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SUMMARY
Neoadjuvant chemotherapy (NAC) for rectal cancer (RC) shows promising clinical response. The modulation
of the tumor microenvironment (TME) by NAC and its association with therapeutic response remain unclear.
Here, we use single-cell RNA sequencing and spatial transcriptome sequencing to examine the cell dynamics
in 29 patients with RC, who are sampled pairwise before and after treatment. We construct a high-resolution
cellular dynamic landscape remodeled by NAC and their associations with therapeutic response. NACmark-
edly reshapes the populations of cancer-associated fibroblasts (CAFs), which is strongly associated with
therapeutic response. The remodeled CAF subsets regulate the TME through spatial recruitment and cross-
talk to activate immunity and suppress tumor progression through multiple cytokines, including CXCL12,
SLIT2, and DCN. In contrast, the epithelial-mesenchymal transition of malignant cells is upregulated by
CAF_FAP through MIR4435-2HG induction, resulting in worse outcomes. Our study demonstrates that
NAC inhibits tumor progression and modulates the TME by remodeling CAFs.
INTRODUCTION

Colorectal cancers (CRCs) are the third most common malig-

nancy worldwide,1 approximately 30% of which are rectal can-

cer (RC).2 In China, patients with RC account for a larger propor-

tion of patients than that in Western countries.3 Based on the
Cell Repo
This is an open access article under the CC BY-N
clinical guidelines, neoadjuvant chemoradiotherapy followed by

surgery is recommended for locally advanced RC (LARC).4 How-

ever, researchers have found that chemoradiotherapy has no

advantage in outcomes over neoadjuvant chemotherapy (NAC)

without radiation for LARC, which may avoid severe side effects

following radiotherapy. A neoadjuvant-modified FOLFOX6 study
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reported that FOLFOX6 without radiotherapy had no significant

differences in outcomes compared to fluorouracil with radio-

therapy in patients with LARC.5 Some other recent studies

demonstrated that in patients with LARC who were eligible for

sphincter-sparing surgery, preoperative FOLFOX was not infe-

rior to preoperative chemoradiotherapy with respect to dis-

ease-free survival (DFS).6,7 In addition, NAC for LARC can

achieve tumor downstaging and even a pathologically complete

response, which increases the possibility of complete resection

with negative pathological margins and the chance of performing

a sphincter preservation procedure. Recently, immunotherapy

has achieved exciting results in patients with mismatch repair

deficiency (dMMR) or high microsatellite instability (MSI-H)

CRC.8,9 However, only 15% of patients with CRC harbor

dMMR/MSI-H.10,11 Strategies for the remaining patients with

mismatch repair proficiency (pMMR) or who are microsatellite

stable (MSS) demand further investigation. Considering that

immune suppression and drug resistance of the tumor microen-

vironment (TME) lead to the unsatisfactory efficacy of NAC,12 it is

necessary to explore the connections between the TME and

outcome in patients with pMMR/MSS CRC.

Most cytotoxic chemicals in NAC target the apparatus of

mitosis to disrupt the core features of cell proliferation.13 Despite

its cytotoxic properties, there is mounting evidence that NAC

promotes the antitumor immune response of the TME,motivating

its use in tumor therapy.13–15 However, the immunomodulatory

mechanisms of action of NAC remain unclear. One common

explanation is that chemotherapy initiates an antitumor immune

response through the immunogenic cell death (ICD) process,15

which induces endoplasmic reticulum stress and autophagy of

damaged tumor cells and subsequently infiltrates immune cells

into the TME. However, other mechanisms underlying the regula-

tion of immunity remain unclear because TME heterogeneity and

interactions are highly complex. In addition to immune cells,

stromal cells, a major component of the tumor context, have

rarely been reported regarding their functions and reactions to

NAC. Cancer-associated fibroblasts (CAFs) and endothelial cells

(ECs) release a series of extracellular factors to establish a

cellular communication network and regulate the immune

response or tumor progression.16–19 Although the TME signifi-

cantly affects tumor progression and clinical outcomes, the asso-

ciation between cellular diversity and NAC response in tumors

has not been well investigated. Therefore, there is an urgent

need to comprehensively study the TME modulation of NAC

and determine how it predicts and reacts to therapy.

Considering these concerns, we enrolled 29 patients with RC

of pMMR/MSS treated with NAC. Most of the samples were

pairwise collected before and after treatment and categorized

according to therapeutic responses to facilitate a comparative

study across treatments or outcomes. We leveraged the single-

cell RNA sequencing (SC) and spatial transcriptome sequencing

(ST) technologies of Stereo-seq20 to characterize the heteroge-

neity and spatial architecture of tumors. We investigated TME

complexity and alterations modulated by NAC and the cellular

and molecular composition associated with the therapeutic

response. We uncovered the dynamics of CAF subsets remod-

eled by NAC and the roles of CAFs in modulating immune

and malignant cells through multiple-cell interactions. Our data
2 Cell Reports Medicine 4, 101231, October 17, 2023
demonstrate the findings of NAC reshaping the TMEand restrain-

ing tumors, which will facilitate future therapeutic targeting and

outcome improvements.

RESULTS

Composition dynamics of tumor-infiltrating cells
following NAC
To investigate the dynamics of the TME in RC following NAC

treatment, we enrolled 29 patients with RC of MSS/pMMR,

most of whom were pairwise sampled before (27 samples) and

after (29 samples) the treatment (Figure 1A; Table S1). Plat-

inum-based NAC was administered to all patients. Paired tumor

endoscopic biopsies and surgical resections were collected

pretherapy (PE) and post-therapy (PO), respectively. Surgical

specimens were subjected to pathological examination to deter-

mine the outcome of NAC using tumor regression grade (TRG)

systems, which included TRG0 (complete regression: no remain-

ing viable cancer cells), TRG1 (nearly complete regression: only

small clusters or single cancer cells remaining), TRG2 (partial

regression: residual cancer remaining with predominant fibrosis),

and TRG3 (poor or no regression: minimal or no tumor kill; exten-

sive residual cancer).21 Based on their TRGs, we further divided

the patients into three groups: complete (or nearly complete)

regression (CR; 7 patients) (TRG0 and TRG1), partial regression

(PR; 15 patients) (TRG2), and no regression (NR; 5 patients)

(TRG3). Two patients underwent endoscopic sampling rather

than surgical resection after NAC, so the TRGs of these two pa-

tients could not be evaluated.

The composition of the TME was investigated using SC data.

After quality control and filtering, we obtained SC data of

333,285 high-quality cells, which were clustered and identified

as epithelial cells (24.4%), T cells (23.9%), plasma cells (18.2%),

CAFs (10.0%), ECs (7.2%), B cells (5.4%), pericytes (3.8%),

myeloid cells (2.6%), smooth-muscle cells (SMCs) (1.7%), mast

cells (1.5%), and enteric glial cells (1.3%) (Figures 1B and S1A;

Table S2). Malignant epithelial cells were distinguished from

normal ones using copy-number variant (CNV) identification and

cluster analysis (see STAR Methods). The cell composition and

the abundance of the TME were dramatically remodeled by

NAC and showed remarkable differences among the responsive

groups (Figures 1C–1E and S1B). Significantly elevated by NAC,

CAFs expanded to a larger population following therapy, espe-

cially in the responsive groups (CR and PR) (Figure 1E). T cells

shrank in abundance, and ECs increased following therapy, sug-

gesting their connectionwith treatment andoutcomes (Figures 1E

and S1B).

Remodeled CAF subsets associate with favorable
outcomes
NAC altered the composition of CAF subsets in the responsive

samples. We identified three CAF subsets, namely CAF_PI16,

CAF_SLIT2, and CAF_ADAM28, which substantially expanded

following therapy, especially in the responsive groups (CR and

PR) (Figures 2A–2C and S2A). Three subsets, CAF_BMP4,

CAF_FAP, and CAF_MMP1, decreased to knockdown levels af-

ter therapy in CR samples, whereas CAF_BMP4 maintained a

higher abundance in NR samples (Figures 2B, 2C, and S2A).
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Figure 1. Dynamics of tumor-infiltrating cell composition following NAC

(A) Schematic overview of experimental design and analytical workflow.

(B) Uniform manifold approximation and projection (UMAP) plot of the major cell types of SC data. There are 333,285 cells after filtration from 56 samples. Cell

types were annotated according to their differential genes.

(C) UMAP plot presents the dynamic changes of cell types between pretherapy (PE) and post-therapy (PO).

(D) UMAP plot presents the difference of cell types among outcome groups.

(E) Dynamic changes of the major cell types among the treatments and outcome groups. Difference of mean proportion (DMP) for each cell type between PE and

PO were calculated. DMP >0 means an increase in the proportion of cell type following treatment, and DMP <0 means a decrease. Patients included CR: 6, PR:

14, and NR: 5. Statistical significance was determined using the Wilcoxon signed-rank test. *p <0.05 was considered statistically significant.
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The evident alterations and differences in CAF subsets suggest

their diverse roles and association with responses to therapy.

CAF subsets identified in the SC data (Figures 2A and S2A)

were validated in four ST samples of CR and NR, which showed

more details of specific spatial distribution (Figures 2D and S2B).
Consistent with the abundance observed in the SC data,

CAF_PI16, CAF_SLIT2, and CAF_ADAM28 dominated the TME

space of CR samples, whereas CAF_BMP4, CAF_FAP, and

CAF_MMP1 were the major components in the TME space of

NR samples. Trajectory inference recovered multiple lineages
Cell Reports Medicine 4, 101231, October 17, 2023 3
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Figure 2. CAF subsets associate with therapeutic responses

(A) UMAP plots of the CAF subsets identified in SC data.

(B) The expression of the marker genes of the CAF subsets. ‘‘Ratio’’ reflects the percentage of cells expressing the gene at non-zero levels. ‘‘Avg Expression’’

reflects the averaged log-normalized expression.

(C) Proportion comparisons of the CAF subsets among treatments and outcome groups. Box middle lines: median; box limits: upper and lower quartiles; box

whiskers: 1.53 the interquartile range; black dots: samples, connected with lines if they were collected from the sample patient. Patients included CR: 6, PR: 14,

and NR: 5; p <0.05 of Wilcoxon signed-rank test was considered statistically significant.

(legend continued on next page)
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of differentiation between CAF_PI16 and other cells, including

CAF_PI16-CAF_SLIT2-CAF_FAP, CAF_PI16-CAF_BMP4, and

CAF_PI16-CAF_ADAM28-CAF_BMP4 (Figures S2C and S2D).

