 53, 370–418, doi: 10.1098/
rstl.1763.0053 (1763).

21. Jeffreys, H. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London A: 
Mathematical, Physical and Engineering Sciences 186, 453–461 (1946).

22. Tiao, G. C. & Zellner, A. Bayes’s Theorem and the Use of Prior Knowledge in Regression Analysis. Biometrika 51, 219–230, doi: 
10.2307/2334208 (1964).

23. Madigan, D. & Raftery, A. E. Model selection and accounting for model uncertainty in graphical models using Occam’s window. 
Journal of the American Statistical Association 89, 1535–1546 (1994).

24. Narendra, P. M. & Fukunaga, K. A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers 100, 
917–922 (1977).

25. Davis, J. & Goadrich, M. The relationship between Precision-Recall and ROC curves. Paper presented at Proceedings of the 23rd 
International Conference on Machine Learning. Pittsburgh, USA.New York, USA, ACM (2006, June 29).

26. Faith, J. J. et al. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression 
profiles. PLoS Biol 5, e8, doi: 10.1371/journal.pbio.0050008 (2007).

27. Lebre, S. Inferring Dynamic Genetic Networks with Low Order Independencies. Statistical Applications in Genetics and Molecular 
Biology 8, doi: 10.2202/1544-6115.1294 (2009).

28. Cantone, I. et al. A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches. Cell 137, 
172–181, doi: 10.1016/j.cell.2009.01.055 (2009).

29. Gardner, T. S., Di Bernardo, D., Lorenz, D. & Collins, J. J. Inferring genetic networks and identifying compound mode of action via 
expression profiling. Science 301, 102–105 (2003).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:37140 | DOI: 10.1038/srep37140

30. Mueller, E. et al. Terminal differentiation of human breast cancer through PPARγ . Molecular cell 1, 465–470 (1998).
31. Mina, M. et al. Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by 

ErbB receptors in breast cancer cells. Scientific Reports 5, doi: 10.1038/srep11999 (2015).
32. Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100, doi: 10.1038/

nature11245 (2012).
33. Butler, A. J. & Parker, M. G. COUP-TF-II Homodimers are formed in preference to heterodimers with RXR-alpha or TR-beta in 

intact-cells. Nucleic Acids Research 23, 4143–4150, doi: 10.1093/nar/23.20.4143 (1995).
34. Chen, F. E., Huang, D. B., Chen, Y. Q. & Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappa B 

bound to DNA. Nature 391, 410–413 (1998).
35. Delgoffe, G. M. & Vignali, D. A. A. STAT heterodimers in immunity: A mixed message or a unique signal? Jak-Stat 2, e23060–

e23060, doi: 10.4161/jkst.23060 (2013).
36. Garvie, C. W., Hagman, J. & Wolberger, C. Structural studies of Ets-1/Pax5 complex formation on DNA. Molecular Cell 8, 

1267–1276, doi: 10.1016/s1097-2765(01)00410-5 (2001).
37. Glover, J. N. M. & Harrison, S. C. Crystal-structure of the heterodimeric bZIP transcription factor c-FOS-c-JUN bound to DNA. 

Nature 373, 257–261, doi: 10.1038/373257a0 (1995).
38. Hai, T. W., Liu, F., Coukos, W. J. & Green, M. R. Transcription factor ATF CDNA clones - an extensive family of leucine zipper 

proteins able to selectively form DNA-binding heterodimers. Genes & Development 3, 2083–2090, doi: 10.1101/gad.3.12b.2083 
(1989).

39. Helin, K. et al. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative transactivation. Genes & 
Development 7, 1850–1861, doi: 10.1101/gad.7.10.1850 (1993).

40. Malnou, C. E. et al. Heterodimerization with Different Jun Proteins Controls c-Fos Intranuclear Dynamics and Distribution. Journal 
of Biological Chemistry 285, 6552–6562, doi: 10.1074/jbc.M109.032680 (2010).

