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Abstract

Herpes Simplex Virus Type 2 (HSV-2) is a common human pathogen that causes life-long

illness. The US prevalence of HSV-2 infection is 11.9% for individuals between 15 and 49

years of age. Individuals with HSV-2 infection are more likely to contract and spread other

sexually-transmitted infections. Eighty percent of individuals with HSV-2 are unaware of

their infection, in part because of the social stigma associated with in-clinic testing for sexu-

ally-transmitted infections. We conducted an initial evaluation of a prototype smartphone-

based serological lateral-flow immunoassay (LFA) for HSV-2 infection that uses strontium

aluminate persistent luminescent nanoparticles (nanophosphors) as reporters. When

applied to a test panel of 21 human plasma/serum samples varying in anti-HSV titer, the

nanophosphor HSV-2 LFA had 96.7% sensitivity and 100% specificity for detection of HSV-

2 infection. The sensitivity of the nanophosphor HSV-2 LFA was higher than that of commer-

cially-available rapid HSV-2 assays tested with the same panel. Analysis of the iPhone

nanophosphor HSV-2 LFA strip images with our custom smartphone app gave greater

reproducibility compared to ImageJ analysis of strip images. The smartphone-based nano-

phosphor LFA technology shows promise for private self-testing for sexually-transmitted

infections (STI).

Introduction

The National Health and Nutrition Examination Survey estimates an 11.9% prevalence of

HSV-2 in the US population aged 14 to 49 [1]. HSV-2 is the primary cause of genital ulcer dis-

ease [2], which causes inflammation and lesions of the genitalia, hence facilitating the entry of

other potentially life-threatening sexually-transmitted pathogens [3–7].
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The transmission of HSV-2 occurs during viral shedding [8,9], which can precede the

appearance of genital lesions [10]. Episodes of shedding continue throughout the lives of

infected individuals alongside symptomatic and asymptomatic outbreaks [11]. Preventative

measures such as a regimen of the antiviral drug valacyclovir [12,13] and the use of condoms,

can drastically reduce the transmission of HSV-2 [14,15]. Despite the high prevalence of HSV-

2 most infected individuals are asymptomatic, and only 10–25% of HSV-2 seropositive indi-

viduals report the development of genital lesions [15, 16]. Furthermore, high-risk asymptom-

atic individuals often refrain from in-clinic testing due to the high costs and social stigma

associated with being tested. As a result, only 10% of HSV-2 cases are diagnosed clinically [16].

Thus, there is a need for a discreet method of routine self-testing for HSV-2, especially for

high-risk populations.

Serology is the preferred method of HSV-2 testing because it enables diagnosis of asymp-

tomatic or latent infections [17–20]. The HerpeSelect 2 assay (Focus Diagnostics, Cypress, CA)

is a commonly-used commercial test performed in a traditional 96-well enzyme-linked immu-

nosorbent assay (ELISA) format, which requires both technical expertise and a laboratory set-

ting. Lateral-flow immunoassays (LFAs; the home pregnancy test format) are faster, simpler,

portable, and more accessible than ELISA-based assays; and therefore are better suited for

home-based self-testing [21]. LFAs are conventionally run with colloidal gold or latex micro-

sphere reporters that produce signals which can be observed by the naked eye, eliminating the

need for equipment and making self-testing feasible [22,23].

Currently, there are no commercially available gold nanoparticle LFAs for HSV-2. How-

ever, Laderman et al. described the development of a gold nanoparticle-based LFIA serological

HSV-2 test and showed that the sensitivity and specificity of the gold LFIA, in reference to

HerpeSelect ELISA HSV-2, performed equivalently to the FDA cleared POCkit Test (now

referred to as the Sure-Vue HSV-2 Rapid Test)[24]. The Sure-Vue HSV-2 Rapid test, an

immunoblot, has been extensively tested in the field to show a sensitivity of 94% and specificity

of 98%. If there was a rapid HSV-2 assay available with a higher clinical sensitivity and equiva-

lent or higher specificity, it could potentially be used to screen high-risk populations for HSV-

2 seropositivity, reducing the number of undiagnosed (asymptomatic) patients and the trans-

mission of HSV-2. Instrument-based reporters such as up-converting phosphors, magnetic

microparticles, and fluorescent labels support more analytically-sensitive LFAs but require

expensive components such as intense light sources, magnetic readers, or precision optical fil-

ters [25]. We have developed strontium aluminate persistent luminescent nanoparticles

(PLNPs, nanophosphors) as LFA reporters [26] whose long-lasting, bright glow after excitation

allows for a delay of emission measurement, reducing background autofluorescence and elimi-

nating the need for precision optical filters. Strontium aluminate doped with europium and

dysprosium (SrAl2O4: Eu2+, Dy3+) has a bright and long-lasting light emission (10X brighter

than common ZnS phosphors) and is inexpensive; it is widely used in “glow-in-the-dark”

signs and toys. Strontium aluminate PLNP LFAs have been shown to have higher analytical

sensitivity than traditional LFAs [27,28], and so may have higher clinical sensitivity. A smart-

phone app, originally developed at University of Houston [28] and since refined by Luminos-

tics, improves test accuracy by automating LFA signal readout and image analysis, thus

eliminating human error and bias. However, previous studies with PLNPs have not demon-

strated their use in real human samples for evaluation of clinical sensitivity and specificity.