The expressions ofPI16,CD34,SLIT2,CFD,C3, andC7, which

are associated with regulation of cell differentiation and immuno-

regulation,22–24 were upregulated in CAF_PI16, CAF_SLIT2, and

CAF_ADAM28, whereas pronounced collagen, matrix metallo-

proteinase (MMP), andWNT genes associated with ECM remod-

eling and tumor promotion25,26 were upregulated in subsets of

CAF_BMP4, CAF_FAP, and CAF_MMP1 (Figure 2B). Gene

Ontology described the functional differences among the CAF

subsets (Figure 2E). CAF_PI16 and CAF_SLIT2 enriched genes

of negative regulation of cell growth and migration, as well

as the positive regulation of cytokine production and comple-

ments. CAF_ADAM28 enriched genes of the interferon-gamma

signaling pathway, regulation of monocyte differentiation, and

regulation of the inflammatory response. Highly expressed genes

of CAF_FAP and CAF_MMP1 were enriched in the pathways

related to ECM organization, collagenmetabolism, and epithelial

proliferation. CAF_BMP4 enriched genes in the pathway related

to mesenchymal cell differentiation (Figure 2E). We screened for

substantially different cytokines genes expressed inCAF subsets

(Figure S2E). CAF_PI16 and CAF_SLIT2 showed high levels of

DCN,CXCL12,SLIT2,C7, andC3, which are related to cell differ-

entiation, recruitment, and immunoregulation.18,24,27 In contrast,

CAF_MMP1 highly expressed chemokines (CXCL1, CXCL3,

CXCL5,CXCL6,CXCL8, andMIF), CAF_BMP4 expressed tumor

necrosis factors (TNFSF11), and CAF_MMP1, CAF_BMP4, and

CAF_FAP expressed the growth factor TGFB1, which is associ-

ated with the promotion of cell chemotaxis and growth.28–32

We investigated thecorrelationbetweenCAFsubsets andNAC

outcomes and tumor prognosis. We applied a therapeutic index

(Ti) to measure whether the cellular proportion of CAF subsets

correlated with therapeutic response (see STAR Methods).

CAF_PI16, CAF_SLIT2, and CAF_ADAM28 cells were strongly

correlated with favorable therapeutic outcomes, whereas worse

outcomes were observed for CAF_FAP, CAF_MMP1, and

CAF_BMP4 (Figure 2F). Therefore, we grouped CAF_PI16,

CAF_SLIT2, andCAF_ADAM28aspositive-response-associated

CAFs (pCAFs) and CAF_FAP, CAF_MMP1, and CAF_BMP4 as

negative-response-associated CAFs (nCAFs). To further investi-

gate the clinical relevance ofCAF subsets, we conducted survival

analysis on pan-cancer datasets from The Cancer Genome Atlas

(TCGA). The overall survival rate of integrated pan-cancer sam-

ples significantly increased in thepCAF-highandnCAF-lowscore

groups (Figure 2G). Furthermore,we investigatedmultiple indica-

tors, including overall survival (OS), progression-free interval
(D) The cell distribution of the CAF subsets in ST data. CAF subsets were annotate

treatments from two patients with CR (ST-CR1 and ST-CR2) and two NR patien

(E) Circular bar plot of GO enrichment (biological processes) of the CAF subsets. T

with adjusted p value < 0.01 were plotted. pos, positive; neg, negative; regul, re

(F) Therapeutic index (Ti) of the CAF subsets. A positive Ti indicates the CAF subs

response. pCAF, positive-response-associated CAF; nCAF, negative-response-

(G) pCAF subsets associate with the extended survivals in pan-cancer samples fro

averaged expression level of their differential genes. Red line: group of pCAF-high

scores (n = 1,451); the p value was calculated using a two-sided log-rank test.

(H) Comparison of pathway enrichment between pCAF subsets (red) and nCAF s
(PFI), disease-free interval (DFI), and disease-specific survival

(DSS) in 21 cancer types by evaluating the signature scores of

each CAF subset. The results showed that the pCAF subsets

extended the values of survival rates and free intervals in

numerous cancer types (Figure S2F).

Comparing the signaling pathways of gene set enrichment

analysis (GSEA) between nCAFs and pCAFs (Figure 2H), we

observed that the most significantly upregulated pathways of

nCAFs were involved in epithelial-mesenchymal transition

(EMT), collagen metabolism, glycolysis metabolism, and oxida-

tive phosphorylation, indicating their tumor-supporting roles in

tumor cell migration, ECM remodeling, and energy support.

However, the most significantly upregulated pathway in pCAF

was the prostaglandin (PG) response, suggesting that PG is

involved in reshaping CAF populations.

Although myofibroblasts have traditionally been considered to

be terminally differentiated, PG prevents or reverses myofibro-

blast differentiation, as characterized by its ability to diminish

the expression of collagen I and smooth-muscle actin in myofi-

broblasts.33,34 Consistent with previous studies, the PG response

and prostanoid metabolism pathways were upregulated in

pCAFs compared with in nCAFs (Figures 3A and S2G), and the

gene score of thePG response pathwaywaspositively correlated

with the abundance of CAF_PI16 andCAF_SLIT2 across samples

(Figure S2H), suggesting a connection between PG and CAF

remodeling. Chemotherapy induces PG release from vascular

ECs35 and elevates PG levels in the TME.36 We screened all

possible sources of PG and identified a PG connection between

CAF and EC subsets. EC_Vein, which expanded following ther-

apy and was enriched in the CR group, expressed higher levels

of the PG enzymes PTGDS, PTGIS, PTGS2, and PTGES than

the other ECs (Figures 3B, S2I, and S2J). A positive correlation

was observed between EC_Vein and pCAF subsets and a nega-

tive correlation was observed with nCAF subsets (Figure 3C),

which indicated that ECs regulated the expansion of pCAF

subsets following therapy. We investigated the correlation be-

tween the PG enzyme genes expressed in EC_Vein and the PG

response pathway in pCAF subsets. Positive correlations sug-

gested that the pCAF subsets were regulated by PG produced

from EC_Vein (Figures 3D and S2K). Furthermore, we examined

the spatial expression of PG synthase in EC_Vein, PG receptors

in CAFs, and the colocalization of EC_Vein with PG synthase

expression and CAFs with PG response (Figure 3E). They were

spatially colocalized in CR samples but not in NR samples, indi-

cating their interactions and outcome relevance. These findings

suggest that PG fromECs extends the pCAF subsets associating

with better outcomes.
d using the marker genes identified in SC data. There are four ST samples after

ts (ST-NR1 and ST-NR2).

he bar height presents the gene counts enriched in the pathway. Only gene sets

gulation; dev, development; prolifer, proliferation.

et is associated with a better response, whereas a negative Ti indicates worse

associated CAF.

m TCGA. The gene scores of pCAF and nCAF subsets were calculated from the

and nCAF-low scores (n = 1,453); blue line: group of pCAF-low and nCAF-high

ubsets (blue) using GSEA. The dashed lines of Z score = ±1.8 were plotted.
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Figure 3. Prostaglandins from endothelial cells remodel CAF subsets

(A) Enrichment of prostaglandin (PG) pathways in the pCAF subsets (red) and the nCAF subsets (blue) compared with a background (gray) revealed by GSEA.

(B) Heatmap of expression of PG synthase in EC subsets.

(C) Scatterplot presents the connection between EC_Vein and the pCAF subsets (left) and the nCAF subsets (right) after therapy. The proportion of EC_Vein was

adjusted by the proportion of EC_Tip. R2 value tells how much variation is explained by the model. The p value of F statistic indicates if the model fitting is

significant.

(D) Scatterplot presents the correlation of the PG synthase genes expressed by EC_Vein with PG responses in the pCAF subsets after therapy.

(E) Spatial colocalization of EC_Vein expressing genes of PG synthase and CAFs responding to PG in ST-CR1 (left) and ST-NR1 (right) samples. For each panel,

top left: the distribution of EC_Vein expressing genes of PG synthase (total expression of PTGDS, PTGIS, PTGS1, PTGS2, and PTGES); bottom left: the dis-

tribution of CAFs expressing PG receptors (total expression of PTGER3, PEGER4, PTGDR2, PTGER1, PTGER2, and PTGDR1); right: the colocalization of

EC_Vein expressing genes of PG synthase and CAFs responding to PG; Cadj represents the intensity of colocalization between two cell sets. The color gradient

indicates the density of the colocalized cells.

Article
ll

OPEN ACCESS
Immune microenvironment is modulated by CAFs
following therapy
We investigated the heterogeneous complexity of immune cells,

showing specific alterations in each cell type between PE and

PO and differences among the responsive groups (Figures S3A
6 Cell Reports Medicine 4, 101231, October 17, 2023
and S3B). We examined the coenrichment patterns of TME cells

after therapy to investigate howCAFs remodel the immunemicro-

environment associated with therapy. Clustering analysis per-

formed using a neighbor-joining tree from the SC data identified

four stable cellular modules (CM1–CM4) (Figure 4A). We
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(legend on next page)
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annotated these four modules as immune active stromal cells

(CM1-IASs), inactive immune cells (CM2-IAIs), immune suppres-

sive stromal cells (CM3-ISSs), andactive-regulatory immunecells

(CM4-ARIs), according to the correlated cell subtypes. All pCAF

subsets were enriched in the CM1-IAS module with CD8+ tis-

sue-residentmemoryT (Trm) cells andMacro_NLRP3.High levels

of CD8+Trm in the CR group were related to better therapeutic

outcomes (Figure S3B). CM2-IAIs were enriched with naive

CD8+ and CD4+ T cells, with Macro_SPP1 and EC subsets

showing an inactive immune state. CAF_FAP and CAF_BMP4,

along with subtypes of ECs and macrophages, were composed

of the CM3-ISSs, promoting immunosuppression and tumor pro-

gression. Conventional DCs (cDCs), plasmacytoid DCs (pDCs),

plasma, and regulatory T cells (Tregs) correlated with CD8+

effector memory T (Tem) cells were enriched in CM4-ARIs, indi-

cating the immune-regulating and -activating functions of this

community.

Consistent with the cellular modules of the SC data, we

observed that theCAFsubsets inSTdatashowedspatially diverse

colocalizationwith immunecells (Figures4BandS4A).CAF_SLIT2

andCAF_PI16 strongly enrichedCD8+Trm,CD8+Tem, and cDC2s

in CR samples, with higher levels than nCAF subsets. These im-

mune cells are more enriched than Tregs, cDC1, Macro_SPP1,

Macro_C1QC, and B cells (Figure 4B). In NR samples, CAF_FAP

and CAF_BMP4 colocalized with more Macro_SPP1 than other

immune cells and were stronger than pCAF subsets (Figure S4A).

Therefore, both cellular modules and spatial colocalization sug-

gested interactions and regulations between CAF subsets and

other immune cells.

