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Chinese garlic powder (GP) is exported to all countries in the world, but the excess of

microorganisms is a serious problem that affects export. The number of microorganisms

has a serious impact on the pricing of GP. It is very important to detect and control the

microorganism in GP. The purpose of this study was to investigate the contamination and

drug resistance of microorganisms during the processing of GP. We used metagenomics

and Illumina sequencing to study the composition and dynamic distribution of antibiotic

resistance genes (ARGs), but also the microbial community in three kinds of garlic

products from factory processing. The results showed that a total of 126 ARG genes were

detected in all the samples, which belonged to 11 ARG species. With the processing of

GP, the expression of ARGs showed a trend to increase at first and then to decrease.

Network analysis was used to study the co-occurrence patterns among ARG subtypes

and bacterial communities and ARGs.

Keywords: garlic powder, microbial community, antibiotic resistance genes, metagenome sequencing, co-

occurrence patterns

INTRODUCTION

Antibiotic resistance genes were first proposed by American scholar Pruden (1) in 2006.
Antibiotics are persistent in environmental media and spread between different hosts. They
pose a threat to public health and food safety and have become of keen interest in various
fields such as botany, soil science, and food science (2). The increase in the antibiotic
resistance of bacteria (ARB) infection and ARGs from antibiotics (3, 4), or other substances
[including heavy metals (5, 6), light irradiations (7), or mineral nanoparticles such as zinc
(8)], of selective pressure by horizontal gene transfer (HGT), appeared in the emerging
transmission, also has caused great attention all over the world. Since their discovery in the
1930s, antibiotics have been widely used and abused as their availability has increased. ARGs
can be transferred horizontally or present in microorganisms via mobile genetic elements
(MGEs) including transposons, plasmids, integrons, and common regions of insertion sequences
(9). Antibiotics not only pollute the environment and threaten people’s health, but also
threaten the achievements of modern medicine. HGT promotes the spread of ARGs among
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different types of microorganisms. This enables more
microorganisms, especially pathogenic bacteria, to acquire
resistance, and leads to the emergence of multiresistant bacteria
(10–12). Studies have shown that antibiotic resistance causes
more than two million diseases and hundreds of thousands of
deaths each year. The situation will get worse if action is not
taken; the economic impact of uncontrolled antibiotic resistance
will be catastrophic (13, 14). An assessment of the repository of
ARGs and environment persistence is essential to implement a
strategy to reduce the propagation of ARGs.

To date, numerous experiments and studies have been
conducted to uncover the presence and abundance of ARGs
in media as landfills, industrial and medical wastewater, and
livestock farms and soils (15). Soil is one of the habitats with
the highest microbial diversity on earth, a source of natural
antibiotics, and a repository of ARGs (12). Long-term abuse of
antibiotics is likely to lead to the generation of ARGs in animals,
which can pollute the environment and soil through excretion.
They can also be spread widely through viruses and bacteria,
which results in a series of genetic contamination and food
safety problems. Some reports showed that a high abundance
of beta-lactam resistance genes was detected in food waste-
recycling wastewater, and the ARG pollution status in foodwastes
was studied (16). BlaOXA-20 was detected on vegetables such
as radish and lettuce grown in sludge modified soil, and the
relationship between resistance genes and pathogenic bacteria
in vegetables was studied (17). There have been reports of risks
of resistant microbes in vegetables (such as tomatoes, celery,
and radishes), fruits (such as pears and strawberries), meat, and
seafood (18, 19), which suggests that foodmay be a carrier of ARB
or ARG dissemination to people through the food chain, which
also poses a new challenge to food safety (20, 21).

Garlic has attracted more and more attention for its
nutritional value and functions. China is the largest grower and
exporter of garlic in the world. Garlic is also one of the important
and economical crops in China. Garlic is highly seasonal, so
it is usually processed into various garlic products, such as
dehydrated garlic slices (GS), frozen garlic, garlic powder (GP),
garlic oil, and so on, to enhance its availability. As a flavored
food, GP retains all the original ingredients of garlic except water,
including alliin and the active alliinase. It not only can improve
food flavor and appetite but also can be processed into GP and
used as a garlic supplement to play a certain effect, playing a key
role in enterprises’ research and development of new products
(22). In recent years, China’s condiment industry is growing at
an average annual rate of about 20% with obvious social and
economic benefits (23). The problem of microbial contamination
in GP has not been well solved, which seriously affects the export
of GP and other garlic products; the number of microorganisms
will also seriously reduce the price of products. It is very necessary
to study the microorganism of GP.