The purpose of this study is to demonstrate how the high analytical sensitivity inherent to

PLNPs and the smartphone platform translates to high clinical sensitivity and specificity in

real samples. To do so, we first developed a smartphone-based PLNP HSV-2 LFA and then

using a commercial plasma/serum HSV-1/2 panel as a benchmark we characterized and
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evaluated the performance of the model smartphone-based PLNP LFA and compared it to two

commercially available HSV-2 rapid assays.

Materials and methods

Clinical samples

A panel of 21 human plasma and serum samples ranging from negative to strongly positive for

HSV-1 and HSV-2 (PTH202; SeraCare Life Science; Gaithersburg, MD) was used to character-

ize the HSV-2 PLNP LFA. Samples were stored -20 ˚C according to the manufacturer’s

recommendations.

Preparation of PLNP

Procedures for grinding, sizing, silica-coating, and antibody-conjugation of strontium alumi-

nate PLNPs were as described previously [26, 28], with minor modifications as noted below.

150 g of strontium aluminate powder (Ultra Green V10 Glow in the Dark Powder, Glow, Inc.)

was suspended in 0.5 L ethyl acetate and wet-milled for 24 h in a SWECO Vibro-Energy

Grinding Mill (model M18-5; Florence, KY) using 0.5 kg of ¼ inch (6.35 mm) magnesia-stabi-

lized zirconia grinding cylinders. Ethyl acetate was evaporated from the particle suspension

while avoiding accumulation of flammable vapors, and differential centrifugal sedimentation

in ethanol was used to selectively isolate 200–300 nm nanophosphors [26]. The final concen-

tration of particles was calculated from dried mass measured on an analytical balance (model

no. XS64, Mettler Toledo). The fractionated PLNPs were silica-encapsulated with tetraethyl

orthosilicate (TEOS) (Sigma Aldrich, cat no. 131903; St. Louis, MO) to increase their water sta-

bility using a modified Stöber process [26]. Aldehydes were introduced onto the silica-encap-

sulated PLNPs using triethoxysilylbutyraldehyde (TESBA) (Gelest, Inc., cat no. SIT8185.3;

Morrisville, PA). A 10 μl of a solution containing 10% (v/v) TEOS, 0.3% TESBA, and 89.7%

absolute ethanol was added to 784 μl of 1.28 mg/ml silica encapsulated PLNPs suspended in

absolute ethanol. The mixture was vortexed and added to 206 μl of a solution of 2.4% NH4OH

and 97.6% deionized water. After 10 min of sonication on a Fisher Scientific FS30 Ultrasonic

Cleaner, the mixture was placed on a rotator at room temperature (RT). After a 12-h silaniza-

tion period the particles were washed thrice in 1 ml of absolute ethanol, once in 1 ml deionized

water, and once in 1 ml PBS (pH 7.4; Takara Bio USA Inc., cat no. T9181; 110 Mountain View,

CA). Each wash included collecting the settled particles by centrifugation (3,000 x g for 2.5

min) and resuspending the particles in 1 ml by briefly vortexing and then bath sonicating the

PLNP suspension for 3 min. Surface aldehydes on the PLNPs were coupled to primary amine

groups on goat anti-human polyclonal antibodies using reductive amination as follows. The

particles were centrifuged at 3,000 x g for 2.5 min, resuspended in 1 ml PBS, and incubated

with 50 μg goat anti-human IgG polyclonal antibody (Arista Biologicals, Inc., cat no. ABIGG-

0500; Allentown, PA) and 250 mM NaBH3CN (Chem-Impex International, Inc., cat no.

04836; Wood Dale, IL) at room temperature (RT) on a rotator for 2 h. The particles were

washed in 1 ml PBS and resuspended in 200 μl PBS to remove unbound antibodies. To passiv-

ate the particles, 800 μl passivation buffer (0.6 mM BSA and 50 μM NaBH3CN in PBS) was

added to the particle suspension and incubated for 3 h on a rotator at RT. The functionalized

particles were washed three times in PBS and resuspended at a concentration of 5 mg/ml in

200 μl storage buffer (10 mM BNa3O3, 150 mM NaCl, 0.1% BSA, 0.4% PVP-40, 0.025% Tween

20, pH 8.5). All chemicals and detergents in the storage buffer were purchased from Sigma and

were of analytical grade.