NAC significantly activated cell differentiation and immune

response of CD8+T in CR samples of PO, aswe observed upregu-

lated pathways of effector and memory cells and T cell receptor

(TCR) signals after therapy (Figure 4C), which were not observed

in NR samples (Figure S4B). Comparison of the CR and NR sam-

plesafter therapyhighlighted thedifferences inpathwaysof oxida-

tive phosphorylation, cytotoxicity, and effector and memory cells,

indicating a stronger immune response in the CR samples (Fig-

ure4C).CD4+TcellsofNRsamplesafter therapy,especiallyTregs,

showed stronger activation, as the interferon, interleukin-2 (IL-2),
Figure 4. The immune microenvironment is modulated by the pCAF su

(A) The neighbor-joining tree presents the cellular modules of TME of SC data in all

the Spearman correlation. Four cellular modules were identified as immune-act

pressive stromal cells (CM3-ISSs), and active-regulatory immune cells (CM4-AR

(B) Spatial colocalization of CAF subsets and immune cells in ST data of the CR sa

than a 3-bin range. Cadj represents the intensity of colocalization (see STAR Met

(C) Comparison of pathway enrichment among treatments and outcomes of CD8

Right: comparison between NR (blue) and CR (red) in the PO samples.

(D) Scatterplot shows the correlation between CXCL12 expressed by the pCAF s

(E) Violin plot of CXCL12 expression in the CAF subsets.

(F) Scatterplot shows the correlation between SLIT2 expressed by the pCAF sub

(G) Violin plot of SLIT2 expression in the CAF subsets.

(H) Spatial colocalization of CAF subsets expressing CXCL12 and CD8+Tem wit

colocalization between two cell sets. The blue triangle represents CAFs expressin

The color gradient indicates density of colocalized cells.

(I) The Ti of myeloid subsets. A positive Ti indicates the myeloid subset is associa

(J) Scatterplot presents the correlation between DCN expressed by pCAF subse

(K) Spatial colocalization of CAF subsets expressing DCN and cDC2s with active

tensity of colocalization between two cell sets. The blue triangle represents CAFs

presentation pathway. The color gradient indicates density of colocalized cells.
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and transforming growth factor b (TGF-b) signaling pathways

were upregulated, while these cells of CR samples were turned

into an immune quiescent state (Figure S4B).

As T cells and CAF subsets were closely correlated in abun-

dance and spatially colocalized (Figures 4A and 4B), we investi-

gated how CAF subsets modulate T cells. We systematically

calculated the correlation between CAF ligands and T cell

signaling pathways across all samples following therapy.

CXCL12 andSLIT2 fromCAF_SLIT2 andCAF_PI16 cells upregu-

lated T cell chemotaxis, differentiation, and activation, as sug-

gested by significant correlations (Figures 4D–4G and S4C). Vali-

dated by ST data, we observed strong colocalization of

CXCL12+pCAF subsets and CD8+Tem with active TCR signaling

in the CR sample (ST-CR1) (Figure 4H), supporting their interac-

tion at adjacent distance. Compared with the CR sample, this

colocalization was not evident because fewer pCAFs and lower

CXCL12 expression were identified in the NR sample (ST-NR1)

(Figure S4D). This spatial colocalization of nCAF subsets were

not as strong as that of pCAF subsets (Figures S4E and S4F).

The receptorCXCR4 ofCXCL12was expressed at amuch higher

level in CD8+Tem cells than in Tregs after therapy, suggesting

stronger recruitment of CD8+Tem cells than Tregs (Figure S4G).

DCsare themajor antigen-presentingcells (APCs) that regulate

T cell activation in the TME. Although DCs shrank to a lower level

after therapy, cDC2-CD1C and cDC1-CLEC9A levels weremuch

higher in theCRsamples than in theNRsamples (FiguresS3Aand

S3B). cDC2-CD1C showed active signaling pathways of antigen

processing and presentation and inflammatory response in

GSEA, indicating immune activation (Figure S4H). Population

abundance of cDC2 correlated with therapeutic outcome, con-

firming the positive effect of tumor restraining (Figure 4I). cDC2

was the major activator of T cells, as antigen processing and

presentation in cDC2 were significantly correlated with T cell

activation; however, this correlation was not observed for other

myeloid cells (e.g., Macro_NLRP3, Macro_C1QC) (Figure S4I),

confirming immune activation and regulation of cDC2. Consid-

ering the enrichment of cDC2 around pCAF subsets (Figure 4B),

we investigated the potential interactions betweenpCAF subsets

and DCs. The pronounced cytokineDCN, with higher expression
bsets following therapy

samples after therapy. Pairwise distance between cell typesweremeasured by

ive stromal cells (CM1-IASs), inactive immune cells (CM2-IAIs), immune-sup-

Is).

mple. ‘‘Counts’’ indicate the number of immune cells surrounding CAFs in less

hods).
+ T cells. Left: comparison between PO (blue) and PE (red) in the CR samples.

ubsets and the TCR signaling pathway in the T cells after therapy.

sets and the differentiation pathway in the T cells after therapy.

h active TCR pathway in the ST-CR1 sample. Cadj represents the intensity of

g CXCL12, and the red square represents CD8+Tem with active TCR pathway.

ted with a better response, whereas a negative Ti indicates a worse response.

ts and the antigen presentation pathway in cDC2_CDC1.

antigen presentation pathway in the ST-CR1 sample. Cadj represents the in-

expressing DCN, and the red square represents cDC2 with an active antigen
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in CAF_PI16 andCAF_SLIT2, strongly correlatedwith the antigen

processing and presentation pathway in DCs (Figures 4J and

S4J). DCN is the main component of the ECM, acting as a tumor

suppressor and preventing tissue fibrosis, and studies have indi-

cated that DCN is an effective candidate for reducing TGF-b

bioavailability.27,37,38 DCN prevents the binding of TGF-b to its

receptor to enhance the function of major histocompatibility

complex (MHC) genes, consistent with the positive correlation

between DCN and the antigen processing and presentation

pathway observed in our data. Furthermore, we observed strong

colocalization of DCN+pCAF subsets and cDC2 with active

antigen processing and presentation in the CR sample and not

in the NR sample (Figures 4K and S4K), supporting the regulation

between pCAF subsets and cDC2 through DCN. This spatial

colocalization of nCAF subsets was not as strong as that of

pCAF subsets (Figures S4L and S4M). Both the correlation in

SC data and the spatial colocalization in ST data confirmed the

immunological regulation of pCAF subsets in T cells and DCs.

CAF_FAP enhances the tumor EMT program through
MIR4435-2HG
Malignant epithelial cells in solid tumors show high cell heteroge-

neity and diverse abnormalities.17,39 Malignant cells were distin-

guished from healthy epithelial cells by cluster analysis and CNV

detection (Figures S5A and S5B). The size of the malignant cell

population was consistent with the TRG determined by patho-

logical examination (Figure S1B). Comparing the malignant cells

that resisted therapy with those before therapy, we observed

that malignant cells became quiescent after chemo inhibition,

whereas malignant cells before therapy showed universally pro-

nounced pathways such as phosphorylation, glycolysis oxida-

tive, and E2F targets (Figure S5C). Comparing surviving malig-

nant cells in CR and NR samples, the most pronounced

pathways in NR samples were EMT, inflammatory response,

MTORC1 signals, MYC targets, TNFA signals, KRAS signals,

TGF-b signals, and NOTCH signals, which promote tumor pro-

gression (Figure S5C). The more strongly enriched pathways in

the CR samples after therapy were antigen processing and

presentation, which induced the ICD process and were consis-

tent with their better therapeutic outcomes. Furthermore, we

screened for ligands expressed at higher levels in NR samples

than in CR samples after therapy, including MIF, IL32, AREG,

HBEGF, and ADAM9 and the chemokines CXCL1, CXCL3,

CXCL8, and CCL20 (Figure S5D). MIF attracts macrophages

and regulates IL-2 induction to increase Tregs and inhibit

CD8+T cytotoxicity.29,30 IL-32 induces the production of IL-6

and IL-1b and activates nuclear factor kB (NF-kB) signaling.40,41

AREGmediates EMT in cancer cells.42 Their receptors, including

CXCR4, CD74, CD9, SDC1/2, and ITGA/B, which are involved in

immune resistance and tumor progression and are correlated

with worse outcomes, were expressed in macrophages, CD4+

T cells, nCAFs, and ECs (Figure S5E).

To robustly identify tumor programs associated with clusters,

functions, and clinical outcomes, we adopted a non-negative

matrix factorization (NMF) procedure43 and identified the 53 pro-

grams accounting for the variance in both healthy and malignant

epithelia (see STAR Methods). Programs were hierarchically

clustered into four modules (M1–M4) (Figure 5A), which were an-
notated as EMT and epithelial migration (M1), hypoxia response

(M1), metal-ion response (M2), mitosis (M3), and T cell activation

(M4) according to their gene characters. Comparing the module

activity among CR, NR, and healthy epithelia, we observed that

M1 was upregulated in NR malignant cells, whereas M2–M4

were enriched in healthy epithelia (Figures 5B and S5F), indi-

cating that M1 associated with resisting tumors.

Because CAFs play important roles in EMT and ECM remodel-

ing, associating with M1 in tumors, we investigated the connec-

tions betweenCAF andmalignant cells. nCAF subsets (CAF_FAP

and CAF_MMP1) were positively correlated with M1 activity,

whereas pCAF subsets were negatively correlated (Figure 5C).

Further investigation showed that CAFs were significantly

synergistical with malignant cells in the EMT pathway, which ac-

counts for tumor migration and invasion (Figure S5G). Compari-

son of EMT between CAFs and malignant cells indicated their

different roles in EMT, as CAFs highly expressed collagen genes

and, in contrast, malignant cells highly expressedAREG, amem-

ber of the epidermal growth factor (EGF) family (Figure S5H).

Comparing the EMT pathway between NR and CR malignant

cells also showed that AREG was one of the most pronounced

factors in tumor EMT (Figure 5D). A significantly positive correla-

tion confirmed the important role of AREG in EMT pathways in

malignant cells (Figure 5E).