41. Mangelsdorf, D. J. & Evans, R. M. The RXR heterodimers and orphan receptors. Cell 83, 841–850, doi: 10.1016/0092-8674(95)90200-
7 (1995).

42. Menet, J. S., Pescatore, S. & Rosbash, M. CLOCK: BMAL1 is a pioneer-like transcription factor. Genes & Development 28, 8–13, doi: 
10.1101/gad.228536.113 (2014).

43. Orlov, I., Rochel, N., Moras, D. & Klaholz, B. P. Structure of the full human RXR/VDR nuclear receptor heterodimer complex with 
its DR3 target DNA. Embo Journal 31, 291–300, doi: 10.1038/emboj.2011.445 (2012).

44. Pufall, M. A. & Graves, B. J. Autoinhibitory domains: Modular effectors of cellular regulation. Annual Review of Cell and 
Developmental Biology 18, 421–462, doi: 10.1146/annurev.cellbio.18.031502.133614 (2002).

45. Shrivastava, T., Mino, K., Babayeva, N. D., Baranovskaya, O. I. & Tahirov, T. H. Structural basis of Ets1 activation by Runx1. 
Leukemia 28, 2040–2048, doi: 10.1038/leu.2014.111 (2014).

46. Westin, S. et al. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395, 199–202 
(1998).

47. Wu, Y. & Zhou, B. P. Snail: more than EMT. Cell Adh Migr 4, doi: 10.4161/cam.4.2.10943 (2010).
48. Zheng, N., Fraenkel, E., Pabo, C. O. & Pavletich, N. P. Structural basis of DNA recognition by the heterodimeric cell cycle 

transcription factor E2F-DP. Genes & Development 13, 666–674, doi: 10.1101/gad.13.6.666 (1999).
49. Kodzius, R. et al. CAGE: cap analysis of gene expression. Nature Methods 3, 211–222, doi: 10.1038/nmeth0306-211 (2006).
50. Hedrick, E., Lee, S.-O., Doddapaneni, R., Singh, M. & Safe, S. Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. 

Endocrine-related cancer 22, 831–840 (2015).
51. Hugo, H. J. et al. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-

mesenchymal transition of breast cancer cells. Breast Cancer Research 15, 1–19, doi: 10.1186/bcr3580 (2013).
52. Li, Y.-W. et al. Decreased Expression of GATA2 Promoted Proliferation, Migration and Invasion of HepG2 In Vitro and Correlated 

with Poor Prognosis of Hepatocellular Carcinoma. PLoS ONE 9, e87505, doi: 10.1371/journal.pone.0087505 (2014).
53. Meyer, K. B. & Carroll, J. S. FOXA1 and breast cancer risk. Nat Genet 44, 1176–1177 (2012).
54. Tiwari, A., Swamy, S., Gopinath, K. S. & Kumar, A. Genomic amplification upregulates estrogen-related receptor alpha and its 

depletion inhibits oral squamous cell carcinoma tumors in vivo. Scientific Reports 5, 17621, doi: 10.1038/srep17621 (2015).
55. Xu, H.-X. et al. Expression profile of SIX family members correlates with clinic-pathological features and prognosis of breast cancer: 

A systematic review and meta-analysis. Medicine 95, e4085, doi: 10.1097/md.0000000000004085 (2016).
56. Szasz, A. M. et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1065 patients. 

Oncotarget 7, 49322–49333, doi: 10.18632/oncotarget.10337 (2016).
57. Liu, X. et al. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line 

Encyclopedia. Scientific reports 6, doi: 10.1038/srep22811 (2016).
58. Leary, A. et al. Anti-proliferative effect of lapatinib in HER2-positive and HER2-negative/HER3-high breast cancer: results of the 

pre-surgical randomized MAPLE trial (CRUK E/06/039). American Association for Cancer Research 21, 2932–2940, doi: 
10.1158/1078-0432.ccr-14-1428 (2014).

59. Zhou, Y. et al. MEK inhibitor effective against proliferation in breast cancer cell. Tumor Biology 35, 9269–9279, doi: 10.1007/s13277-
014-1901-5 (2014).