PLNP LFA for self-testing for HSV-2 seropositivity
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LFA strip preparation

LFA strips were composed of a Sartorius Stedim Biotech UniSart CN95 backed nitrocellulose

membrane (30 mm × 3 mm; Bohemia, NY), a Whatman GE Healthcare Standard 14 sample

pad (11 mm × 3 mm; Pittsburgh, PA), a Whatman GE Healthcare Standard CF5 absorbent

pad (22 mm × 3 mm), and an adhesive backing card (DCN Diagnostics, cat no. MIBA-020;

Carlsbad, CA), as shown in Fig 1. Test and control lines were generated using a Lateral Flow

Reagent Dispenser (Claremont BioSolutions; Upland, CA) and a Fusion 200 syringe pump

(Chemyx, Inc.; Stafford, Tx) at a dispense rate of 0.22 ml/min and a head speed of 4 cm/s. To

make the control line, 1 mg/ml goat anti-human IgG capture antibody (Arista Biologicals,

Inc., cat no. ABIGG-0500; Allentown, PA) in 100 mM ammonium acetate, pH 5.4 was dis-

pensed onto the membrane 2 mm from the absorbent pad. To make the test line, 425 μg/ml

recombinant HSV gG2 antigen (BioSpacific, Inc., cat no. RAG0087; Emeryville, CA) in 100

mM ammonium acetate at pH 5.4 was dispensed onto the membrane 7 mm from the absor-

bent pad. The sample pad was soaked in blocking buffer (10 mM Tris-HCl, 0.5% PVP-40,

0.05% Tween 20, 1% BSA, pH 8) for 1 h and then blotted and dried at RT overnight. The

assembled LFA materials were cut using a ZQ2000 Guillotine Cutter (Diagnostic Tech Co.,

Shanghai, China) into 3 mm wide LFA strips.

HSV-2 PLNP LFA

10 μl human plasma or serum samples were diluted in 25 μl of buffer (10 mM Tris-HCl, 5%

Tween 20, pH 8.0). 20 μl of the diluted sample was mixed with 15 μl anti-human IgG-PLNP

conjugate [1.5 μg PLNP functionalized with goat anti-human IgG suspended in running buffer

(10 mM Tris-HCl, 50 mM NaCl, 0.1% Tween 20, 0.25% PVP-40, pH 8)]. 35 μl of the sample/

nanophosphor mixture was dispensed onto the LFA sample pad (Fig 1). Goat anti-human IgG

nanophosphors bearing anti-HSV human IgG, if present in the sample, migrated up the mem-

brane and were captured by the recombinant HSV gG2 antigen immobilized at the test line.

Unbound anti-human nanophosphors bearing human IgG migrated further up the strip until

they were captured by the goat anti-human IgGs immobilized at the control line.

Fig 1. HSV-2 PLNP LFA schematic. A sample is diluted and then mixed with PLNPs functionalized with goat anti-

human IgGs to form human IgG-PLNP complexes that were dispensed onto the sample pad of the LFA strip. The anti-

HSV human IgG PLNP complexes migrated up the membrane and were captured by recombinant HSV gG2

immobilized at the test line. The remaining uncaptured human IgG-PLNP complexes, whether specific to HSV2 gG2

or not, continued further up the strip until they were captured by goat anti-human IgGs immobilized at the control

line.

https://doi.org/10.1371/journal.pone.0225365.g001
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Imaging of the LFA strips

LFA test strips were imaged on a FluorChem-based imaging platform composed of a

FluorChem SP gel cabinet (Alpha Innotech Corp., San Leandro CA), two 10 W ultraviolet

LED lights (wavelength: 395–400 nm, forward voltage: 9V–11V, forward current: 900 mA;

LED World), and a CoolSNAP K4 CCD 2,048 × 2,048-pixel camera (Photometrics, Blaine

WA) controlled by Micro-Manager 1.4.22 software (Vale Lab, University of California, San

Francisco). PLNP were excited with the LEDs for 1 min and imaged with an exposure time of

1 s and pixel binning of 4 (Fig 2, left).

LFA test strips also were imaged on an iPhone 7 Plus Smartphone (Apple Inc., Cupertino,

CA) using a custom LFA iPhone app in combination with a 3D-printed attachment, as

described previously [28]. PLNPs were excited by turning on the iPhone torch (4 s, maximum

intensity) and then cycling the camera’s flash. After a delay ca. 100 ms after excitation, an

image of phosphor emission was acquired with the phone camera. The excitation/imaging

cycle was repeated four times, and the four images were stacked together to reduce back-

ground noise and increase reproducibility (Fig 2, right).

Image processing

ImageJ version 1.8.0_112 (U. S. National Institutes of Health; Bethesda, MD) [29] was used to

analyze both Fluorchem Platform and iPhone strip images. Before measurement, a spatial cali-

bration was performed to set the number of pixels across the width of the LFA strip (3 mm),

and a plot profile of pixel intensities as a function of position along the membrane was gener-

ated. A line was drawn across the base of each peak on the graph to allow its area to be inte-

grated. The areas of the peaks located at the test line and the control line were defined as the

test line signal (TL) and the control line signal (CL), respectively. We calculated the relative

signal of the test line (T/C) as the ratio of TL to CL (S5 Fig).

The iPhone strip images were also automatically analyzed using the LFA app (video at

https://drive.google.com/file/d/18cdR—1s9s-LcqjvvXjCBtQ_DRmv76Wu/view?ts=5cc9ebce).