As the host of ARGs, microorganisms are closely related to the
existence of ARGs. To determine the existence and abundance
of microbial communities and ARGs in garlic products, increase
public awareness of the potential risks of ARG contamination
and dissemination, and provide potential indicators and host
information for the ARGs, this article uses metagenomics

and Illumina sequencing methods to study the distributions
and similarity/difference in ARG compositions and dynamics
of microbial communities in three kinds of garlic products.
The relationship between ARGs and microbial communities
was discussed and also investigated the co-occurrence patterns
among ARG subtypes and microbial taxa in garlic cloves (GC),
garlic flakes, and GP using network analysis. This article reveals
the special relationship between microorganisms and ARGs in
the processing of GP, fills the knowledge gap of microbial and
antibiotic resistance in garlic products, and provides valuable
clues for the removal of ARG in garlic products.

MATERIALS AND METHODS

Sample Collection
The garlic products were randomly selected from a local garlic
processing plant in Pizhou, Jiangsu Province of China. The rough
processing process of GP in enterprises was as follows: garlic
was peeled and split after passing the acceptance. After cleaning
and removing the surface dirt and impurities, it was processed
into GS for further color protection and drying. The thickness
of GS was generally 3mm, milky white or milky yellow, and
the water content does not exceed 5%. GS was crushed by a
grinder and processed into GP through an 80-mesh sieve. The
sample for this experiment was taken from a local garlic product
manufacturer, and three samples of GC without mechanical
damage and physiological diseases were collected. GS and GP
were processed products, both of which were sealed and packaged
in sterile bags, and three samples of each were also collected. The
samples were inspected and analyzed immediately after being
delivered to the laboratory.

DNA Extraction, Library Construction and
Sequencing
The sample processing refers to the method of Sessitsch (24) and
Huang (25) with slight changes. The collected GC samples were
first rinsed with sterile water, then soaked in 70% ethyl alcohol
for 2min, immersed in 2.5% sodium hypochlorite for 5min, and
finally rinsed with sterile water three times. Then, 100µl of sterile
water from the final washing was taken and spread on PDA and
NA medium for the epiphytic check. Samples without colony
growth after culturing at 28 ± 2◦C for three days were used for
subsequent metagenomic sequencing.

The sample after the surface sterilization treatment was
crushed in a mortar under a sterile environment placed in a
0.9% NaCl solution containing sterile glass beads, and shaken
at 30◦C for 4 h. Then, it was centrifuged at 6,000 g for 5min to
remove debris, and the supernatant was filtered through a 0.22-
µm filter membrane (EMD Millipore, Temecula, CA). The filter
membrane was cut into pieces and the DNA was extracted by the
CTAB method and stored at−20◦C until analysis.

The concentration and purity of purified DNA were detected
by NanoDrop One instrument. For metagenomic sequencing,
1µg of DNA was taken to construct a sequencing library of
300-bp inserts, and then, the Illumina HiSeq 4,000 sequencing
platformwas used with the sequencing strategy of PE150 (paired-
end sequencing 150 x 20).
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DNA Sequence Assembly and Annotation
First of all, the original off-machine data used Trimmomatic
v0.39 (26) for quality control and the reads with an average
quality value of <30 (Q ≤ 30) were removed to obtain a high-
quality sequence. BWA v0.7.17-r1188 (27) was used to align
the high-quality reads to the custom database of garlic genome
(https://www.ncbi.nlm.nih.gov/assembly/ GCA_014155895.1)
and to remove the host genome from the alignment sequence.
The unaligned high-quality sequence was assembled using
SPAdes v3.15.2 (28) to obtain scaffolds (length ≥ 500 bp). The
reads were re-aligned back to the assembled sequence, and
the indel and base-pair errors were corrected according to the
depth of the alignment (29, 30). MetaGeneMark (30) was used
to predict genes in assembled scaffolds, and CD-HIT (31) was
used to cluster genes with 95% consistency and 90% repetition
rate, and to remove redundant genes. In addition, the bedtools
v2.29.2 multicov (32) program was used to calculate the relative
expression abundance of each gene.

The antibiotic resistance database (Comprehensive Antibiotic
Resistance Database, CARD) (33) contains a large number
of known ARGs and their related resistant antibiotics.
Subsequently, we aligned the metagenomic gene sequence
to the CARD database to predict drug resistance. To ensure the
accuracy of ARGs, an 80% consistency threshold was selected as
the standard (34, 35).