60. Finn, R. S. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen 
receptor-positive human breast cancer cell lines in vitro. Breast Cancer Research: BCR 11, R77–R77, doi: 10.1186/bcr2419 (2009).

61. Rudolph, M. C. et al. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary 
epithelium. American Journal of Physiology-Endocrinology and Metabolism 299, E918–E927, doi: 10.1152/ajpendo.00376.2010 
(2010).

62. McFadden, J. W. & Corl, B. A. Activation of liver X receptor (LXR) enhances de novo fatty acid synthesis in bovine mammary 
epithelial cells. Journal of Dairy Science 93, 4651–4658, doi: 10.3168/jds.2010-3202 (2010).

63. Meinhardt, G. & Hass, R. Differential expression of c-myc, max and mxi1 in human myeloid leukemia cells during 
retrodifferentiation and cell death. Leukemia Research 19, 699–705 (1995).

64. Chung, J. H. et al. Deferoxamine promotes osteoblastic differentiation in human periodontal ligament cells via the nuclear factor 
erythroid 2-related factor-mediated antioxidant signaling pathway. Journal of Periodontal Research 49, 563–573, doi: 10.1111/
jre.12136 (2014).

65. de la Fuente, A. G. et al. Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell 
differentiation. The Journal of Cell Biology 211, 975–985, doi: 10.1083/jcb.201505119 (2015).

66. Nitzsche, A. et al. RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity. 
PLoS ONE 6, e19470, doi: 10.1371/journal.pone.0019470 (2011).

67. Liu, X. et al. Expression of SATB1 and HER2 in breast cancer and the correlations with clinicopathologic characteristics. Diagnostic 
Pathology 10, 50, doi: 10.1186/s13000-015-0282-4 (2015).

68. Brouckaert, O., Wildiers, H., Floris, G. & Neven, P. Update on triple-negative breast cancer: prognosis and management strategies. 
International Journal of Women’s Health 4, 511–520, doi: 10.2147/IJWH.S18541 (2012).

69. Brandes, U. A faster algorithm for betweenness centrality. Journal of mathematical sociology 25, 163–177 (2001).
70. Kwok, S. et al. Transforming growth factor‐β 1 regulation of ATF‐3 and identification of ATF‐3 target genes in breast cancer cells. 

Journal of cellular biochemistry 108, 408–414 (2009).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:37140 | DOI: 10.1038/srep37140

71. Peng, F. et al. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J 
Cancer 109, 3092–3104, doi: 10.1038/bjc.2013.655 (2013).

72. Ambele, M. A., Dessels, C., Durandt, C. & Pepper, M. S. Genome-wide analysis of gene expression during adipogenesis in human 
adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Research 16, 
725–734 (2016).

73. Coradini, D., Boracchi, P., Oriana, S., Biganzoli, E. & Ambrogi, F. Differential expression of genes involved in the epigenetic 
regulation of cell identity in normal human mammary cell commitment and differentiation. Chinese Journal of Cancer 33, 501–510, 
doi: 10.5732/cjc.014.10066 (2014).

74. Langer, S. et al. Jun and Fos family protein expression in human breast cancer: correlation of protein expression and 
clinicopathological parameters. European journal of gynaecological oncology 27, 345–352 (2005).

75. Brin, S. & Page, L. Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks 56, 3825–3833 
(2012).

76. Chouvardas, P., Kollias, G. & Nikolaou, C. Inferring active regulatory networks from gene expression data using a combination of 
prior knowledge and enrichment analysis. BMC Bioinformatics 17, 319–332, doi: 10.1186/s12859-016-1040-7 (2016).

77. Glass, K., Huttenhower, C., Quackenbush, J. & Yuan, G.-C. Passing Messages between Biological Networks to Refine Predicted 
Interactions. PLoS One 8, e64832, doi: 10.1371/journal.pone.0064832 (2013).

78. Guan, D. et al. PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene 
expression data. Nucleic Acids Research 42, W130–W136, doi: 10.1093/nar/gku471 (2014).