The app locates the inflection points on the peaks in the pixel intensity profiles of the captured

bright-field RGB image that correspond to the edges of the test and control lines; the pixel

intensities within the enclosed regions are averaged to give the effective intensities of the test

line and control line. Only green pixels on the RGB image are used in the calculations because

SrAl2O4: Eu2+, Dy3+ has a green emission peak at 520 nm that most strongly overlaps with the

green channel. The baseline intensity (average pixel intensity of the region between the test

and control peaks) is then subtracted from the average pixel intensity at the test and control

lines to calculate the TL and CL intensities (S5 Fig). 4 of 63 tests produced strip images with a

Fig 2. Representative images of the HSV PTH202 serum/plasma panel tested with the HSV-2 PLNP LFA. The

strips were imaged as a group on the FluorChem Platform (left side, panel members 1 to 21) or individually on the

iPhone platform (right, panel member 2). The images capture a region that encompasses both the test line (TL) and

control line (CL) on the test strip. Panel member 16 consistently showed a significantly weaker control line which was

undetectable by the smartphone. For further investigation, Panel member 16 was re-tested at a higher dilution (20-fold

instead of 3.5-fold), and the picture was added to the panel image (denoted by the asterisk).

https://doi.org/10.1371/journal.pone.0225365.g002
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TL intensity either below or above the quantifiable range of the LFA app. These images were

inspected visually and classified as a strong negative (1 test) or strong positives (3 tests); this

function will be automated in future versions of the software.

Total IgG ELISA

A Maxisorp 96-well ELISA plate (Greiner Bio-One) was incubated overnight at 4˚C with 5 μg/

ml polyclonal goat anti-human IgG in PBS (100 μl per well). The liquid was removed and wells

blocked with 3% BSA, 0.1% fish gelatin, and 3 mM EDTA in PBS for 2 h at RT (300 μl per

well). The plate was then washed three times with PBS containing 0.1% Tween 20 using a

Tecan Hydroflex plate washer. A 12 mg/ml stock solution of human IgG standard (Arista Bio-

logicals, Inc., cat no. AGHIG-0100; Allentown, PA) was diluted in PBS containing 3 mM

EDTA, 2% BSA, and 0.05% Tween 20 to prepare standards ranging from 30 to 0.001 μg/ml

IgG. PTH202 panel samples were diluted 10,000-fold and 100,000-fold in dilution buffer.

100 μl of standards (n = 3) and sample dilutions (n = 1) were added to the plate and incubated

at RT for 2 h, and the wells were emptied and washed five times with PBS with 0.1% Tween 20.

100 μl of 100 ng/ml anti-human IgG (γ-chain)-HRP conjugate (Sigma-Aldrich, cat no. A6029;

St. Louis, MO) in PBS containing 1% BSA, 0.1% gelatin, and 0.05% Tween 20 was added to

each well and incubated for 1 h at RT. The plate was washed three times with PBS with 0.1%

Tween 20. 100 μL 1-Step Ultra TMB ELISA Substrate Solution (Thermo Fisher Scientific, Inc.,

cat. no. 34028; Rockford, IL) was added to each well. Following incubation for 10 min at RT,

the reaction was stopped with 2M H2SO4 (50 μL), and the absorbance was measured at 450 nm

using a Tecan Infinite M200 Pro plate reader. The absorbance of each standard was plotted

against IgG concentration (n = 3), and the data were fit to a four-parameter logistic curve

using the MyAssays ELISA analysis online tool (MyAssays Ltd., www.myassays.com/four-

parameter-logistic-curve.assay; S3A Fig). The IgG concentration of panel member 17 had a

mean absorbance that could not be accurately measured in ELISA, as it fell above the quantifi-

able range of standard curve. Thus, it is to be expected that member 17 has a total IgG concen-

tration greater than 23.3 mg/ml (the highest quantifiable concentration).

PTH202 Mixed Titer Performance Panel testing on alternative

immunoassay platforms

SeraCare tested their PTH202 Mixed Titer Performance Panel with 12 different commercial

HSV-1 or HSV-2 immunoassays; all raw data and test results from these experiments can be

accessed online (www.seracare.com/globalassets/seracare-resources/ds-0815-0003-anti-

herpes-mixed-titer-performance-panel-124412.PDF). We used this data to evaluate and com-

pare the performance of the PLNP HSV-2 LFA to other rapid assays.

Data from panel testing on HerpeSelect 2 ELISA (the reference method) was used to deter-

mine the sensitivity and specificity of the PLNP HSV-2 LFA. SeraCare calculated PTH202

panel HerpeSelect 2 immunoassay results as the mean (n = 2) of signal-to-cutoff ratios (reac-

tivity ratios) for each panel member. SeraCare’s reported specifications considered panel

members with average reactivity ratios < 1.0 and�1.0 as negative and positive, respectively,

for human IgG antibodies specific to HSV-2.