Considering thatmicroRNAs (miRNAs) canbind targetedgenes

to regulate various tumor processes, such as proliferation and

metastasis,44–46 and that miRNAs can be transported to neigh-

boring cells through extracellular vesicles,47,48 we screened

for miRNAs and identified MIR4435-2HG, which was highly

expressed inCAF_FAPs (Figure5F) andshoweda significantpos-

itive correlation with AREG and EMT levels in malignant cells

across the PO samples (Figures 5G, 5H, andS5I). The enhance-

ment was consistent with previous findings showing that

MIR4435-2HG promotes CRC growth and metastasis and that

knockdown of MIR4435-2HG downregulates YAP1, CTGF, and

AREG expression.49 In addition, spatial proximity highlighted

the interactionbetweenCAF_FAPsandmalignant cells (Figure5I),

which was significantly stronger than that between other CAFs,

consistent with the correlation between CAF_FAP and M1 (Fig-

ure 5C). Malignant cells in a close neighborhood of CAF_FAP

showed significantly higher EMT activity than cells at increasing

distances (Figure S5J). Malignant cells approximating other CAF

subsets showed lower EMT gene scores than CAF_FAP (Fig-

ure S5K). The spatial colocalization of MIR4435-2HG+CAF_FAP

and malignant cells with active EMT confirmed their interactions

in NR samples (Figure 5J). Finally, malignant cells around

MIR4435-2HG+CAF_FAP showed higher EMT scores than those

around MIR4435-2HG�CAF_FAP, confirming the EMT upregula-

tion of CAF_FAP through MIR4435-2HG (Figure S5L). This inter-

action was not observed in CR samples, as the population of

CAF_FAP decreased after NAC and consequently reduced the

EMT promotion (Figure 5J).

DISCUSSION

The advantages of this study include the following: (1) large-

scale pairwise samples of patients with RC before and after

NAC were used to directly compare the cellular and molecular
Cell Reports Medicine 4, 101231, October 17, 2023 9
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Figure 5. Malignant programs and the CAF regulation

(A) Program modules of both healthy and malignant epithelial cells. Modules were clustered from 53 expression programs identified by the NMF method.

Correlations between programs were calculated following the Spearman method.

(B) Expression of module 1 in NR and CR malignant cells and healthy epithelial cells.

(C) Heatmap presents the correlation (Spearman method) between modules (averaged expression) of the malignant cells and the proportion of the CAF subsets.

(D) Differentially expressed genes of the EMT pathway between malignant cells of CR samples and NR samples after therapy. Red dot: differential genes with

p < 0.05 from Wilcoxon rank-sum test and log2(fold change) >0.7.

(E) Scatterplot shows the correlation between AREG expression and EMT pathway in the tumor cells after therapy.

(F) Violin plot of MIR4435-2HG expression in the CAF subsets.

(G) Scatterplot shows the correlation between MIR4435-2HG expressed by the CAFs and AREG expressed by the tumor cells after therapy.

(H) Scatterplot shows the correlation between MIR4435-2HG expressed by the CAFs and EMT pathway in the tumor cells after therapy.

(I) Spatial proximity between the tumor cells and the CAF subsets. The x axis represents the different radius centered on the CAF cells. The y axis represents the

probability of tumor cells presenting in the neighborhood of the CAF cells.

(J) Spatial colocalization of CAF_FAP expressing MIR4435-2HG and the tumor cells with active EMT pathway in ST samples. Cadj represents the intensity of

colocalization between the two cell sets. The blue triangle represents CAF_FAP expressingMIR4435-2HG, and the red square represents tumor cells with active

EMT pathway. The color gradient indicates density of colocalization cells.
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differences between PE and PO samples and between CR and

NR samples. (2) The comprehensive integration of SC and ST

data with the fine resolution provided a clear viewing field and

robust confirmation of cell composition, proximity, interaction,

and signaling pathways. Considering these advantages, our

study provides a valuable single-cell and spatial transcriptome

landscape of RC following NAC. Systematically, we investigated

the TME alterations modulated by therapy and associated

cellular composition with the therapeutic response. We demon-

strated that NAC restrained tumor progression and regulated the

TME by remodeling CAFs. In addition, the findings on the tumor-

promoting mode of CAF_FAP through miRNAs will have impor-

tant implications for future investigations and tumor therapeutic

strategies.

Our studyhas suggested twocoinciding roles forCAFs in tumor

promotion and restraint. CAFs are highly heterogeneous in types

and functions affecting cancer progression and immunomodula-

tion. Several studieshave reported immunosuppressionbyCAFs;

however, the mechanism underlying immune activation remains

unclear. In this study, we revealed the complexity of CAF subsets

and the dual roles of tumor promoters and immune activators.

Several CAF subsets contained numerous chemokines, colla-

gens, and MMPs related to tumor-supporting functions, such

as angiogenesis, ECM remodeling, EMT, and tumor invasion.

We observed that CAF_FAP enhanced tumor EMT through

MIR4435-2HG associating with worse NAC outcomes. In

contrast, pCAF subsets, including CAF_PI16 and CAF_SLIT2,

were substantially expanded in the responsive group and ex-

hibited immune-promoting properties by enhancing immune cell

recruitment and activation through multiple cytokines. Several

cell-cell interactions were confirmed through correlation analysis

and spatial colocalization. CXCL12 helped recruit CD8+Tem cells

insteadofTregs, as stronger receptor expressionwasobserved in

CD8+Tem (Figure S4G). DCN, as a TGF-b blocker, upregulated

antigen processing and presentation of DCs, subsequently acti-

vating T cells spatially. These findings have several implications

for tumor interference through CAF modulation, such as altering

the composition of CAF subsets in the TME, blocking tumor-pro-

moting cytokines or molecules in nCAF subsets, and enhancing

the immunoactivation of pCAF subsets.

Analytical strategies were adapted to satisfy the complex

requirements of large-scale SC data and their integration with

ST data. One of them is to integrate the analysis of cell-cell

interactions for both SC and ST data. False positives in cell-

cell interactions overflowed in SC data analyses because of

poor consideration of downstream pathways and a lack of sam-

ple repeats. In this study, cell-cell interactions were estimated

between a pair of cell subsets by systematically calculating

the correlation between ligands from one subset and pathways

from another, with a background control to avoid systematic

inflation due to cell population correlations (see STARMethods).

Correlation computations were performed for numerous sam-

ples. Moreover, the spatial neighborhood of interactive cells

was examined, which has advantages over immunohistochem-

istry (IHC) and immunofluorescence (IF). IHC and IF use limiting

antibodies to provide visual details of certain locations. In

contrast, ST considers whole transcriptomes and signals that

can be conveniently combined from any gene or pathway.
PI16+ fibroblasts are considered progenitors of CAF differenti-

ation,22 consistent with the observation of highly expressed gene

related to stemness (CD34) in our data (Figure 2B). Comparison

of the trajectories in CR and NR samples revealed differences in

CAF differentiation between the CR and NR samples, with the

CAF_ADAM28-CAF_BMP4 lineage in NR samples and the major

lineage of CAF_PI16-CAF_SLIT2-CAF_BMP4 in CR samples

(Figure S2C). Using ST data, which provide the spatial distance

between cells, we confirmed multiple lineages with more spatial

regional details of differentiation (Figure S2D). The diverse trajec-

tories of the CR and NR samples suggested that distinct CAF dif-

ferentiation was associated with NAC responses and outcomes.

Therefore, different strategies should be considered when inter-

fering with differentiation.

Limitations of the study
There are several limitations of the data analysis and the findings

in our study. First, the associations between the CAF cytokines

and immune pathways will not conclude the direct immunoregu-

lation of remodeledCAFs through these cytokines. The cause-ef-

fect relationships need further investigation by in vitro and in vivo

experiments. Second, we observed the connection between PG

and CAF dynamics. But statistical analysis and trajectory infer-

ence are incapable of uncovering the process of dedifferentiation

of myofibroblasts as reported by previous study.33,34 Therefore,

cell experiment is recommended. Moreover, ST data were pro-

duced using Stereo-seq technology, which provides nanoscale

resolution. However, it was difficult to segment cells of tumor

tissue and assemble the exact transcripts of single cells. We

therefore merged 50 3 50 spots into a single informative ‘‘bin’’

as the minimum unit (25 3 25 mm square), representing one cell

(see STAR Methods). Future development of the technology

will provide more accurate transcripts of single cells.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

B Human subjects

d METHOD DETAILS

B Single-cell isolation

B Library construction for single cell RNA sequencing

B Single-cell RNA sequencing using DNBelab C4

B Sample preparation for spatial transcriptomic

sequencing

B Spatial transcriptomic sequencing using Stereo-seq

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Raw data processing for single-cell RNA sequencing

B Raw data processing of single-cell spatial transcrip-

tome from Stereo-seq
Cell Reports Medicine 4, 101231, October 17, 2023 11



12 C

Article
ll

OPEN ACCESS
B Dimension reduction, clustering, and identification of

differentially expressed genes of SC data

B Identification of transcriptional programmes and gene

modules using NMF

B Cell type identification and deconvolution of ST data

B Measurements of cell colocalisation and proximity in

ST data

B Trajectory inference of cell differentiation

B Cell-cell interaction analysis

B Gene set enrichment analysis

B Definition of therapeutic index

B Survival analysis

B Correlation analysis

B Identification of malignant cells
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xcrm.2023.101231.

ACKNOWLEDGMENTS

This study was supported by fundings from the Natural Science Founda-

tion of Guangdong Province for Distinguished Young Scholars (no.

2022B1515020003); the National Natural Science Foundation of China (nos.

82174369 and 81973847); theNatural Science Foundation of Guangdong Prov-

ince (no. 2020A1515011254); the Guangzhou Clinical High-Tech Project (no.

2023P-GX09); the Bethune Charitable Foundation (no. zllcaxw-14); the Open

Project of BGI-Shenzhen, Shenzhen 518000, China (no. BGIRSZ20210005);

the National Key Research and Development Program of China (nos.

2021YFA0805100 and 2021YFC2501900); and the Guangdong Basic and

Applied Basic Research Foundation (no. 2021A1515110832). This work was

supported by the China National GeneBank (CNGB) and the National Key Clin-

ical Discipline.

AUTHOR CONTRIBUTIONS

Conceptualization, H.L., S.L., J.W., L. Wu, and D.R.; methodology, P.Q., H.C.,

Y.W., L.H., and K.H.; investigation, P.Q., H.C., Y.W., L.H., K.H., G.X., C.H.,

J.H., D.L., X.W., Y.Z., Y.L., G.L., H.Y., S.Y., M.L., Y.F., H.X., L. Wen, Z.G.,

X.S., Z.L., C.W., X.C., L. Wang, and L.S.; resources, L.H., J.H., D.L., Y.L.,

and S.Y.; writing – original draft, P.Q., H.C., Y.W., L.H., and K.H.; writing – re-

view & editing, H.L., S.L., J.W., L. Wu, and D.R.; funding acquisition, H.L., S.L.,

and L. Wu; supervision, H.L., S.L., J.W., L. Wu, and D.R.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 30, 2023

Revised: July 17, 2023

Accepted: September 14, 2023

Published: October 17, 2023

REFERENCES

1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Je-

mal, A., and Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185

Countries. CA. Cancer J. Clin. 71, 209–249. https://doi.org/10.3322/

caac.21660.

