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Background: Follicle-stimulating hormone (FSH) has multiple biological functions. It is 

currently considered that FSH can inhibit cervical cancer, and our aim was to explore the 

underlying molecular mechanisms.

Materials and methods: An in vivo experiment using nude mice injected with HeLa cells 

was performed. Flow cytometry, western blotting, and real-time quantitative PCR analyses 

were done.

Results: Twenty one days after injection of HeLa cells, the subcutaneous tumor mass was sig-

nificantly lower (P,0.01) in mice treated with 20 mIU/mL FSH, but did not disappear. In vitro 

observations indicated that FSH might inhibit cell proliferation and activate cell apoptosis to 

induce the reduction of HeLa cells. The mRNA and protein levels of Cyclin D1, Cyclin E1, and 

Caspase 3 changed accordingly as expected in vivo and in vitro. Moreover, FSH inactivated the 

nuclear factor-kappa B (NF-κB) pathway in subcutaneous tumors; the NF-κB(p65) activity in 

HeLa cells was significantly decreased using 20 mIU/mL FSH and was increased when FSH was 

administered along with lipopolysaccharide, accompanied by the same change of cell number. 

Further, FSH accelerated protein kinase A (PKA) activity, but inactivated glycogen synthase 

kinase 3 beta (GSK-3β) activity. Specific inhibition of PKA and/or GSK-3β provided in vitro 

evidence that directly supported the FSH-mediated inhibition of GSK-3β to inactivate NF-κB 

via the promotion of PKA activity.

Conclusion: Our data are the first description of the molecular regulatory mechanisms of 

FSH-mediated inhibition of the development of cervical cancer by decreasing the cell cycle 

and activating cell apoptosis via the PKA/GSK-3β/NF-κB pathway.
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Introduction
Follicle-stimulating hormone (FSH) is a pituitary glycoprotein hormone with an 

important role in the control of the progesterone synthesis in granular cells. FSH is 

involved in the manufacture of estrogen for mammalian reproduction.1–3 In the ovaries, 

FSH combines with its specific membrane receptor, FSHR, which activates G proteins, 

adenylate cyclase (cAMP), and protein kinase A (PKA), to upregulate the expression 

of genes involved in estrogen biosynthesis.4–6

Multiple biological functions of FSH have been demonstrated. Except for reproduc-

tion, FSH positively regulates fat deposition in adipose tissue of chickens and mice.7–9 

Lack of estrogen in postmenopausal women can increase the risks of cardiovascular 

disease, obesity, and osteoporosis, with the feedback-mediated increase in the level 

of FSH level in the blood.10–12 Compensation therapy with estrogen injection has been 

used as an antiaging strategy.13,14 However, this therapy has negative consequences 

concerning the occurrence of cancer.15–17
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Nuclear factor-kappa B (NF-κB) is a nuclear transcrip-

tion factor that regulates the expression of a large number of 

genes that are critical for the regulation of apoptosis, viral 

replication, tumorigenesis, inflammation, and various auto-

immune diseases.18–20 NF-κB is closely related to the growth 

and metastasis of tumors, as it inhibits cell apoptosis, with 

Caspase 3 (CASP3) having an important regulatory role in the 

process.21 In addition, Cyclin D1 (CCND1) is the downstream 

gene of NF-κB22 and is the key regulatory gene in the cell 

cycle.23 The continuous activation of NF-κB is associated 

with dysregulated cell proliferation.

In this article, we describe how nude mice were injected 

with HeLa cells as a cervical cancer model. We report a 

positive role of FSH in the repression of cervical cancer 

that is manifest as decreased proliferation and increased 

apoptosis of cells. The molecular mechanism of FSH on the 

repression of cervical cancer is demonstrated. Our findings 

increase the knowledge of the regulation of cervical cancer 

and provide a new view on estrogen replacement therapy for 

menopausal woman.

Materials and methods
animal ethical statement
All animal experiments were performed in accordance with 

protocols approved by the Animal Research Committee of 

the Institute of Audiology and Speech Science of Xuzhou 

Medical College (protocol number: XMC-A02-2017-018). 