The HerpeSelect 2 ELISA (Focus Diagnostics, Cypress, CA) is an FDA-cleared test that

determines the presence of HSV gG-2-specific IgGs in human serum/plasma. The HerpeSelect

2 ELISA demonstrated the highest sensitivity in a comparison among five of the leading com-

mercial HSV-2 assays [17]. Using the CDC’s gold standard method (HSV western blot from

the University of Washington [30,31]) as a reference, the HerpeSelect 2 ELISA had 96.1% sen-

sitivity and 97.0% specificity in the testing of sexually active adults [32,33].
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Statistical analysis

Receiver operating characteristic (ROC) curves, which depict the relationship between the

fraction of positive samples correctly identified as positive (sensitivity) and false-positive

results (1- specificity) for various cutoff values, were constructed using MedCalc software ver-

sion 18.2.1 (MedCalc Software; www.medcalc.org; Ostend, Belgium). Each sample was tested

three times using the HSV-2 PLNP LFA (n = 63). A TL above or below the range of quantita-

tion of the iPhone app was given a value of 71 (the upper limit of quantitation) or 0, respec-

tively. One sample, number 16, showed no control line on the iPhone (though the CL was

visible on the laboratory FluorChem Platform). After successfully re-testing sample 16 when

diluted 20-fold (and observed the control line; Fig 2, strip 16�), we speculated that the earlier

result was due to the complex sample matrix, along with its high IgG concentration. Each

panel member was defined as positive or negative in reference to the HerpeSelect 2 ELISA, the

Reference Method.

Results and discussion

We developed an LFA to detect the presence of human IgG antibodies specific to HSV-2 in

serum or plasma. The assay uses a test line of recombinant glycoprotein G from HSV-2, a con-

trol line of goat anti-human antibodies, and strontium aluminate PLNPs modified with goat

anti-human antibodies as reporters. We evaluated the HSV-2 PLNP LFA using a 21-member

panel with a wide range of mixed HSV-1 and HSV-2 antibody titers. We captured images of

the test strips on both the FluorChem Platform (S1 Fig) and an iPhone 7 Plus-based platform.

We then analyzed both FluorChem Platform and iPhone images with ImageJ, and also ana-

lyzed the iPhone images with a PLNP LFA iPhone app. We used the resulting measurements

to evaluate the performance of the HSV-2 PLNP LFA.

Defining and evaluating the function of the HSV-2 PLNP LFA control line

As noted above, the HSV-2 PLNP LFA was developed with the eventual goal of use in a home

setting by an inexperienced user. Traditional LFA control lines function by capturing reporter

particles directly to confirm that the liquid sample has wicked along the strip (e.g., the absence

of a control line indicates an invalid test in home pregnancy LFAs). We designed the control

line in the HSV-2 PLNP LFA to function differently. Here, the control line (consisting of

immobilized anti-human IgG antibodies) captures anti-human reporter particles bearing

human antibodies from the sample, instead of directly capturing the reporter particles in the

absence of target. This design not only confirms that the liquid sample has wicked along the

strip but also that the correct sample type has been applied onto the strip; only human blood

containing human antibodies will give a positive CL. As expected, no control line was detected

using with either deionized water or PBS (S4 Fig), but detectable control lines were obtained

with typical adult human serum/plasma samples.

IgG concentrations in human blood can vary dramatically (0.4–22.0 mg/ml) depending on

age, sex, illness, immunogen exposure, and other factors [33]. The total IgG ELISA results

(S3A Fig) showed the PTH202 panel members to range from 5.7 (No. 8) to 23.3 (No. 13) mg/

ml of human IgG (S3B Fig). When we tested the PTH202 panel in the HSV-2 PLNP LFA, all

but one member (No. 16) produced a CL that was above the detectable analytical limit of the

smartphone app. Therefore, we can conclude that the PLNP LFA control line was able to detect

samples that range from 5.7 to 23.3 mg/ml in human IgG concentration. We also can conclude

that we can detect beyond the normal upper IgG concentration in human serum or plasma

(22.0 mg/ml).

PLNP LFA for self-testing for HSV-2 seropositivity
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The total IgG ELISA showed that while No. 16 has a high IgG concentration (23.1 mg/ml;

S3B Fig), No. 13 is even higher at 23.3 mg/ml and still produced a CL detectable by the PLNP

LFA iPhone app (both 13 and 16 CLs were detectable by the FluorChem imaging system). We

hypothesize, therefore, that sample 16 had a complex sample matrix that interfered with bind-

ing at the control line. Running the sample at a higher dilution reduced the sample’s viscosity

along with its IgG concentration, increasing reporter mobility and downstream binding at the

CL. Sample No. 16 was serially diluted (2- to 20-fold) and was retested with the HSV-2 PLNP

LFA. FluorChem images and ImageJ analysis showed that the CL of the 20-fold diluted sample

was 5 times greater than that of the undiluted sample (S2 Fig). Therefore, we speculate that the

complex sample matrix of panel member 16, along with its high IgG concentration, led to the

absence of a CL in the iPhone images. Despite the variation of IgG concentration within the

panel (S3B Fig) shown by the total IgG ELISA, LFA tests showed a highly similar CL across the

panel (S3C Fig), suggesting that reporter particle and IgG concentrations are more than high

enough to produce a detectable CL.

Definition of the HSV-2 LFA signal readout

Instrument-read LFAs often normalize the test line signal to the control line signal to reduce

variability and increase reliability [13, 34–37]. To examine this effect, the reliability and repro-

ducibility of the HSV-2 PLNP LFA were evaluated in terms of the intraclass correlation coeffi-

cient (ICC) and the coefficient of variation (CV), respectively, when the assay signal was

defined as TL or T/C (TL/CL). HSV-2 PLNP LFA strips were analyzed with different combina-

tions of imaging devices (FluorChem Platform or iPhone camera) and image analysis tools

(Image J or app). For Method A (Table 1), the average TL and T/C values were calculated for

each PTH202 panel member (n = 3, S1 Table). The same calculations were then repeated for

both Methods B and C.