2. Siegel, R., Desantis, C., and Jemal, A. (2014). Colorectal cancer statistics,

2014.CA.Cancer J.Clin.64, 104–117. https://doi.org/10.3322/caac.21220.
ell Reports Medicine 4, 101231, October 17, 2023
3. Deng, Y. (2017). Rectal Cancer in Asian vs. Western Countries: Why the

Variation in Incidence? Curr. Treat. Options Oncol. 18, 64. https://doi.

org/10.1007/s11864-017-0500-2.

4. Dou, R., He, S., Deng, Y., and Wang, J. (2021). Comparison of guidelines

on rectal cancer: exception proves the rule? Gastroenterol. Rep. 9,

290–298. https://doi.org/10.1093/gastro/goab034.

5. Deng, Y., Chi, P., Lan, P., Wang, L., Chen, W., Cui, L., Chen, D., Cao, J.,

Wei, H., Peng, X., et al. (2019). Neoadjuvant Modified FOLFOX6 With or

Without Radiation Versus Fluorouracil Plus Radiation for Locally

Advanced Rectal Cancer: Final Results of the Chinese FOWARC Trial.

J. Clin. Oncol. 37, 3223–3233. https://doi.org/10.1200/jco.18.02309.

6. Schrag, D., Shi, Q., Weiser, M.R., Gollub, M.J., Saltz, L.B., Musher, B.L.,

Goldberg, J., Al Baghdadi, T., Goodman, K.A., McWilliams, R.R., et al.

(2023). Preoperative Treatment of Locally Advanced Rectal Cancer.

N. Engl. J. Med. 389, 322–334. https://doi.org/10.1056/NEJMoa2303269.

7. Zhang,J.,Chi,P., Lan,P.,Cui, L.,Wei,H.,Zhao,R.,Huang,Z.,Zhang,H.,Cai,

Y.,Wang,J., andDeng,Y. (2023). Long-termoutcomeofneoadjuvantmFOL-

FOX6 with or without radiation versus fluorouracil plus radiation for locally

advanced rectal cancer: A multicenter, randomized phase III trial. J. Clin.

Oncol. 41, 3505. https://doi.org/10.1200/JCO.2023.41.16_suppl.3505.

8. Hu, H., Kang, L., Zhang, J., Wu, Z., Wang, H., Huang, M., Lan, P., Wu, X.,

Wang, C., Cao, W., et al. (2022). Neoadjuvant PD-1 blockade with toripali-

mab,withorwithoutcelecoxib, inmismatch repair-deficientormicrosatellite

instability-high, locally advanced, colorectal cancer (PICC): a single-centre,

parallel-group, non-comparative, randomised, phase 2 trial. Lancet.

Gastroenterol. Hepatol. 7, 38–48. https://doi.org/10.1016/s2468-1253(21)

00348-4.

9. Cercek,A., Lumish,M.,Sinopoli, J.,Weiss, J., Shia, J., Lamendola-Essel,M.,

El Dika, I.H., Segal, N., Shcherba, M., Sugarman, R., et al. (2022). PD-1

Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer.

N. Engl. J.Med.386, 2363–2376. https://doi.org/10.1056/NEJMoa2201445.

10. Boland, C.R., and Goel, A. (2010). Microsatellite instability in colorectal

cancer. Gastroenterology 138, 2073–2087.e3. https://doi.org/10.1053/j.

gastro.2009.12.064.

11. Vilar, E., and Gruber, S.B. (2010). Microsatellite instability in colorectal

cancer-the stable evidence. Nat. Rev. Clin. Oncol. 7, 153–162. https://

doi.org/10.1038/nrclinonc.2009.237.

12. Guo, Y., Wang, M., Zou, Y., Jin, L., Zhao, Z., Liu, Q., Wang, S., and Li, J.

(2022). Mechanisms of chemotherapeutic resistance and the application

of targeted nanoparticles for enhanced chemotherapy in colorectal can-

cer. J. Nanobiotechnology 20, 371. https://doi.org/10.1186/s12951-022-

01586-4.
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16. Öhlund, D., Handly-Santana, A., Biffi, G., Elyada, E., Almeida, A.S., Ponz-

Sarvise, M., Corbo, V., Oni, T.E., Hearn, S.A., Lee, E.J., et al. (2017).

Distinct populations of inflammatory fibroblasts and myofibroblasts in

pancreatic cancer. J. Exp. Med. 214, 579–596. https://doi.org/10.1084/

jem.20162024.

17. Pelka, K., Hofree, M., Chen, J.H., Sarkizova, S., Pirl, J.D., Jorgji, V., Bej-

nood, A., Dionne, D., Ge, W.H., Xu, K.H., et al. (2021). Spatially organized

multicellular immune hubs in human colorectal cancer. Cell 184, 4734–

4752.e20. https://doi.org/10.1016/j.cell.2021.08.003.

https://doi.org/10.1016/j.xcrm.2023.101231
https://doi.org/10.1016/j.xcrm.2023.101231
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21220
https://doi.org/10.1007/s11864-017-0500-2
https://doi.org/10.1007/s11864-017-0500-2
https://doi.org/10.1093/gastro/goab034
https://doi.org/10.1200/jco.18.02309
https://doi.org/10.1056/NEJMoa2303269
https://doi.org/10.1200/JCO.2023.41.16_suppl.3505
https://doi.org/10.1016/s2468-1253(21)00348-4
https://doi.org/10.1016/s2468-1253(21)00348-4
https://doi.org/10.1056/NEJMoa2201445
https://doi.org/10.1053/j.gastro.2009.12.064
https://doi.org/10.1053/j.gastro.2009.12.064
https://doi.org/10.1038/nrclinonc.2009.237
https://doi.org/10.1038/nrclinonc.2009.237
https://doi.org/10.1186/s12951-022-01586-4
https://doi.org/10.1186/s12951-022-01586-4
https://doi.org/10.1016/j.ccell.2015.10.012
https://doi.org/10.1016/j.ccell.2015.10.012
https://doi.org/10.1038/cdd.2013.67
https://doi.org/10.3389/fimmu.2019.01654
https://doi.org/10.1084/jem.20162024
https://doi.org/10.1084/jem.20162024
https://doi.org/10.1016/j.cell.2021.08.003


Article
ll

OPEN ACCESS
18. Righetti, A., Giulietti, M., �Sabanovi�c, B., Occhipinti, G., Principato, G., and

Piva, F. (2019). CXCL12 and Its Isoforms: Different Roles in Pancreatic

Cancer? J. Oncol. 2019, 9681698. https://doi.org/10.1155/2019/9681698.

19. Zhang, Y., Guan, X.Y., and Jiang, P. (2020). Cytokine and Chemokine Sig-

nals of T-Cell Exclusion in Tumors. Front. Immunol. 11, 594609. https://

doi.org/10.3389/fimmu.2020.594609.

20. Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu,

J., Hao, S., et al. (2022). Spatiotemporal transcriptomic atlas of mouse

organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–

1792.e21. https://doi.org/10.1016/j.cell.2022.04.003.

21. Amin, M.B., Edge, S.B., Greene, F.L., Byrd, D.R., Brookland, R.K., Wash-

ington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., and Sullivan,

D.C. (2017). AJCC Cancer Staging Manual, Eight edition (Springer).

22. Buechler, M.B., Pradhan, R.N., Krishnamurty, A.T., Cox, C., Calviello, A.K.,

Wang, A.W., Yang, Y.A., Tam, L., Caothien, R., Roose-Girma, M., et al.

(2021). Cross-tissue organization of the fibroblast lineage. Nature 593,

575–579. https://doi.org/10.1038/s41586-021-03549-5.

23. Pilling, D., Zheng, Z., Vakil, V., andGomer, R.H. (2014). Fibroblasts secrete

Slit2 to inhibit fibrocyte differentiation and fibrosis. Proc. Natl. Acad. Sci.

USA 111, 18291–18296. https://doi.org/10.1073/pnas.1417426112.

24. Chen, K., Wang, Q., Li, M., Guo, H., Liu, W., Wang, F., Tian, X., and Yang,

Y. (2021). Single-cell RNA-seq reveals dynamic change in tumor microen-

vironment during pancreatic ductal adenocarcinoma malignant progres-

sion. EBioMedicine 66, 103315. https://doi.org/10.1016/j.ebiom.2021.

103315.

25. Kessenbrock, K., Plaks, V., and Werb, Z. (2010). Matrix metalloprotei-

nases: regulators of the tumor microenvironment. Cell 141, 52–67.

https://doi.org/10.1016/j.cell.2010.03.015.

26. Perugorria, M.J., Olaizola, P., Labiano, I., Esparza-Baquer, A., Marzioni,

M., Marin, J.J.G., Bujanda, L., and Banales, J.M. (2019). Wnt-b-catenin

signalling in liver development, health and disease. Nat. Rev. Gastroen-

terol. Hepatol. 16, 121–136. https://doi.org/10.1038/s41575-018-0075-9.

27. Zhang, W., Ge, Y., Cheng, Q., Zhang, Q., Fang, L., and Zheng, J. (2018).

Decorin is a pivotal effector in the extracellular matrix and tumour micro-

environment. Oncotarget 9, 5480–5491. https://doi.org/10.18632/onco-

target.23869.

28. Zhou, C., Gao, Y., Ding, P., Wu, T., and Ji, G. (2023). The role of CXCL fam-

ily members in different diseases. Cell Death Discov. 9, 212. https://doi.

org/10.1038/s41420-023-01524-9.

29. Guda, M.R., Rashid, M.A., Asuthkar, S., Jalasutram, A., Caniglia, J.L.,

Tsung, A.J., and Velpula, K.K. (2019). Pleiotropic role of macrophage

migration inhibitory factor in cancer. Am. J. Cancer Res. 9, 2760–2773.

30. Noe, J.T., and Mitchell, R.A. (2020). MIF-Dependent Control of Tumor Im-

munity. Front. Immunol. 11, 609948. https://doi.org/10.3389/fimmu.2020.

609948.

31. Raje, N.S., Bhatta, S., and Terpos, E. (2019). Role of the RANK/RANKL

Pathway in Multiple Myeloma. Clin. Cancer Res. 25, 12–20. https://doi.

org/10.1158/1078-0432.Ccr-18-1537.

32. Li, M.O.,Wan, Y.Y., Sanjabi, S., Robertson, A.K.L., and Flavell, R.A. (2006).

Transforming growth factor-beta regulation of immune responses. Annu.

Rev. Immunol. 24, 99–146. https://doi.org/10.1146/annurev.immunol.24.

021605.090737.

33. Garrison, G., Huang, S.K., Okunishi, K., Scott, J.P., Kumar Penke, L.R.,

Scruggs, A.M., and Peters-Golden, M. (2013). Reversal of myofibroblast

differentiation by prostaglandin E(2). Am. J. Respir. Cell Mol. Biol. 48,

550–558. https://doi.org/10.1165/rcmb.2012-0262OC.