All of the animal experiments were approved and guided by 

the Animal Care and Use Committee of Xuzhou Medical 

Collage.

cell culture and treatment
HeLa cells in 96- or 6-well plates or 10-cm dishes were cul-

tured with RPMI1640 medium containing 10% fetal bovine 

serum (FBS). HeLa cells were treated with different con-

centrations of FSH (5, 10, 20, and 40 mIU/mL) or were not 

treated with FSH (control group) for 60 hours (the rapid period 

of cell proliferation) to optimize the working concentration 

of FSH. The 20-mIU/mL FSH concentration was selected 

to use for the subsequent experiments. Cells were untreated 

(control) or treated with FSH 20 mIU/mL for either 48 hours 

(cell cycle, cell apoptosis, gene expression assays) or 60 hours 

(cell proliferation assay). Cells with FSH treatment were also 

co-treated for 8 hours with 20 µmol/l of the PKA inhibitor H89 

for 8 hours or 5 µg/mL lipopolysaccharide (LPS) to activate 

NF-κB, as previously described.24,25 In the cells treated with 

FSH and H89, GSK-3β activity could also be inhibited using 

10 µM TWS119. All cells were collected for analyses.

animals and treatment
Thirty six 6-week-old female nude mice (Vital River, Beijing, 

China) with similar weight (±0.5 g) were housed under 

a 12/12-hour light/dark cycle in a specific-pathogen free 

environment. The mouse model was previously described.26 

All mice were injected with 1×107 HeLa cells (purchased 

from National Infrastructure of Cell Line Resource, Beijing, 

China) and randomly divided into three groups. One group 

was treated daily with 20 mIU/mL FSH (Sigma-Aldrich, 

St Louis, MO, USA) in 0.2 mL physiological saline by intra-

peritoneal injection. The other two groups were treated with 

0.2 mL physiological saline as controls. When tumor masses 

were evident after the injection of HeLa cells in control mice, 

the mice in one of the control groups were intraperitoneally 

injected daily with 20 mIU/mL FSH. The other control group 

was injected with the same volume of physiological saline. 

All mice were killed 21 days after the first injection. Tumors 

were completely excised and stored at -80°C.

cell proliferation
Cells were cultured in 96-well dishes (1×105 cells per well) 

in RPMI1640 medium containing 5% FBS and induced with 

different concentrations of FSH (5, 10, 20, and 40 mIU/mL) 

or specific 20 mIU/mL FSH for 60 hours. Cell proliferation 

was determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2-H-tetrazolium bromide (MTT) assay. Based on 

the treatment with 20 mIU/mL FSH, cells were treated with 

H89 (20 µM) for 8 hours, and cell numbers were determined. 

Twenty microliters of MTT (5 mg/mL) aliquots were added to 

each well and incubated for 4 hours at 37°C. After removing 

the supernatant, formazan crystals were dissolved in 200 µL 

of dimethylsulfoxide, and the absorbance was measured at 

490 nm. There were eight replicate wells for each group to 

ensure the accuracy of the experiment.

Flow cytometry
Cells in 6-cm culture dishes were untreated or treated with 

20 mIU/mL FSH for 48 hours and then used for the analysis 

of cell cycle or cell apoptosis using a FACSCanto II flow 

cytometer. For the cell cycle analysis, cells were mixed with 

0.25% Triton X-100 and 5 µL propidium iodide (PI) and 

incubated for 30 minutes at room temperature in the dark. 

Cells were resuspended in 0.5 mL of phosphate-buffered 

saline (PBS) and analyzed immediately. For the cell apop-

tosis assay, cells were digested with trypsin, centrifuged at 

300 × g for 5 minutes and washed with ice-cold PBS. The 

cell pellets were re-suspended in 100 µL Annexin V-binding 

buffer, transferred to a 5-mL culture tube containing 5 µL 
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Annexin V-fluorescein isothiocyanate (FITC), and mixed 

with 10 µL PI. Each tube was gently vortexed and incubated 

for 15 minutes at room temperature in the dark. Subsequently, 

300 µL of binding buffer was added, and the cells were 

analyzed immediately.

real-time quantitative polymerase chain 
reaction (Q-Pcr)
The expression levels of genes in tumor tissue (untreated or 

treated with FSH for 21 days) and cell samples (untreated or 

treated with 20 mIU/mL FSH for 48 hours) were detected by 

real-time Q-PCR. Primer information is provided in Table 1. 

Each 20 µL PCR mixture contained 10 µL 2× iQ™ SYBR 

Green Supermix, 0.5 µL (10 mM) of each primer, and 1 µL 

cDNA. Reactions were incubated in an ABI 7500 Real-Time 

PCR Detection System (Thermo Fisher Scientific, Waltham, 

MA, USA). A melting curve was constructed to verify that 

only a single PCR product was amplified. Samples were 

assayed in triplicate with SDs of CT values not exceeding 

0.5 on a within-run basis.

enzyme linked immunosorbent assay 
(elisa)
PKA activity was determined in tumor tissue and HeLa 

cell samples with different treatments using an ELISA kit 

(BioVision, San Francisco, CA, USA) according to the 

manufacturer’s instructions.