ICC values were calculated in STATA Statistical software version 14 (StataCorp LPS, 2015;

College Station, TX) using a two-way mixed effects model for consistency of agreement.

Reporting ICC as single or an average measure depends on whether, in the actual application

of the method, the final test result is based on a single measure or an average of multiple mea-

surements. We chose to report ICC values as single measurements because in a home-based

setting a single test is more realistic. In this paper, methods that produced ICC values below

0.5 were considered to have poor reliability, values between 0.5 and 0.75 were considered to

have moderate reliability, values between 0.75 and 0.9 were considered to have good reliability,

and values above 0.9 had excellent reliability [34]. As shown in Table 1, both TL and T/C val-

ues showed excellent reliability when measured with strips imaged by FluorChem Platform/

images analyzed by ImageJ (Method A). Strips imaged by the iPhone camera/images analyzed

by ImageJ (Table 1, Method B) produced good reliability for TL and excellent reliability for T/

C. Both TL and T/C values had good to moderate reliability with strips imaged by the iPhone

camera/images analyzed by the app (Table 1, Method C). Three panel members produced one

or more tests with TL or CL signals above or below the quantifiable range of the iPhone app

and thus were omitted when analyzed using Method C (Table 1). Specifically, panel members

Table 1. Comparison of single measure intraclass correlations (ICC) in a two-way mixed-effects model for consistency of agreement using different combinations

of imaging devices and image analysis tools (method A, B, C) for the same set of LFA strips. For each method, the ICC is followed by the 95 percent confidence interval

enclosed in brackets.

Method Camera Image Analysis Test Line (TL) ICC Relative Signal (T/C) ICC

A (n = 21) FluorChem Platform ImageJ 0.96 (0.92–0.98) 0.97 (0.93–0.99)

B (n = 21) iPhone camera ImageJ 0.91 (0.82–0.96) 0.95 (0.91–0.98)

C (n = 18) iPhone camera iPhone app 0.80 (0.62–0.91) 0.82 (0.65–0.92)

https://doi.org/10.1371/journal.pone.0225365.t001
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21 (one test) and 15 (two tests) had TLs above the quantifiable range. Panel member 16 had

TLs (two tests) and CLs (all three tests) below the quantifiable range.

Variability of T or T/C was expressed as CV, the ratio of the standard deviation of the signal

to the mean signal. For Methods A and B, the all-sample average CV was 40% and 41% for TL

and 45% and 41% for T/C, respectively. Smartphone-based imaging and analysis (Method C)

produced the lowest overall CV of the three methods, 15.0% for TL and 14.9% for T/C,

(n = 18) indicating a marked increase in reproducibility when strip images were analyzed with

the PLNP LFA smartphone app, which is also the method most representative of home self-

testing. ImageJ analysis requires visual inspection to determine TL and CL position, while the

smartphone app makes this determination automatically. The manual selection of the baseline

can be somewhat subjective, leading to the observed reduction in reproducibility. For all meth-

ods of analysis, TL and T/C readouts produced a similar degree of variability. We, therefore,

chose to define the HSV-2 PLNP LFA readout solely as the TL. The ICC analysis also con-

firmed that the smartphone app could be used to analyze the LFA strip images with high reli-

ability and we therefore chose the smartphone platform for all subsequent experiments.

Determination of the positive cutoff value

The effects of varied choices of positive cutoff value for the HSV-2 PLNP LFA were investi-

gated using a receiver operating characteristic (ROC) curve (Fig 3). We tested each panel

member (n = 21) three times using the HSV-2 PLNP LFA on the smartphone platform, and

used each result as an independent measurement (n = 63) in the ROC analysis. Each positive

or negative test was then defined as true positive, true negative, false positive, or false negative

when referenced to the gold standard method, HerpeSelect 2 ELISA. We defined the true-posi-

tive rate (TPR), or assay sensitivity, as the number of true-positives divided by the sum of true-

positives and false-negatives (TPR = TPs/ (TPs+FNs)). The false-positive rate (FPR) was equal

to the number of false-positives divided by the sum of the false-positives and true-negatives

(FPR = FPs/ (TNs+FPs)). We defined assay specificity as one minus the false-positive rate.

Based on the ROC analysis, a positive cutoff value of 8 for the TL of HSV-2 PLNP LFA pro-

duced the highest sensitivity (96.7%) while maintaining 100% specificity. However, it must be

noted that this positive cutoff value may be adjusted to best fit on the testing population.