34. Wettlaufer, S.H., Scott, J.P., McEachin, R.C., Peters-Golden, M., and

Huang, S.K. (2016). Reversal of the Transcriptome by Prostaglandin E2

during Myofibroblast Dedifferentiation. Am. J. Respir. Cell Mol. Biol. 54,

114–127. https://doi.org/10.1165/rcmb.2014-0468OC.

35. Matsunuma, S., Handa, S., Kamei, D., Yamamoto, H., Okuyama, K., and

Kato, Y. (2019). Oxaliplatin induces prostaglandin E2 release in vascular
endothelial cells. Cancer Chemother. Pharmacol. 84, 345–350. https://

doi.org/10.1007/s00280-019-03901-7.

36. Altorki, N.K., Port, J.L., Zhang, F., Golijanin, D., Thaler, H.T., Duffield-Lil-

lico, A.J., Subbaramaiah, K., and Dannenberg, A.J. (2005). Chemotherapy

induces the expression of cyclooxygenase-2 in non-small cell lung cancer.

Clin. Cancer Res. 11, 4191–4197. https://doi.org/10.1158/1078-0432.Ccr-

05-0108.

37. Järvinen, T.A.H., and Prince, S. (2015). Decorin: A Growth Factor Antago-

nist for Tumor Growth Inhibition. BioMed Res. Int. 2015, 654765. https://

doi.org/10.1155/2015/654765.

38. Hu, X., Villodre, E.S., Larson, R., Rahal, O.M.,Wang, X., Gong, Y., Song, J.,

Krishnamurthy, S., Ueno, N.T., Tripathy, D., et al. (2021). Decorin-medi-

ated suppression of tumorigenesis, invasion, and metastasis in inflamma-

tory breast cancer. Commun. Biol. 4, 72. https://doi.org/10.1038/s42003-

020-01590-0.

39. Joanito, I., Wirapati, P., Zhao, N., Nawaz, Z., Yeo, G., Lee, F., Eng, C.L.P.,

Macalinao, D.C., Kahraman, M., Srinivasan, H., et al. (2022). Single-cell

and bulk transcriptome sequencing identifies two epithelial tumor cell

states and refines the consensus molecular classification of colorectal

cancer. Nat. Genet. 54, 963–975. https://doi.org/10.1038/s41588-022-

01100-4.

40. Hong, J.T., Son, D.J., Lee, C.K., Yoon, D.Y., Lee, D.H., and Park, M.H.

(2017). Interleukin 32, inflammation and cancer. Pharmacol. Ther. 174,

127–137. https://doi.org/10.1016/j.pharmthera.2017.02.025.

41. Xin, T., Chen, M., Duan, L., Xu, Y., and Gao, P. (2018). Interleukin-32: its

role in asthma and potential as a therapeutic agent. Respir. Res. 19,

124. https://doi.org/10.1186/s12931-018-0832-x.

42. Wang, L., Wang, L., Zhang, H., Lu, J., Zhang, Z., Wu, H., and Liang, Z.

(2020). AREG mediates the epithelial-mesenchymal transition in pancre-

atic cancer cells via the EGFR/ERK/NF-kB signalling pathway. Oncol.

Rep. 43, 1558–1568. https://doi.org/10.3892/or.2020.7523.

43. Kotliar, D., Veres, A., Nagy, M.A., Tabrizi, S., Hodis, E., Melton, D.A., and

Sabeti, P.C. (2019). Identifying gene expression programs of cell-type

identity and cellular activity with single-cell RNA-Seq. Elife 8, e43803.

https://doi.org/10.7554/eLife.43803.

44. Han, C., Li, H., Ma, Z., Dong, G.,Wang, Q.,Wang, S., Fang, P., Li, X., Chen,

H., Liu, T., et al. (2021). MIR99AHG is a noncoding tumor suppressor gene

in lung adenocarcinoma. Cell Death Dis. 12, 424. https://doi.org/10.1038/

s41419-021-03715-7.
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Antibodies

APC-Cyanine7 Anti-Human CD45 Tonbo Biosciences Cat# 25-0459-T100; RRID:AB_2621631

Chemicals, peptides, and recombinant proteins

7-AAD Abam Cat# ab228563

RPMI 1640 Thermo Fisher Cat# C11875500BT

Red Blood Cell Lysis Buffer Beyotime Cat# C3702-500mL

FICOLL PAQUE PLUS GE hyclone Cat# 17-1440-03

DPBS HyClone Cat# SH30028.02

FBS Gibco Cat# 10270-106

Nuclease-Free Water Monad Cat# MR80101S

Tumor Dissociation Kit, human Miltenyi Cat# 130-095-929

Trypan Blue Sigma Cat# T8154-100ML

203SSC Ginbio Cat# GB20212-500

Cryo Embedding Medium biosharp Cat# BL557A

Dead Cell Removal Kit Miltenyi Cat# 130-090-101

Bovine serum albumin, fraction V,

heat shock isolation

Sangon biotech Cat# A600332-0025

203 Saline sodium citrate (SSC) Thermo Fisher Cat# AM9770

RNase inhibitor NEB Cat# M0314L

QubitTM dsDNA kit Invitrogen Cat#Q32854

QubitTM ssDNA kit Thermo Fisher Cat#Q10212

Deposited data

Transcriptome expression This paper CNGBdb: CNP0004138

Bulk RNA-seq datasets from TCGA

(Pan-Cancer Atlas Hub of UCSC

Xena database)

https://xenabrowser.net/datapages/?

cohort=TCGA%20Pan-Cancer%20

(PANCAN)&removeHub=https%3A%2F%

2Fxena.treehouse.gi.ucsc.edu%3A443

Batch effects normalized mRNA data

(ID: EB++AdjustPANCAN_IlluminaHiSeq_RNASeqV2.

geneExp.xena); Curated clinical data (ID: Survival_

SupplementalTable_S1_20171025_xena_sp)

Software and algorithms

R-4.1.2 R Core Team (2021) https://www.r-project.org/

Python 3.9.12 Van Rossum et al.50 https://www.python.org/

spaTrack Github https://github.com/yzf072/spaTrack

RStudio RStudio (2015) https://rstudio.com/

Seurat v4.1.1 Stuart et al.51 https://github.com/satijalab/seurat

inferCNV Tickle et al.52 https://github.com/broadinstitute/inferCNV

pheatmap Kolde et al.53 https://cran.r-project.org/web/packages/pheatmap

dyplr Wickham et al.54 https://cran.r-project.org/web/packages/dplyr

NMF Gaujoux and Seoighe55 https://cran.r-project.org/web/packages/NMF

clusterProfiler Wu et al.56 https://github.com/YuLab-SMU/clusterProfiler

ggplot2 Wickham et al.57 https://cran.r-project.org/web/packages/ggplot2

ggpubr Kassambara et al.58 https://cran.r-project.org/web/packages/ggpubr

corrplot Wei et al.59 https://cran.r-project.org/web/packages/corrplot

harmony Korsunsky et al.60 https://cran.r-project.org/web/packages/harmony

DoubletFinder McGinnis et al.61 https://github.com/chris-mcginnis-ucsf/DoubletFinder

CellChat Jin et al.62 https://github.com/sqjin/CellChat

CellphoneDB Efremova et al.63 https://github.com/ventolab/CellphoneDB

Nichenet Bonnardel et al.64 https://github.com/saeyslab/nichenetr
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SPOTlight Elosua-Bayes et al.65 https://github.com/MarcElosua/SPOTlight

MSigDB Subramanian et al.66 and

Liberzon et al.67
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

Biorender Biorender https://www.biorender.com/

Other

70-mm cell strainer Biologix Cat# 15-1070

FACS tube Corning Cat# 352054-125EA

Cryostat Leica Cat# CM1950

Stereo-seq chips and apparatus BGI Shenzhen –

KAPA Hotstart Ready Mix Roche Cat# KK2602

SuperScript reverse transcription (RT) mix Invitrogen Cat# 18064-014

VAHTS DNA clean beads Vazyme Cat# N411-03
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Lead contact
Further information and requests for resources and reagents should be directed to and fulfilled by the lead contact, Hongcheng Lin

(lhcheng@mail.sysu.edu.cn).

Materials availability
This study did not generate new or unique reagents.

Data and code availability
The processed expression data of SC and ST reported in this study can be obtained from the China National GeneBank Database

(CNGBdb) with accession number CNP0004138. Bulk RNA-seq datasets of TCGA were obtained from Pan-Cancer Atlas Hub of

UCSC Xena database (https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-Cancer%20(PANCAN)&removeHub=https%

3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443), from which the ‘‘Batch effects normalized mRNA data’’ (dataset ID: EB++Adjust-

PANCAN_IlluminaHiSeq_RNASeqV2.geneExp.xena) was used as the gene expression data, and ‘‘Curated clinical data’’ (dataset ID:

Survival_SupplementalTable_S1_20171025_xena_sp) was used the clinical phenotype data. The raw FASTQ files of single cell tran-

scriptomes in this study will be provided for scientific research upon reasonable request, in compliance with the law, due to human

patient privacy concerns. This paper does not report custom code. Any additional information required to reanalyse the data reported

in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects
Twenty-nine RC patients with pMMR/MSS were enrolled in this study, who were pathologically diagnosed with locally advanced

rectal adenocarcinoma at the Sixth Affiliated Hospital of Sun Yat-sen University. The clinical and pathological characteristics of

the patients are listed in Table S1. These patients routinely underwent colonoscopy and biopsy. Fresh tumor tissues were collected

through a colonoscopic biopsy <2 weeks before NAC in 27 patients (two samples were excluded due to low quality). After NAC, the

paired freshly tumor tissues were obtained through surgical resection (27 patients) and endoscopic biopsy (2 patients). In addition,

five adjacent normal mucosa tissue sample (located >3 cm from the tumor) were freshly collected from five patients. Informed

consent was obtained from all patients enrolled in the study. All sampling and experimental procedures were approved by the Ethics

Committee of the Sixth Affiliated Hospital of Sun Yat-sen University (license no. 2021ZSLYEC-033 and 2022ZSLYEC-165).