Bacterial, archaeal, viral, and eukaryotic are distinct from
each other in genomes. To determine the species classification
information and the abundance of each species in the
metagenomics, Kraken2 v2.0.9-beta (36) and Bracken (37) were
used to analyze the nongarlic genome data after quality control.
The reference database is the minikraken2-V2 database (released
on April 25, 2019).

Statistical Analysis
All statistical analyses considered that p < 0.05 was statistically
significant. Principal component analysis (PCA) was used to
assess the bacterial community and ARG profiles among different
samples. Venn diagrams were drawn using Venn Diagram
package v1.6.20 or UpSetR package v1.4.0, while heatmaps were
generated with the heatmap package by v1.0.12. The relationship
between bacterial communities and ARG subtypes and their
respective internal relationships were evaluated by Spearman’s
correlation. Pearson’s correlations were used to assess the
relationships between gene functions and bacterial communities.
Then, we removed the correlation in which the coefficient was
below 0.90 and the p-value was above 0.01 and adjusted the p-
value to avoid false positives using the false discovery rate (FDR)
method (38). Network analysis and visualization were conducted
with the Gephi v0.9.2.

RESULTS

ARG Evolution Profiles During GP
Processing
A total of 126 ARGs were detected in all samples, which belong
to 11 ARG types. Among them, 29 shared ARGs were common
in the GP processing process, accounting for 23% of the total

ARG. In addition, 53 (42%) ARGs coexisted in GS and GP
(Supplementary Figure S1), indicating that there was a higher
similarity in ARGs in the middle and late stages of GP processing.
The average abundances of ARG in GC, GS, and GP were
21.0, 88.7, and 39.7, respectively (Figure 1A). The detection
frequency of ARGs showed an upward trend in GS processing
and a downward trend in GP processing, indicating that the
GS processing would lead to an increase in ARGs, and further
processing into GP would lead to a decrease in ARGs. Further
analysis of the distribution of ARGs showed that multidrug
was the ARG with the highest abundance in the three periods
(Figure 1B), which were 86.14, 72.41, and 65.62%, respectively.
Second, bacitracin (7.23%) and chloramphenicol (3.61%) were
the main ARGs in GC, beta-lactam (4.96%) and aminoglycoside
(4.75%) were the main ARGs in GS, and sulfonamide (9.97%),
MLS (5.51%), and aminoglycoside (4.99%) were the main ARGs
in GP.

Unweighted pair group method with arithmetic mean
(UPGMA) cluster analysis based on the abundance of ARGs
and PCA analysis of Bray–Curtis distance further revealed the
differences in the composition of ARGs during the GP processing
(Figure 2). In the same process, ARGs clustered together and
separated from other ARGs in the different processes. In
addition, GP and GS were more similar in UPGMA clustering,
and both were far away from GC. It showed that there were
changes in the composition of ARGs in GP processing, and the
changes in ARGs in the middle and late stages were more similar
than those in the early GC.

With the processing of GP, the performance of ARGs
increased first and then decreased (Figure 3). Specifically for
multidrug, mexB, mexD, mexW, smeE, etc. showed a trend of
first increasing and then decreasing (Supplementary Figure S2).
It showed that the processing from GC to GS would increase
the abundance of ARGs such as multidrug, aminoglycoside, and
MLS, and with the processing fromGS to GP; the increased ARGs
would decrease to varying degrees.

Co-Occurrence Patterns Among ARG
Subtypes
Based on Spearman’s correlation analysis (r > 0.9, p≤ 0.001), the
co-occurrence patterns among ARG subtypes were investigated
using network analysis. As shown in Figure 4, the GC co-
occurrence network contained 41 nodes and 75 edges. Among
them, multidrug ABC transporter had an obvious correlation
with other 21 ARGs (17 positive correlations and four negative
correlations), and mexF-03 had obvious correlations with other
19 ARGs (17 positive correlations and two negative correlations).
In addition, amrB and smeE-05 were also related to the other
17 ARGs, respectively. Compared with GC and GP, GP had
a more complex co-occurrence network of ARGs, including
122 nodes and 2,100 edges. In particular, bacA-01, macB-02,
and mexD-01 were correlated with 60 other ARGs, respectively,
and the positively correlated ARGs contained 40 (66.7%), 40
(66.7%), and 39 (65%) multidrug, respectively. Genes belonging
to multidrug in GS occupied 88 nodes (66.3%), of which
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FIGURE 1 | ARGs detected during GP processing. (A) The number of resistance genes detected during GP processing. (B) The relative abundance of ARGs in the

three products.