Western blotting
The activities of CASP3, NF-κB(p65), and glycogen synthase 

kinase 3 beta (GSK-3β) were detected in tumor tissue and 

HeLa cells in vivo and in vitro from mice and cells treated 

with FSH. The nuclear or cytoplasmic fraction was extracted 

from every sample using the Nuclear and Cytoplasmic 

Protein Extraction Kit (Beyotime, Shanghai, China) accord-

ing to the manufacturer’s instructions. The total protein levels 

of all samples were assayed with a BCA Protein Assay Kit 

using monoclonal antibodies to anti-β-actin, anti-CASP3, 

anti-pNF-κB(p65), and anti-pGSK-3β (all from Abcam, 

Cambridge, UK).

statistical analysis
ANOVA was done using Statistical Analysis Systems 

software (Version 8.2; SAS Institute, Cary, NC, USA) to 

determine significance (accepted at P,0.05 or P,0.01). 

The data are mean ± SD.

Results
Fsh inhibits cervical cancer development 
by regulating cell proliferation and 
apoptosis
FSH (10–40 mIU/mL) significantly inhibited (P,0.05 

or ,0.01) the number of HeLa cells (Figure 1A). In subse-

quent in vivo and in vitro experiments, 20 mIU/mL FSH was 

used (Figure 1A). Mice were injected with HeLa cells. None 

of the control and treated mice died during this phase of the 

study. Subcutaneous tumors were present in all mice injected 

with HeLa cells for 10 days. At that time, the mice that had 

not been treated with FSH treatment were divided into two 

groups that were untreated or treated with 20 mIU/mL FSH 

for another 11 days to further clarify the effect of FSH on 

cervical cancer. After the total 21 days of injection of HeLa 

cells, the tumor masses in FSH-treated mice were signifi-

cantly smaller (P,0.01) than the tumors in mice not treated 

with FSH, but did not vanish (Figure 1B).

Additional validations in vitro were performed. HeLa 

cells (1×105 cells per well in 96-well dishes) were cultured 

with 20 mIU/mL FSH for 60 hours, and cell viability was 

assessed using the MTT assay. The number of viable cells 

in the FSH-treated group was significantly lower (P,0.01) 

than that in controls without FSH (Figure 1C). Furthermore, 

HeLa cells were left untreated or were treated with 20 mIU/

mL FSH for 48 hours, and the cell cycle and apoptosis were 

examined using flow cytometry. Compared with control 

Table 1 The specific primers for Q-PCR

Gene Sequence Product 
size (bp)

Accession 
no

FSHR F:5′-gTgcaTTcaacggaacccag-3′
r:5′-TcTaagccaTggTTgggcag-3′

154 nM_013523

CCND1 F:5′-ggagcccTTgaagaagagcc-3′
r:5′-TcaTccgccTcTggcaTTTT-3′

246 nM_007631

CCNE1 F:5′-aagcgaggaTagcagTcagc-3′
r:5′-gccccaaTTcaagacgggaa-3′

175 nM_007633

β-actin F:5′-TaTTgcTgcgcTcgTTgTTg-3′
r:5′-TggcccaTaccaaccaTcac-3′

135 nM_205518

Abbreviation: Q-Pcr, quantitative polymerase chain reaction.
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cells, the rate of S phase in the treated cells was significantly 

lower (P,0.01), the rate of G1 phase was significantly 

higher (P,0.01) (Table 2), and the rate of apoptosis was 

obviously higher in treated cells (Figure 1D). Genetically, as 

the key factor to cell apoptosis, the level of cleaved caspase 

3 (CASP3) measured by western blotting was obviously 

increased in tumor tissue from mice treated with 20 mIU/

mL FSH compared with controls (Figure 1E).

Fsh inactivates nF-κB activity to inhibit 
subcutaneous tumor
NF-κB(p65) activity was detected to clarify if NF-κB was 

involved in the FSH repression of cervical cancer. In tumor 

tissue, the NF-κB(p65) activity obviously declined with 

FSH treatment (Figure 2A). Cells were divided into three 

groups. One group was a control, and the other two groups 

were treated for 8 hours with 20 mIU/mL FSH or 20 mIU/mL 

FSH plus 5 µg/mL LPS. Compared with the control cells, the 

NF-κB(p65) activity became lower in the FSH-treated group 

and recovered to the same level of the NF-κB(p65) activity 

in the presence of LPS (Figure 2A). The 60-hour FSH plus 

LPS treatment resulted in significantly higher numbers of 

cells (P,0.01) in FSH-treated mice (Figure 2B).