METHOD DETAILS

Single-cell isolation
Fresh tumor and adjacent normal tissue samples were cut into approximately 1 mm3 pieces in the Roswell Park Memorial Institute

(RPMI-1640 medium (Invitrogen) and then enzymatically digested using the MACS human tumor dissociation kit (Miltenyi Biotec) for

60 min on the gentle MACS Octo dissociator at 37�C. The sample was filtered using a 70 mm Cell-Strainer (Biologix) in RPMI-1640

medium (Invitrogen), and the suspended cells were centrifuged at 3003 g for 7min. After removing the supernatant, the pelleted cells

were suspended in red blood cell lysis buffer (Beyotime) and incubated at 4�C for 10 min to lyse red blood cells. The cell pellets were
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re-suspended in washing buffer (0.04% bovine serum albumin [BSA] in Dulbecco’s phosphate-buffered saline [DPBS]) after washing

two times with washing buffer. Viability was confirmed to be >80% in all samples by trypan blue staining (Sigma). Finally, for the

samples obtained before NAC, the single-cell suspension was centrifuged at 300 3 g for 10 min, re-suspended in a cryoprotectant

(90% fetal bovine serum [FBS] with 10% dimethyl sulfoxide [DMSO]), cryopreserved in cryotubes (Corning), and stored in liquid

nitrogen tanks. For samples obtained after NAC, the cell suspensions were maintained on ice to prepare for sequencing.

Library construction for single cell RNA sequencing
The SC libraries were constructed according to the instructions of the DNA Nanoball (DNB) elab C4 scRNA Preparation Kit. Briefly,

the cells were diluted to a concentration of 1,000 cells/mL and loaded into the cell reservoir of the microfluidic chip. Barcoded beads

and droplet-generation oil were successively added to the beads and oil reservoirs. Encapsulated droplets were generated and

collected using a DNBelab C4 system. Beads that captured the mRNA were recovered for reverse transcription (RT). Following

polymerase chain reaction (PCR) amplification by polymerase chain reaction, complementary DNA (cDNA) was purified and quan-

tified using a Qubit dsDNA kit (Invitrogen, #Q32854). Libraries of 30-end transcripts were subsequently constructed through cDNA

fragmentation, size selection, end repair and A-tailing, adapter ligation, PCR for indexing libraries, and cyclisation of sequencing

libraries, according to the manufacturer’s instructions. Sequencing libraries were purified and quantified using the Qubit ssDNA

kit (Thermo Fisher Scientific, #Q10212).

Single-cell RNA sequencing using DNBelab C4
The DNBelab C4 Series Single-Cell Library Prep Set (MGI) was used for sequencing. DNBs were loaded into the patterned nanoar-

rays and sequenced on an ultra-high-throughput DIPSEQT1 sequencer using the following read lengths: 30 base pairs (bp) for read 1,

including 10 bp cell barcode 1, 10 bp cell barcode 2, and 10 bp unique molecular identifier (UMI), 100 bp of transcript sequence for

read 2, and 10 bp for the sample index.

Sample preparation for spatial transcriptomic sequencing
Fresh tumorswere embedded in tissue-neck OCTwithin 30min of resection, and the extra fluidwas removed. After freezing using dry

ice, embedded samples were transferred to an �80�C freezer for storage until use. In a Leica CM1950 cryostat, fresh tumor tissue

was cut into sample sections (10 mm) and promptly attached to Stereo-seq chips.

Spatial transcriptomic sequencing using Stereo-seq
Spatial transcriptomic data were obtained using the Stereo-seq Transcriptomics Set following the Chip-on-a-slide protocol (https://

www.stomics.tech/). Briefly, tissue sections were adhered to the Stereo-seq chip and incubated for 3 min at 37�C. The chip was then

incubated at �20�C for 40 min, stained with a nucleic acid dye (Thermo Fisher, Q10212), and imaged using a Ti-7 Nikon Eclipse

microscope. Tissue sections were washed with 0.13 saline sodium citrate (SSC, Thermo, AM9770) buffer supplemented with

0.05 U/mL RNAase Inhibitor (NEB, M0314L). Tissue sections were permeabilized using 0.1% pepsin (Sigma, P7000) in 0.01 M HCl

buffer (37�C, 12 min). RNAs captured by DNBs on the chip were reverse transcribed using the SuperScript II RT mix (Invitrogen,

18064-014, 10 U/mL reverse transcriptase, 1 mM deoxynucleoside triphosphates (dNTPs), 1 M betaine solution PCR reagent,

7.5 mM MgCl2, 5 mM DTT, 2 U/mL RNase inhibitor, 2.5 mM Stereo-seq template switch oligo, and 13 first-strand buffer). The

cDNA products were released from the Stereo-seq chips and amplified with KAPA HiFi Hotstart Ready Mix (Roche, KK2602) with

0.8mMcDNA-PCR primer. Sequentially, the cDNA libraries were constructed following themanufacturer’s protocol. Themajor steps

include fragmentation (using in-house Tn5 transposase), amplification (KAPA HiFi Hotstart Ready Mix), and purification (AMPure XP

Beads). The prepared cDNA libraries were sequenced using the MGI DNBSEQ-Tx sequencer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Raw data processing for single-cell RNA sequencing
Raw sequencing reads from DIPSEQ-T1 were filtered and demultiplexed using PISA (v.0.2) (https://github.com/shiquan/PISA). The

reads were aligned to the human genome using STAR (v.2.7.4a) and sorted using Sambamba (v.0.7.0). Doublets and contaminant

cells were strictly filtered based on clustering in the UMAP embedding space, disordered marker expression, and estimates using

DoubletFinder. The gene-cell matrix was filtered based on the number of genes detected per cell (any cells with <200 or >6000 genes

per cell were filtered out) and the percentage of mitochondrial UMI counts (any cells with >20% mitochondrial UMI counts were

filtered out). Before filtering, the median number of genes per cell for all cells was 688, and the median UMI counts was 1537. After

filtering, the median number of genes per cell for all cells was 865 [IQR 527–1503], and the median UMI counts was 2057 [IQR 1080–

4546]. UMI normalisation was performed by dividing the UMI counts by the total UMI counts in each cell, followed by multiplying by

the universal number of total UMI counts across cells. Finally, the UMI counts were transformed into a natural log scale.

Raw data processing of single-cell spatial transcriptome from Stereo-seq
Stereo-seq FASTQ files containing the CID, MID, and cDNA sequences were generated using the MGI DNBSEQ-Tx sequencer. To

ensure high-quality reads, CID sequences were mapped to the designed coordinates on the chip with a 1 base mismatch tolerance,
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allowing for the conversion of CID sequences into spatial coordinates. Reads with MID quality score <10 were removed. The cDNA

sequences were then aligned to the reference human genome (GRCH38) and the SAW pipeline (https://github.com/BGIResearch/

SAW) was used to quantify gene expression levels. Finally, GEM files containing information on the DNB coordinates and gene

UMI counts in each DNB were generated after data pre-processing.

To obtain available expression abundance from sequence data of the sub-cellular resolution of 220 nm (one DNB), we merged

503 50 DNBs into a single highly informative ‘bin’ as the minimum unit (25 mm3 25 mm) for downstream analysis. The gene expres-

sionmatrix and spatial coordinates of each bin were used as inputs to construct the Seurat object using Seurat (v.4.1.1). For two high-

quality samples (ST-CR1 and ST-NR1), bins with less than 200 expressed genes, and a proportion of counts of mitochondrial genes

greater than 20% were removed from downstream analysis. For the two low-quality samples (ST-CR2 and ST-NR2), the filtering

criteria were adjusted to retain more spatial transcriptomic information. The filtering criteria were set to remove bins with fewer

than 100 expressed genes, and a proportion of counts of mitochondrial genes greater than 20%. Additional quality details of the

ST data are shown in Table S3.

Dimension reduction, clustering, and identification of differentially expressed genes of SC data
Dimension reductions were performed using PCA and UMAP implemented in Seurat (version 4.1.1). A total of 5000 highly variable

genes were selected based on normalised dispersion. The top 30 principal components were used for UMAP projection and clus-

tering analysis according to the elbow plot of standard deviation explained by PCs. Clustering of single cells was performed using

KNN graph construction and the Louvain algorithm. Resolution parameter resolution = 2.0 was applied during clustering. Raw clus-

ters with few differentially expressed genes were merged to avoid excessive classification. We used FindAllMarkers function of

Seurat for the identification of differentially expressed genes between clusters, with parameters as pos = TRUE, min.pct = 0.25,

logfc.threshold = 0.25, test.use = ‘‘wilcox’’. Genes with adjusted p < 0.05 were considered as differentially expressed genes.

Identification of transcriptional programmes and gene modules using NMF
We employed an NMF procedure to identify robust transcriptional programmes in all malignant and normal epithelial cells.55 Expres-

sion matrix (genes 3 cells) could be factorized into two matrixes by NMF, which are gene 3 program and program 3 cell, therefore

inferring identity and activity of expression programmes, including their relative contributions in each cell. We randomly sampled

50,000 epithelial cells and formed a 5,000 (genes)3 50,000 (cells) normalised expression matrix. The rank parameter of NMF defines

the number of basis effects used to approximate the target matrix. For single-cell data, it can be set to the expected number of

expression patterns or cell types. We set this to a large number (rank = 60), and will get plenty of programmes allowing some redun-

dance. Next, we performed NMF using the ‘‘snmf/r’’ method and ‘‘nndsvd’’ random seed. We sorted gene weight on the transcrip-

tional programmes obtained using NMF, and extracted top 50 genes with top high weights, which generated a gene 3 program

matrix (50 3 60). Redundant programmes were merged if they shared most genes (80%). For the above matrix, we computed the

Spearman correlation coefficients across all samples for the programmes and obtained a correlation matrix to define modules.

We performed a hierarchical clustering with the ‘‘complete’’ method on the correlation matrix, which formed program modules.

We de-duplicated all genes in each module. The gene ontology (GO) analysis was conducted based on GO and KEGG database.

The GSEA was performed on hallmark gene sets of Molecular Signatures Database (MSigDB). Finally, we obtained epithelial expres-

sion programmes and annotated gene modules.

Cell type identification and deconvolution of ST data
Weconsidered both expression of signatures and proportion of cell types to determine the cell type for an ST bin.We calculate a gene

score (sum expression of the signatures for a cell type) for each of ST bins. Bins with top score will be defined as the cell type. The

threshold was set according to the proportion of the cell type in the corresponding single cell data. The signatures were collected

from two aspects (Table S2): (1) identified by single-cell data of RC and (2) widely adopted in the literatures. Regarding to CAFs,

the CAF subtypes of ST data were determined with the similar approach. We defined ten markers for each CAF subset, and calcu-

lated the gene scores for each bin. Bins passing the threshold will be defined as the CAF subset. If a bin was assigned to various CAF

subsets, we annotated the bin as the subset with the highest score after normalization across all subsets.

In addition, the cell types of ST data were also identified by SPOTlight,65 and showed similar results with our approach for themajor

cell types. ST data were deconvoluted using the seeded NMF method implemented in SPOTlight v0.17. SC data were used as

references to infer the composition of each ST bin. A threshold of 0.08 was applied to filter the composition of cell type. The distri-

bution of cell types manually annotated by marker genes, exhibited a similar pattern to that of the high-density region deconvoluted

using SPOTlight. However, for cells of small size, which are commonly diffused/mixed with tumor cells, SPOTlight shows underes-

timates compared with single cell data.