FIGURE 2 | The differences in the composition of ARGs during the GP processing. (A) UPGMA cluster analysis of ARG abundance in three garlic products. (B) PCA

based on Bray–Curtis distance showed the overall distribution pattern of ARGs during GP processing.

mexD-01, mexW-02, mexB-02, multidrug-transporter-06, mexI-
02, and mexE-02 were related to more than 57 ARGs, which
were closely connected nodes, indicating that these genes
could be used as indicator genes for ARGs. In addition, arnA

(belonging to polymyxin) was negatively correlated with 52
other ARGs, including 38 multidrugs, four beta-lactams, two
chloramphenicols, two tetracyclines, and so on. In GP, sul1
(belonging to sulfonamide) was located in the center of the
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FIGURE 3 | The distribution of ARGs. Heatmap showed the distribution of ARGs in different types of products during GP processing.

co-occurrence network and had more complex correlations (30
edges) compared with other ARGs. Similarly, multidrug genes
occupied 59 (69.4%) of the 85 nodes, of which mdfA-02, mexB-
01, smeE-05, and acrB interacted withmore than 25 ARGs, which
were the main subtypes of ARGs in the network.

Correlation of Bacterial Communities
The transformation of microorganisms during GP processing
was closely related to the types and abundance of resistance
genes. It was necessary to explore changes in bacterial
community composition during GP processing. Compared
with GC, the GS and GP groups shared more genera (385),
indicating that they might have a very similar community
composition (Supplementary Figure S3). At the same time, the
heatmap based on phylogenetic classification showed that the
composition at the genus level exhibited different temporal
changes during garlic processing (Figure 5). Paraburkholderia,
Stenotophomonas, Bradyrhizobium, and Azospira were the four
most dominant genera of GC in the early stage of GP processing.
They all belonged to Proteobacteria, accounting for 18.67% of
the total bacterial 16S rRNA gene sequence in GC. But in the
middle and late stages of GP processing (GS and GP), the
relative abundance of Paraburkholderia, Bradyrhizobium, and
Azospira decreased rapidly (3.16%). After the relative abundance
of Stenotrophomonas in GS decreased, it increased in GP again
(the relative contents of GC, GS, and GP were 5.65, 2.50, and
5.59%, respectively).Alcaligenes, Serratia, and Pseudomonaswere
also three genera belonging to the phylum Proteobacteria. In
the GP processing, it rapidly increased from 1.82% (GC) to
7.61% (GS), but it returned to a low content level (2.76%) in the

later stage of the processing. Corynebacterium of Actinobacteria
showed the same trend. Leuconostoc and Weissella belonged to
the Firmicutes phylum and Enterobacter and Pantoea belonged
to the Proteobacteria phylum increased in GP content (9.43%) in
the later processing stage and were at low levels (0.01 and 1.58%)
in the early and middle stages.

Strong competition and interactions existed in bacterial
communities for limited resources during food processing.
Network analysis was employed to reveal co-occurrence among
bacterial communities (Supplementary Figure S4). Among the
top 30 genera enriched in GC and GS, there was a strong positive
correlation between genera and genera. Specifically in GS, it
showed a closer correlation (GS: 332 edges, GC: 229 edges).
Paraburkholderia and Bacillus in GS were positively correlated
with 30 other genera. Acidovorax, Citrobacter, and Bosea in GC
were positively correlated with more than 20 other genera. In GP,
Lactococcuswas negatively correlated with the other eight genera.
This indicated that Lactococcus would probably impede the
reproduction of these bacteria in GP processing. An Enterobacter
genus, which was negatively related to it, was one of the most
abundant genera in GP and had a positive correlation with the
other 11 genera.

Correlation of Bacterial Community and
ARGs
Characteristics of ARG were significantly correlated with
microbial composition and structure. Co-occurrence patterns
among bacterial taxa and ARGs were therefore investigated by
network analysis (Figure 6). A total of 58 nodes (30 microbial
genera and 28 ARGs) and 136 edges, 57 nodes (30 microbial
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FIGURE 4 | The network analysis revealing the co-occurrence patterns among ARG subtypes in GC, GS, and GP. The nodes were colored according to ARG types.