Detection of downstream functional genes related to cell 

proliferation or apoptosis was done in vivo and in vitro. The 

mRNA levels of Cyclin D1 (Ccnd1) and Cyclin E1 (Ccne1) 

Table 2 The percentage of cell number in different phases of cell 
cycle to hela cell with Fsh treatment or without Fsh treatment 
(control)

Group Phase

S (%) G1 (%) G2 (%)

control (no Fsh) 43.74±1.06a 43.79±0.63b 12.47±1.05
Treatment (with Fsh) 28.59±1.29b 60.86±1.11a 10.55±0.99

Note: Different lowercase letters on the shoulder (a and b) in the same column 
showed a significant difference (P,0.01).
Abbreviation: Fsh, follicle-stimulating hormone.

Figure 2 Fsh inhibits the nF-κB pathway to control subcutaneous tumors.
Notes: Tumor tissue was untreated or treated with 20 miU/ml Fsh, and hela cells treated with 20 miU/ml Fsh were untreated or treated with µg/ml lPs for 8 hours 
or 60 hours. (A) nF-κB(p65) activity in vivo and in vitro. (B) On the basis of 20 miU/ml Fsh, the number of hela cells treated with lPs for 60 hours was determined. 
(C) The mrna levels of genes (CCND1 and CCNE1) related to cell cycle in tumor tissue or hela cells. (D) The levels of cleaved casP3 in tumor tissue or hela cells. 
Data are mean ± seM (n=3). **P,0.01.
Abbreviations: Fsh, follicle-stimulating hormone; lPs, lipopolysaccharide; casP3, caspase 3.
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genes were significantly downregulated in tumor tissue from 

mice treated with 20 mIU/mL FSH (P,0.01). HeLa cell 

injection with FSH in the absence or presence of LPS for 

8 hours yielded significant decreases of Ccnd1 and Ccne1 

mRNA levels (both P,0.01) in the 20 mIU/mL FSH group 

and was upregulated in the presence of LPS (Figure 2C). 

Accordingly, the cleaved CASP3 level was markedly 

increased in HeLa cells treated with 20 mIU/mL FSH for 

8 hours compared with control cells. The level decreased 

upon exposure to LPS (Figure 2D).

Fsh inactivates gsK-3β to inhibit nF-κB 
by inducing PKa activity
FSHR-PKA and GSK-3β were analyzed to explore the 

regulation of FSH on NF-κB activity. Fshr mRNA and 

protein levels were upregulated in tumor tissues treated with 

20 mIU/mL FSH compared to tumor tissue without FSH 

(P,0.01) (Figure 3A). Moreover, as shown in Figure 3B 

and C, the PKA level also was obviously increased, and 

the activity of GSK-3β was significantly reduced in tumor 

tissue upon treatment with 20 mIU/mL FSH than in tumor 

tissue without FSH.

On the basis of FSH treatment, HeLa cells in vitro were 

treated with H89 (PKA inhibitor) for 8 hours. PKA activ-

ity was increased for FSH and then significantly decreased 

(P,0.05 or P,0.01) upon treatment with H89, accompa-

nied by a significantly opposite change of GSK-3β activity 

(Figure 3B and C). In HeLa cells treated with FSH and 

H89, NF-κB(p65) activity was significantly decreased in 

the presence of TWS119 (GSK-3β inhibitor) (Figure 3D), 

suggesting that FSH inhibited GSK-3β activity via PKA to 

affect the NF-κB(p65) activity in controlling development 

of subcutaneous tumors.

Discussion
FSH that is active in association with its specific membrane 

receptor, FSHR, has important roles in reproduction and 

lipid biosynthesis via the cAMP-PKA-CREB pathway.1–3,7–9 

The present data clearly demonstrate the positive role of 

FSH hormone in cervical cancer and clarify the systematic 

Figure 3 Fsh inhibits the activity of gsK-3β to control subcutaneous tumors.
Notes: Tumor tissue untreated or treated with 20 miU/ml Fsh, and hela cells treated with 20 miU/ml Fsh plus h89 (a gsK-3β specific inhibitor), and either 
untreated or treated with TWs119 (a gsK-3β specific inhibitor) for 8 hours were examined. (A) Fshr levels of mrna determined by Q-Pcr and protein determined 
by immunohistochemistry in tumor tissue. (B) The changes of PKa activities in vivo and in vitro. (C) change of gsK-3β activities in hela cells treated with h89 were 
determined on the basis of 20 miU/ml Fsh. (D) change of nF-κB(p65) activities in hela cells treated with TWs119 determined on the basis of Fsh and h89. Data are 
mean ± seM (n=3). *P,0.05; **P,0.01.
Abbreviations: Fsh, follicle-stimulating hormone; PKa, protein kinase a; Q-Pcr, quantitative polymerase chain reaction.