Measurements of cell colocalisation and proximity in ST data
We defined two cells were colocalized if their Euclidean distance (Equation 1) in spatial coordinate was r < 3 (approximately 75mm).

For cell sets A and B, we count the A cells with any B cell is around within the cutoff (r < 3) as the colocalisation of A relative to B
e4 Cell Reports Medicine 4, 101231, October 17, 2023
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(Equation 2). To compare the colocalisation of two cell sets A andBbetween samples, we need to adjust the value of colocalization by

their population size (Cadj) because of the batch difference of samples (Equation 3), with Acoloc is the A cells colocalised with any B

cells, Bcoloc is the B cells colocalised with any A cells.

distða;bÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðxa � xbÞ2+ðya � ybÞ2

�r
(Equation 1)
Counts ðA;B; rÞ = A with B around (Equation 2)
CadjðA;B; rÞ =
jAcolocWBcolocj

jAWBj (Equation 3)

We quantitively measured spatial proximity (Equation 3) of two cell sets A and B as the proportion of cells around set A are from

set B, given a distance range r. We searched B cells around A, using each A cell as a center with a given radius r, to calculate the

fraction of B within the total cells of the radius region. The proximity of A and B was averaged across all A cells. The final percentage

represents the probability of cells around A space within r distance is B cells.

proximityðA;B; rÞ =
1

n

Xn

i

B around Ai

all cells around Ai

(Equation 4)
Trajectory inference of cell differentiation
We developed a new method by applying the optimal transport (OT) strategy to trajectory inference based on SC or ST data. OT is a

strategy for finding least-cost schemes of coupling distributions and intuitively quantifying the distance between multiple datasets or

samples represented as distributions, and it has recently been used for transcriptomic data analysis.68 With the natural advantage of

OT, both gene expression similarity and spatial distance from cell to cell can be conveniently introduced into the cost matrix and

entropy regularisation to solve the OT problem. A fully captured cell-to-cell transition matrix facilitates the prediction of local devel-

opmental routes without limiting global lineage topology. In this process, we implanted the OT to calculate the transmission proba-

bility of each pair of cells and calculated the velocity for each data point in the embedding space of dimension reduction for the SC

data or the morphometric space of tissue section for the ST data. Finally, we organised the streamlines into developmental trajec-

tories. This method takes advantage of single-cell resolution, which depicts the details of local differentiation instead of population-

averaged lineages.69–71 In addition, this method has substantial advantages in computing efficiency and accuracy over methods

based on themRNA splicing ratio.72–74 Firstly, the reads captured in ST data are often sparser than those in SC data, which can result

in less accuracy of RNA-splice estimation and lead to worse trajectory inference. Secondly, most RNA-velocity methods were devel-

oped for SC data, neglecting the spatial locations of cells. Although they could be directly applied to ST data, the resulting trajectory

may be discontinuous in space and usually lost the ability to recover local details of cell differentiations. Thirdly, estimating RNA

splicing rate involves processing BAM file which can be computationally intensive and requires heavy memory loads. Python pack-

ages and tutorial pages were developed and deposited at https://spatrack-tutorials.readthedocs.io/en/latest/index.html.

Cell-cell interaction analysis
In our study, we implemented a new strategy to study the cell-cell interaction (CCI), taking advantage of our large cohorts. In short,

CCIs were estimated between a pair of cell subsets by systematically screening the correlation between ligands from one subset and

pathways from another with a background control, across large samples. The process is as follows.

(1) To screen the initial candidates, including ligands in subset A, receptors and the signaling pathways in subset B, we applied

the following criteria:
candidates =

8>><
>>:

expressionðLAÞR 1
expressionðRBÞR 1
expressionðGBÞR1

ZscoreðregulationðLA;GBÞÞR 1:8

LA is the ligand from subset A, RB is the receptor from subset B, GB is the pathway from subset B. LR pairs were integrated from

multiple datasets, including the LR candidates in Cellchat, CellphoneDB and Nichenet. Pathways were selected from Molecular

Signatures Database (MSigDB). The initial thresholds are relaxing. The expressions are averaged from the cell type of all samples.
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We selected pathways with targeted genes regulated by the ligand with a high potential score, as measured by the Nichenet.

Nichenet has generated a regulatory network (a regulatory matrix) presenting the regulatory connection between a ligand and all

targeted genes. We only consider the pathways that with a high regulatory score (Z score R1.8) compared to randoms.

(2) A real CCI should trigger a functional response. The regulation between a ligand and targeted signaling pathways is the most

important factor of a real CCI. A Spearman correlation was calculated between the ligands in subset A, signaling pathways in

subset B.

(3) The correlation between ligands and pathways may be inflated owing to coordination of cell populations. To reduce the false

positives, we simulated 1000 correlations of ligand-pathway to generate a background distribution for each CCI candidate.

Only significant correlations that deviated from the background distribution were considered (Z scoreR1.8). For a CCI candi-

date, we randomly sampled 1000 artificial ligands from subset A and pathways from subset B. The artificial pathways should

keep the same number of genes as the real pathways.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) determines whether a priori-defined set of genes shows statistically significant enrichment in a

biological state. Considering the inflated dropout rate of SC data and to reduce false positives owing to noise, we designed a GSEA

approach as follows: (1) Gene expression was averaged from ten random cells from each cluster due to the high dropout rates. The

genes were ranked according to their expression levels in eachmeta-cell. (2) A recovery curve was created bywalking down the gene

list, and the number of steps increased when a gene in the gene set was encountered. The area under the curve (AUC) was computed

as an indicator of enrichment of a gene set. Only the AUC of the top 5000 ranked genes was considered. (3) To quantify the signif-

icance, we randomly sampled genes from the entire transcriptome gene list to generate an artificial gene set equal in size to the inves-

tigated gene set. Sampling was repeated 1000 times to produce an AUC distribution for the targeted gene set. By comparing the

difference between a target gene set and its background distribution, we calculated the Z score of the recovery AUC of a gene

set relative to the background in the cell population. Only significantly deviated gene sets (Z score>=1.8) were considered as being

enriched. (4) To compare the different enrichments of the two cell populations for a gene set, we calculated the Z score of the AUC in

one cell population relative to the AUCdistribution in another cell population (Z score>=1.8 as significant). (5) Gene setswere selected

from MSigDB.

Definition of therapeutic index
The therapeutic index (Ti), which was modified from the original proposal,75 aims to determine whether the cellular proportion after

NAC correlates with the chemotherapy response, as it measures the correlation between the change in the cellular fraction after NAC

and TRG. Specifically, Ti defined as

Ti = � slope

jslopej3R2 (Equation 5)

slope and R2 are obtained from the linear regression model lm (y � x), where y is the alteration of cellular fraction of CAF subset

following therapy and x is the tumor regression grade of the sample. A positive Ti indicates the CAF subset is positively associated

with a favorable response, whereas a negative Ti indicates a worse response.

Survival analysis
Gene expression data and clinical information of TCGA caseswere downloaded fromPan-Cancer Atlas Hub of UCSCXena database

(https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-Cancer%20(PANCAN)&removeHub=https%3A%2F%2Fxena.treehouse.

gi.ucsc.edu%3A443). We collected the ‘‘Batch effects normalized mRNA data’’ (dataset ID: EB++AdjustPANCAN_IlluminaHiSeq_

RNASeqV2.geneExp.xena) as the gene expression data, and ‘‘Curated clinical data’’ (dataset ID: Survival_SupplementalTable_

S1_20171025_xena_sp) as the clinical phenotype data.

Signatures for the individual CAF subset are chosen from the differentially expressed genes of one subset comparing with all

others. All signatures are ranked according to their fold change (FC) values and we used top 10 genes for each subset in survival

analysis of TCGA data. For combined CAF subsets, we similarly choose highly differentially expressed genes compared with the

rest CAFs as their signatures. Gene score of each group was calculated in TCGA data by averaging the expressions of their signa-

tures. The gene score of each subset was adjusted by calculated the ratio over one same CAF subset (i.e., CAF_FAP).

To assess the prognosis of pCAF and nCAF subsets in the pan-cancer patients of TCGA, we calculated the gene score of pCAF

subsets and nCAF subsets in integrated pan-cancer samples. Subsequently, we divided the patients into two groups based on the

median gene score, pCAF-high and nCAF-low, pCAF-low and nCAF-high, to conduct the overall survival (OS) analysis. We used the

survfit and survdiff functions in R to generate Kaplan-Meier survival curves and calculated the p value of the log rank test.

We also evaluated the prognosis of each CAF subset. The gene score of each CAF subset were estimated from the averaged

expression level of their differential expression genes. An adjusted ratio was calculated for each subset. All patients were divided

into high and low groups based on the median ratio. OS, progression-free interval (PFI), disease-free interval (DFI), and disease-

specific survival (DSS) were calculated and compared between groups. The survfit and survdiff functions were used to generate
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Kaplan-Meier survival curves and calculate the p values of the log rank tests. The extended rate was calculated by subtracting the

3-year survival rate between high and low groups.

Correlation analysis
We investigated the correlations between cell populations, gene and pathways, gene/pathway and populations. Scatterplots and

linear regression analysis were conducted using geom_points in ggplot2 package and lm function in R were implemented. These

correlations were examined across 29 samples after therapy. Expression of gene or pathway is averaged from the cells in each

sample. Considering the inflated missing values of gene expression, samples with fewer than 10 cells were excluded from the

analysis.

Identification of malignant cells
We applied an integrative strategy of both copy number variants (CNVs) detection and expression clustering to identify malignant

cells. We utilized inferCNV (https://github.com/broadinstitute/inferCNV)76 to identify somatic alterations of large-scale chromosomal

CNVs, either gains or losses for each cell. Para-carcinoma tissue of normal rectal mucosa was used as the reference for determining

somatic variants. For the inferCNV analysis, the following parameters were used: ‘‘denoise’’, default hidden markov model (HMM)

setting, and gene cutoff = 0.1. Cells were clustered according to their CNV pattern using hierarchical clusteringmethod.We assigned

each cell as CNV-malignant or CNV-normal at this step (CNV heavy or not) according to their clustering. We next identified sub-clus-

ters of all epithelial cells (both normal and tumor tissue) through dimension reduction and clustering (by Seurat). We mapped the

results of CNVs onto expression clusters. The clusters with heavy CNV-malignant cells but not from normal tissue were determined

as malignant epithelial cells.
Cell Reports Medicine 4, 101231, October 17, 2023 e7
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