Assay reproducibility

To assess the day-to-day reproducibility of the HSV-2 PLNP LFA; all panel members were

tested three times, on different days, using smartphone imagine and the app readout. The

resulting TLs were then classified as positive or negative using a cutoff value of 8. Out all 21

panel members, only one subject (panel member 18) had varying positive/negative result clas-

sification, indicating a 95% reproducibility (20/21). Panel member 18 had an average TL (8.2

+/- 0.6) that fell closest to the positive cutoff value and gave one negative and two positives. By

majority, we deemed panel member 18 as a test positive by the smartphone-based HSV-2

PLNP LFA, a result that was in concordance with the reference assay.

HSV-1 cross-reactivity

Among potential off-target pathogens, HSV-1 is the most likely candidate for cross-reactivity

as it has the closest structural similarity to the HSV-2 virus. Furthermore, a lack of cross-reac-

tivity to HSV-1 is essential for HSV-2 diagnosis due to 47.8% prevalence of HSV-1 in the US

population [1,35,36]. Any cross-reactivity to HSV-1 would produce false positives, with poten-

tial adverse psychological effects on individuals seropositive for HSV-1 and un-infected with

HSV-2 [18,37]. To prevent against HSV-1 cross-reactivity, the Herpes PLNP assay was
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designed with an HSV-2 Gg-2 antigen test line. Numerous previous results establish that the

structure of the HSV-2 Gg-2 antigen is highly serotype-specific. To confirm the lack of cross-

reactivity to HSV-1, 10 samples that were HerpeSelect HSV-1 IgG ELISA positive and Herpe-

Select HSV-2 IgG ELISA (reference method) negative, consistently tested negative for HSV-2

with the HSV-2 PLNP LFA. Any cross-reactivity of the HSV-2 PLNP LFA to other sexually

transmitted infections will need to be evaluated in future studies.

Comparison of sensitivity and specificity among HSV-2 rapid assays

We used prior results obtained with the PTH202 panel to compare the performance of the

LFA to those of two other rapid IgG HSV-2 tests: The Fisher Sure-Vue and the Focus HerpeSe-

lect 1 & 2 Immunoblot. For all rapid assays, a positive or negative result for each panel member

was based on the mean signal (n = 2 or n = 3; depending on the rapid test). HerpeSelect 2

ELISA was used as the gold standard, as described above. As shown in Table 2, when analyzed

this particular panel all the rapid assays showed 100% specificity; while the HSV-2 PLNP LFA

Fig 3. HSV-2 PLNP LFA receiver operating characteristic (ROC) curves. Each panel member was tested and

analyzed in replicate (n = 2), by SeraCare, Inc, using HerpeSelect 2 ELISA from Focus Diagnostics, and the resulting

absorbance mean was normalized to generate signal-to-cutoff ratios (reactivity ratios). Following SeraCare’s reported

specifications, we considered panel members with average reactivity ratios< 1.0 and�1.0 as negative and positive,

respectively, for human IgG antibodies specific to HSV-2. The panel was tested three times using the HSV-2 PLNP

LFA (n = 63) with smartphone-based imaging and app readout. TLs above or below the range of quantitation of the

iPhone app were given a value of 71 (the upper limit of quantitation) or 0, respectively. An HSV-2 PLNP LFA receiver

operating curve (solid dark blue curve) was generated in MedCalc (version 18.2.1) using test line signal and positive

cutoff values, to determine a test positive or negative. Each positive or negative test was then defined as true positive,

true negative, false positive, or false negative when referenced to the gold standard method, HerpeSelect 2 ELISA.

Based on the ROC analysis, a positive cutoff value of 8 for the TL of HSV-2 PLNP LFA produced the highest sensitivity

(96.7%) while maintaining 100% specificity. The ROC curve and analysis gave a value of 0.997 for the area under the

curve (AUC) with a 95% confidence interval of 0.937 and 1.00. The confidence region for the ROC curve is

represented by the area between the light blue dotted lines.

https://doi.org/10.1371/journal.pone.0225365.g003
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showed the highest sensitivity, followed by the Fisher Sure-Vue assay and the Focus HerpeSe-

lect 1 & 2 Immunoblot.

Conclusions

While this is not the first study to introduce nanophosphor LFAs, this is the first nanopho-

sphor LFA study to use actual human clinical samples, and the first to compare to other LFA

platforms. Previous papers describe the development and potential advantages of PLNPs as

reporters in LFA and a smartphone-based PLNP LFA platform. These publications focused on

the underlying chemistry of the PLNPs, methods for making the nanoparticles, and methods

for time-gated imaging and signal quantitation of the luminescence on the smartphone. How-

ever, these publications did not fully demonstrate a workable PLNP LFA with smartphone-

based analysis in real clinical sample matrices, nor do these publications directly evaluate and

compare performance of the technology to other commercially available rapid tests. The pres-

ent study is a critical step towards validating the smartphone-based PLNP LFA platform as a

viable contender for enabling facile, highly sensitive point-of-care testing in the real world.

This work is needed to fill the gap between a potential tool for quick and convenient protein-

based detection and an at home-based self-testing platform for STI.