A connection represents a strong (Spearman’s correlation coefficient r > 0.90) and significant (p ≤ 0.001) correlation. Edges and node size weighted were based on

the correlation coefficient and the relative abundance of ARGs, respectively.

genera and 27 ARGs) and 541 edges, and 60 nodes (30 microbial
genera and 30 ARGs) and 265 edges existed in GC, GS, and
GP networks, respectively. If there was a strong (r > 0.90) and
significant (p < 0.001) positive correlation among microbial
groups and ARGs, the co-occurrence patterns might reveal a
potential host of ARGs. In GC, in the view of Candidatus-
Phytoplasma and Serratia were positively correlated with one
beta-lactam and seven multidrug genes, which might be served
as the possible hosts of these ARGs in GC. Besides, Massilia
may be the host of ARGs and develop resistance to bacitracin
(bacA). Relatively, the correlation profile among ARGs and
bacterial taxa in GS was more complex. A single bacterial taxon
correlated with diverse ARGs, and a single ARG correlated with
different bacterial taxa. Brevundimonas might be the host of 22
kinds of ARGs. Pseudomonas, Stenotrophomonas, Acinetobacter,
Delftia, etc. had a positive correlation with more than 20
kinds of ARGs and were resistant to multidrug, aminoglycoside,
chloramphenicol, MLS, bacitracin, tetracycline, etc., indicating

that these genera might be the important ARG hosts in GS.
Although the bacterial communities between GS and GP were
very similar, their association with ARGs was significantly
different. In GP, Brevundimonas had a positive correlation
with smeE-05 (multidrug) and aph (3”)-I (aminoglycoside).
Stenotrophomonas, Azospira, Aquabacterium, and Lysobacter
were positively correlated with 10 ARGs. Lactobacillus might
be the host of acrB, mexE, mexF, mdtE, mdtL, etc. To sum
up, in the process of GP processing, the correlation among
bacterial communities and ARGs was significantly different
under different processing processes.

DISCUSSION

Through high-throughput sequencing, metagenomics breaks the
traditional microbial research method based on the culture. It
can directly extract the DNA of the samples for operation and
cover as much microbial genetic information contained in the
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FIGURE 5 | Heatmap of the relative abundance of bacterial communities at phylum and genus levels during the garlic processing. Clustered at the gate level

according to abundance and similarity.

sample with a big data sequencing library. This can not only
accurately obtain information on the species composition and
abundance of microorganisms in the sample, but also detect a
large number of ARGs at the same time. This can also provide
convenience for finding new genes, predicting the function of
microorganisms, and studying the diversity of microorganisms
(39). A large number of studies have confirmed that the extensive
use of antibiotics can not only bring serious antibiotic residue
problems but also make many bacteria obtain drug resistance.
Other bacteria and even humans can become receptors for drug
resistance gene migration (40), bringing the potential risk of
drug resistance transmission. Based on metagenomics, this study
investigated the microorganisms and drug resistance during GP
processing and found that there were 43 ARGs, 123 ARGs,
and 85 ARGs in GC, GS, and GP, respectively. Multidrug was
the most abundant ARG in the three periods, bacitracin and
chloramphenicol were the main ARGs in GC, while beta-lactam
and aminoglycoside were the main ARGs in GS; sulfonamide,
MLS, and aminoglycoside were the main ARG genes in GP. The
average abundance of ARG in GC, GS, and GPwas 21.0, 88.7, and
39.7, respectively. With the processing of GP, the performance of
ARGs (especially multidrug) increased first and then decreased,
which indicated that ARGs were diverse in food. D’costa et al.
(12) have proved that antibiotic resistance can occur naturally.

In addition, studies have shown that fertilization with manure or
municipal sewage sludge will cause ARGs to spread to farmland
and even harvested vegetables (17, 41). It is not strange to detect
resistance genes in garlic and its products.

Most of the ARGs were recalcitrant during GP processing.
During the processing of GP, the processing from GC to GS
would increase the abundance of ARGs, indicating that deep
processing might lead to the occurrence and spread of ARGs.
With the further progress of processing, the abundance of ARGs
showed different degrees of reduction during the process from
GS to GP. Although the processing of GS has undergone heat
treatment, the processing temperature and time at this time are
not enough to eliminate ARGs (42, 43). Although the bacterial
communities between GS and GP were very similar, it was
not completely consistent, and their association with ARGs was
significantly different, which may lead to the different abundance
of Arg in GS and GP (44). In addition, the variations of
nutrient resources, oxygen contact area, and sulfur-containing
compounds lead to differences in bacterial communities.