79. Wang, J. et al. APG: an Active Protein-Gene Network Model to Quantify Regulatory Signals in Complex Biological Systems. 
Scientific Reports 3, 1097, doi: 10.1038/srep01097 (2013).

80. Guan, D. et al. CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression 
data. Bioinformatics 30, 1190–1192, doi: 10.1093/bioinformatics/btt761 (2014).

81. Wang, E. et al. Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome 
sequencing data. Seminars in Cancer Biology 30, 4–12, doi: http://dx.doi.org/10.1016/j.semcancer.2014.04.002 (2015).

82. Zaman, N. et al. Signaling Network Assessment of Mutations and Copy Number Variations Predict Breast Cancer Subtype-Specific 
Drug Targets. Cell Reports 5, 216–223, doi: http://dx.doi.org/10.1016/j.celrep.2013.08.028 (2013).

83. Hamed, M., Spaniol, C., Zapp, A. & Helms, V. Integrative network-based approach identifies key genetic elements in breast invasive 
carcinoma. BMC Genomics 16, S2, doi: 10.1186/1471-2164-16-s5-s2 (2015).

84. Noh, H. & Gunawan, R. Inferring gene targets of drugs and chemical compounds from gene expression profiles. Bioinformatics 32, 
2120–2127, doi: 10.1093/bioinformatics/btw148 (2016).

85. Whitmarsh, A. J. & Davis, R. J. Regulation of transcription factor function by phosphorylation. Cellular and Molecular Life Sciences 
57, 1172–1183, doi: 10.1007/pl00000757 (2000).

Acknowledgements
This project was funded by the Irish Cancer Society CCRC BREAST-PREDICT [grant number CCRC13GAL].

Author Contributions
L.F.I.M. performed the analysis and wrote the manuscript. W.K. designed the study and wrote the manuscript. 
T.S. designed the study, performed the analysis and wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Iglesias-Martinez, L. F. et al. BGRMI: A method for inferring gene regulatory networks 
from time-course gene expression data and its application in breast cancer research. Sci. Rep. 6, 37140; doi: 
10.1038/srep37140 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast  ...
	Method
	The mathematical model of gene regulation. 
	The posterior probability of a gene regulation model. 
	Model Search. 
	Pseudocode. 
	Model averaging. 

	Results
	The DREAM4 In Silico Network Inference Challenge dataset. 
	In Vivo benchmark data. 
	Execution time of BGRMI. 
	Uncovering transcriptional mechanism governing proliferation and differentiation in BC cells. 
	Formulating the prior probability of the gene regulation models. 
	Incorporating TF-TF heterodimers in the formulation of gene regulation models. 
	Data pre-processing. 
	Post-processing of reconstructed networks. 
	Large differences between the GRNs that regulate differentiation and proliferation in MCF7 cells. 
	Transcriptional hubs in HRG and EGF induced GRNs. 
	Transcriptional junctions in HRG and EGF induced GRNs. 
	Transcriptional master regulators in EGF and HRG induced GRNs. 

	Discussion
	Acknowledgements
	Author Contributions
	Figure 1.  Workflow of the heuristic model search algorithm.
	Figure 2.  Workflow of BGRMI implementation on time course gene expression profiles on human BC cells.
	Figure 3.  The EGF and HRG induced GRN in BC cells and the clinical relevance of some of its transcriptional hubs.
	Table 1.   AUPRs for the DREAM4 Networks.
	Table 2.   AUPRs of the In Vivo IRMA Network.
	Table 3.   Execution times of the BGRMI algorithm.



 
    
       
          application/pdf
          
             
                BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37140
            
         
          
             
                Luis F. Iglesias-Martinez
                Walter Kolch
                Tapesh Santra
            
         
          doi:10.1038/srep37140
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep37140
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep37140
            
         
      
       
          
          
          
             
                doi:10.1038/srep37140
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37140
            
         
          
          
      
       
       
          True
      
   