β

κβ
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molecular mechanism. Our findings add to the knowledge of 

the regulation of cervical cancer and provide a new view on 

replacement therapy of estrogen for menopausal woman.

The effect of FSH for cervical cancer was assessed 

in vivo and in vitro. FSH applied at different stages of 

tumor development could inhibit the development of sub-

cutaneous tumors, but did not dictate tumor occurrence. 

The MTT viability assay indicated that 20 mIU/mL FSH 

inhibited HeLa cells in vitro. Flow cytometry confirmed 

that FSH inhibited the progression from G1 to S phase in 

HeLa cells. The collective results indicate that FSH inhibits 

the development of subcutaneous tumors by inhibiting cell 

proliferation.

The molecular regulatory mechanism of FSH on cervical 

cancer was investigated. FSH has different regulatory roles 

on NF-κB in different cell types,27,28 and NF-κB(p65) in 

the NF-κB pathway is important in the regulation of cell 

proliferation and apoptosis.29–31 This knowledge prompted 

us to explore NF-κB(p65) activity. As expected, the activity 

was obviously decreased in tumors from mice treated with 

FSH before the development of a tumor mass. As the specific 

activator of NF-κB,32 5 µg/mL LPS was used to validate the 

role of NF-κB(p65) in vitro. After HeLa cells were treated by 

LPS for 8 hours, treatment with 20 mIU/mL FSH recovered 

the activities of NF-κB(p65) that had been reduced by FSH. 

Accordingly, the cell number significantly increased. Using 

HeLa cells with the same treatment, the mRNA levels of 

Ccnd1 and Ccne1, as the downstream function genes and fac-

tor-related cell cycle or cell proliferation,33,34 were downregu-

lated for FSH and then upregulated after the addition of LPS. 

However, as a key factor in regulating the cell apoptosis,35,36 

the induction of cleaved CASP3 was evident in tumor tissue 

Figure 4 Mechanistic regulatory network of Fsh to cervical cancer, mediated through the PKa-nF-κB pathway.
Note: after PKa activates Fsh, gsK-3β activity is downregulated, which induces the inactivation of the nF-κB pathway to decrease the cell cycle and activate cell 
apoptosis.
Abbreviations: Fsh, follicle-stimulating hormone; PKa, protein kinase a; gsK-3β, glycogen synthase kinase 3 beta; nF-κB, nuclear factor-kappa B; casP3, caspase 3.
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and HeLa cells treated with 20 mIU/mL FSH, again supporting 

the FSH-mediated inhibition of apoptosis inhibition. In vitro, 

cleaved CASP3 was downregulated with the addition of LPS 

from the higher levels that had resulted from the presence of 

FSH. The results support the view that FSH inactivates the 

NF-κB pathway to control subcutaneous tumors by inhibiting 

cell proliferation and activating cell apoptosis.

The present results add to the data concerning the clinical 

value of PKA activity on the effect of FSH8,37,38 and the impor-

tant role of GSK-3β in regulating the activity of NF-κB.39,40 In 

tumor tissue in the FSH treated group, the mRNA level of Fshr 

and PKA activity were significantly upregulated, but the level of 

activated GSK-3β was significantly downregulated compared 

to tumor tissue without FSH, indicating a relationship of PKA 

and GSK-3β with FSH in controlling subcutaneous tumors. 

After the blockage of PKA in vitro for 8 hours, the activated 

GSK-3β level was obviously increased with the inactivation 

of PKA, as has been reported.41 Furthermore, the activity of 

NF-κB(p65) recovered with the inactivation of PKA and acti-

vation of GSK-3β, but was again decreased in the presence of 

the inhibition of GSK-3β by TWS119. These results prove that 

PKA reduces the activity of NF-κB by inactivating GSK-3β.

Conclusion
We report for the first time the molecular regulatory mechanisms 

of FSH in the inhibited development of cervical cancer. The 

inhibition is due to the decreased cell cycle and activation of cell 

apoptosis via the PKA-GSK-3β-NF-κB signaling pathway. After 

PKA is activated in the presence of FSH and GSK-3β activity is 

downregulated, inducing the inactivation of the NF-κB pathway 

(Figure 4). Downstream of this process, CCND1, CCNE1, and 

CASP3 are important in regulating the cell number of cervical 

cancer. Our findings add to the knowledge of the regulation 

of cervical cancer and provide new data concerning estrogen 

replacement therapy for menopausal woman.
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