The purpose of this manuscript is to demonstrate that the high analytical sensitivity inher-

ent to PLNPs and the smartphone platform translates to high clinical sensitivity and specificity

in real samples. Human factors are a significant challenge when developing over-the-counter

tests for home diagnostics, as untrained users are prone to erroneously interpreting the results

for visual LFAs. This is a major part of the reason why many gold nanoparticle LFAs that are

widely used in conventional in-clinic point-of-care testing, are not cleared for over-the-

counter home testing by the general public. The smartphone platform eliminates subjective

result interpretation and enhances sensitivity by incorporating PLNPs. Furthermore, smart-

phone-based readout offers the potential for adjusting the discrimination threshold along the

ROC curve towards an optimal combination of sensitivity and specificity to achieve a targeted

positive predictive value and negative predictive value. This capability is particularly important

for screening distinct populations where the prevalence may differ significantly.

Supporting information

S1 Fig. Twenty-one serum and plasma samples in the mixed IgG titer HSV-1/2 panel were

tested using the HSV2 nanophosphor LFA. LFA strips were then imaged on the FluorChem

Platform and analyzed with ImageJ. (A) The average test line intensity values and (B) the aver-

age relative intensity values (T/C; test line intensity/control line intensity) were plotted for

each member of the panel; n = 3; average ± 1 standard deviation.

(DOCX)

S2 Fig. Sample matrix for panel member 16 had an unusual level of interfering compo-

nents that adversely affected the assay. FluorChem Platform images of HSV-2 PLNP LFA

strips applied to panel member 16 diluted 20-fold (left) or 3.5-fold (right). Running the sample

Table 2. Comparison of test metrics for HSV- 2 rapid tests based on the Seracare panel PTH202. The results for each assay are based on the average of 2 or 3

replicates.

Rapid HSV-2 Assay TP FP TN FN Sensitivity (%) Specificity (%)

Fisher Sure-Vue HSV-2 Rapid Test 9 0 11 1 90 100

Focus Diagnostics HerpeSelect 1 & 2 Immunoblot IgG 6 0 11 4 60 100

HSV-2 PLNP LFA 10 0 11 0 100 100

https://doi.org/10.1371/journal.pone.0225365.t002
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at a higher dilution reduced the sample’s viscosity, increasing reporter mobility and down-

stream binding at the CL.

(DOCX)

S3 Fig. The variation of IgG concentration within the panel and its effect on HSV-2 PLNP

LFA control line intensity. (A) Four-parameter logistic calibration curve for the total IgG

ELISA created with the online MyAssays ELISA analysis tool. The curve was generated from

the raw absorbance at 450 nm of dilutions of human IgG standard (30 to 0.001 ug/mL; Arista

Biologicals Inc.) run in the total IgG ELISA. The raw absorbance at 450 nm of 10,000 fold dilu-

tions of each panel samples run in the Total IgG ELISA were plotted against the standard

curve (A) to calculate the IgG concentration of sample dilutions which were then used to cal-

culate the IgG concentration of the panel samples in units of mg/mL (B). One sample (panel

member 17) had a mean absorbance value that fell above the quantifiable range of standard

curve and so its IgG concentration could not be accurately measured. Therefore, we excluded

panel member 17 from analyses that compared LFA CL intensity with the IgG concentration.

(C) FluorChem Platform control line intensity and IgG concentration of HSV2 panel mem-

bers. Panel members are specified as negative (red) and positive (green) according to both

PLNP HSV2 LFA and HerpeSelect 2 ELISA IgG. The sample number is placed next to each

data point. Despite the variation of IgG concentration within the panel, LFA tests showed a

highly similar CL across the panel, suggesting that reporter particle and IgG concentrations

are more than high enough to produce a detectable CL.

(DOCX)

S4 Fig. A luminescence image captured on the FluorChem platform of three HSV-2 PLNP

LFA test strips; (left) representative positive (No. 21), (middle) 1 mg/ml human IgG repre-

sentative of a negative test, (right) representative inconclusive test run with DI water. In

the left-hand and middle test strips, the control line (immobilized anti-human IgG antibodies)

captures anti-human reporter particles bearing human antibodies from the sample (No. 21 or

solution of 1 mg/ml of human IgG) to result in a visible control line. The absence of a control

line, as seen in the right-hand test strip, is due to the absence of human IgG antibodies in the

sample (DI water); the control line cannot capture anti-human reporter particles not bearing

human antibodies. This test indicates that the control line is operating properly—only when

the correct sample type has been applied onto the strip; only human serum, plasma, or blood

containing human antibodies will give a positive CL.

(DOCX)

S5 Fig. Peak area measurements of the test and control lines on LFA strips run with each

of the 21 panel members (n = 3). Measurements obtained from iPhone 7 Plus imaging and

PLNP-LFA Smartphone App analyses (upper table) and FluorChem imaging and analyses

(lower table).

(DOCX)

S1 Table. Output from STATA analysis for sensitivity/specificity and positive and negative

predictive value of two rapid IgG HSV-2 tests (Fisher Sure-Vue and Focus HerpeSelect 1 &

2 Immunoblot). For each test, a positive or negative result for each PTH202 panel member

was based on the mean signal intensity (n = 3). We used the HerpeSelect 2 ELISA to determine

sample positives (OD 450� 1; “an abnormal diagnosis”) and sample negatives (OD 450< 1)

and calculate the number of true-positive, true-negative, false-positive, and false-negative

results for each test.

(DOCX)
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