Some studies pointed that the microbial community is an
important factor in the construction of the target ARG or local
resistance body (45). Proteobacteria was the dominant phylum
in GC, GS, and GP, which is consistent with previous studies
Previous studies have shown that Proteobacteria was the most
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FIGURE 6 | The network analysis revealing the co-occurrence patterns among ARGs and microbial taxa. The nodes were colored according to bacterial phyla and

ARG types. Edges and node size weighted were based on the correlation coefficient and the relative abundance of ARGs and bacterial communities, respectively. The

edge color represents a positive correlation (red) and a negative correlation (green).

abundant group in apple branches and tomatoes (46, 47), and
Proteobacteria was also the dominant group in leeks, garlic, and
onions (25). Consistent with the higher ARG abundance in GS,
the relative abundances of Alcaligenes, Serratia, Pseudomonas,
and Corynebacterium belonging to the Proteobacteria phylum
were also significantly higher than those of GC and GP. This
indicated that these genera might be the reason for the higher
ARG enrichment. The diversity of ARGs in GS and GP was
higher than that in GC, which might be because the common
genera of GS and GP (e.g., Pantoea, Leucanostoc, and Alcaligenes)
do not exist in GC, indicating that the prevalence of these genera
might lead to the diversification of ARGs.

As a possible host of ARGs, microorganisms will multiply
or decay under different conditions, thereby affecting the

persistence and reproduction of ARGs (48). Network analysis can
provide new ideas for ARGs and their potential hosts, enabling
us to observe the complex relationship of microbial taxa and
ARGs, which has proven to be a reliable method for exploring
possible ARG hosts in complex environments (49). Since
certain microbial groups contain specific ARGs, correspondingly
similar abundance trends can be obtained. BacA-01, macB-02,
and mexD-01 were the most closely connected nodes in GP,
multidrug ABC transporter was the most closely connected
node in GC, and mexD-01, mexW-02, mexB-02, multidrug
transporter-06, mexI-02, and mexE-02 were tightly connected
nodes in GS, indicating that these genes can be used as
indicator genes of ARGs, and the co-occurrence of ARGs during
GP processing can be analyzed qualitatively and quantitatively
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based on these genes (41). Candidatus-Phytoplasma, Serratia,
and Massilia were possible hosts of ARGs in GC; the
relationship of ARG and bacterial groups in GS was more
complicated. Brevundimonas, Pseudomonas, Stenotrophomonas,
Acinetobacter, and Delftia were possible hosts of ARGs in GS.
The GS and GP groups share more genera and have very
similar bacterial communities, but their associations with ARGs
were significantly different. Brevundimonas, Stenotrophomonas,
Azospira, Aquabacterium, Lysobacter, and Lactobacillus may
be the hosts of ARGs in GP. These results showed that
microorganisms were an important source of ARGs, which
contribute to the accumulation of ARGs during GP processing.
Under different treatment processes, the correlation of bacterial
communities and ARGs was also different. It is necessary to make
further efforts to probe into the specific relationships of microbial
communities and ARGs and offer valuable facts for ARG control
in GP processing.

CONCLUSIONS

This study was based on metagenomic sequencing technology to
investigate the microbial communities and antibiotic resistance
of GC, GS, and GP. The study documented the diversity and
abundance of ARGs, and also the high correlation of bacterial
community compositions and ARGs during the GP processing.
As the GP processing progresses, the performance of ARGs
increased first and then decreased, and there was a higher
similarity among ARGs in the middle and late stages of GP
processing. The characteristics of ARGs were significantly related
to the composition and structure of microorganisms. The GS
and GP groups shared more genera (385), Paraburkholderia,
Stenotrophomonas, Bradyrhizobium, and Azospira were the
dominant genera in GC, Paraburkholderia, Stenotrophomonas,
Corynebacterium, and Pseudomonaswere the dominant genera in
GS, and Paraburkholderia, Stenotrophomonas, Pseudomonas, and
Enterobacter were the dominant genera in GP. Proteobacteria,
Actinobacteria, and Firmicutes were the dominant gates. The
potential indicators and hosts of ARGs were evaluated on
the basis of the co-occurrence pattern of ARG subtypes and
microbial taxa. In general, during the GP processing, the
correlation of bacterial communities and ARGs were significantly
different under various treatments. This study will provide
insights into the use of microbial changes to manage and control
the spread of ARGs during the GP processing and help to
supervise and manage the production of garlic products.
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