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Searching for pneumothorax 
in x‑ray images using autoencoded 
deep features
Antonio Sze‑To1, Abtin Riasatian1 & H. R. Tizhoosh1,2*

Fast diagnosis and treatment of pneumothorax, a collapsed or dropped lung, is crucial to avoid 
fatalities. Pneumothorax is typically detected on a chest X‑ray image through visual inspection by 
experienced radiologists. However, the detection rate is quite low due to the complexity of visual 
inspection for small lung collapses. Therefore, there is an urgent need for automated detection 
systems to assist radiologists. Although deep learning classifiers generally deliver high accuracy 
levels in many applications, they may not be useful in clinical practice due to the lack of high‑quality 
and representative labeled image sets. Alternatively, searching in the archive of past cases to find 
matching images may serve as a “virtual second opinion” through accessing the metadata of matched 
evidently diagnosed cases. To use image search as a triaging or diagnosis assistant, we must first tag 
all chest X‑ray images with expressive identifiers, i.e., deep features. Then, given a query chest X‑ray 
image, the majority vote among the top k retrieved images can provide a more explainable output. 
In this study, we searched in a repository with more than 550,000 chest X‑ray images. We developed 
the Autoencoding Thorax Net (short AutoThorax ‑Net) for image search in chest radiographs. 
Experimental results show that image search based on AutoThorax ‑Net features can achieve high 
identification performance providing a path towards real‑world deployment. We achieved 92% AUC 
accuracy for a semi‑automated search in 194,608 images (pneumothorax and normal) and 82% AUC 
accuracy for fully automated search in 551,383 images (normal, pneumothorax and many other chest 
diseases).

Pneumothorax (collapsed or dropped lung) is an emergency condition when air enters the pleural space, i.e., the 
space between the lungs and the chest  wall1,2. It is one of the diseases in the Category 1 findings that should be 
communicated to clinicians within minutes in order to take immediate actions to avoid fatalities as recommended 
by the American College of Radiology (ACR)3,4. A graphical illustration of pneumothorax is provided in Fig. 1.

It is generally a serious condition that can be  fatal1. To prevent patient death, early detection of pneumothorax 
through application of deep learning may be a viable  option4. Pneumothorax is typically detected on chest X-ray 
images by qualified  radiologists2. However, nowadays radiologists in many may have to process many X-ray 
studies  daily6. With the increasing workload, the large volume of work for radiologists understandably delays 
diagnosis and treatment. In this process, experience is absolutely necessary but even the most experienced expert 
may be prone to miss the subtleties of an  image7,8. Since a wrong or delayed diagnosis can cause harm to  patients9, 
it is vital to develop computer-aided approaches to assist radiologists in their daily workflow.

Chest X-ray is the most common medical imaging modality with over 35 millions images taken every 
year in the U.S.  alone10. X-ray images allow for inexpensive screening of several chest conditions including 
 pneumothorax6. Since hospital daily workloads may result in long queues for radiology images to be read, includ-
ing images acquired overnight or images without any clinical pre-screening, an automated method of inspecting 
chest X-rays and prioritizing studies with potentially positive findings for rapid review may reduce the delay in 
diagnosing and treating  pneumothorax11.

Due to its recent success, an increasing number of studies have adopted “deep learning” for processing digital 
images, referring to the use of Deep Neural Networks (DNN), defined as artificial neuronal networks with more 
3 hidden  layers12 (DNNs practically consisting of many more hidden layers), to detect pneumothorax or other 
thoracic diseases in chest X-ray  images11,13–23. The deep-learning pneumothorax detection systems can be catego-
rized into two categories: (1) detection methods, i.e., to pinpoint the exact location of certain thoracic diseases 
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in an input chest X-ray image, and (2) classification methods, i.e., to identify the presence of certain thoracic 
diseases in an input chest X-ray image without highlighting the exact location of the disease.

From a practical point of view, detection systems remain hard to be developed as large high-quality datasets 
with pixel-level labels are needed to train such systems. These datasets are expensive to obtain as creating repre-
sentative and accurate labels constitutes tedious manual work for radiologists (for instance, many works focus 
on large and medium size  pneumothorax11). Classification systems, on the other hand, are relatively easier to 
develop as they only need image-label annotation.

So far, more than half a million chest X-ray images with image-level (or global) labels have been released. 
These are ChestX-ray1413,  CheXpert19 and MIMIC-CXR24. Leveraging such a large amount of labelled images, 
classification-based systems should not be difficult to train and deploy. Nevertheless, the main drawback of a 
classification system is that it only outputs a single probability, a number that quantifies the likelihood of the 
chest X-ray to contain a certain abnormality. This may not be enough to justify the diagnosis.

Image search, as a different approach to classification, not only can provide a probabilistic output like a clas-
sifier by taking a weighted majority vote among matched images but also can provide access to the metadata of 
similar cases from the past, a functionality that a trained deep network for classification cannot offer. Hence, 
image search allows a comparison of patient histories and treatment profiles due to providing a list of matched 
cases and not just delivering a classification  probability25. Therefore, image search may enable a virtual “second 
opinion” for diagnostic purposes and provide computerized explanations for the decision support. While image 
search may be more viable for clinical deployment in terms of explainability, its classification performance still 
needs to be investigated, specifically, whether image search can achieve a identification performance as high as 
those obtained by classification-based deep learning systems.

In this study, we explored the use of image search based on deep features obtained from DNNs to detect 
pneumothorax in chest X-ray images. By means of using image search as a classifier, all chest X-ray images were 
first tagged with a feature vector. Given a query chest X-ray image, the majority voting of the top k retrieved 
chest X-ray images was then used as a classifier. The corresponding reports and other clinical metadata of the 
top search results can also be used if available. This is an inherent benefit of image search.

Our contributions in this study are two-folded. Firstly, we developed AutoThorax-Net that generates feature 
vectors from integrating multiple images into one feature vector. Although the benefits of using deep features 
for processing x-ray images is well-established, in this study we demonstrated breaking down the image into 
multiple sub-images, here by using the chest symmetry, does in fact provide better results; the separation of 
left and right lung accompanying the entire image apparently increases the recognition accuracy. Flipping one 
lung—as a coarse type of image registration—may also contribute to the better feature matching. Experimental 
results demonstrate that image search on AutoThorax-Net features can achieve a higher detection performance 
compared with using feature vectors solely from the input image. Experimental results also showed that image 
search based using AutoThorax-Net features with the dimensionality reduced by a factor of 12 times can achieve 
a detection performance, comparable to or outperforming those obtained by existing systems such as  CheXNet13.

Related works
Deep learning for analyzing chest x‑ray images. Since the release of the ChestX-ray14  dataset13 by 
National Institute of Health, providing 112,120 frontal-view X-ray images of 30,805 unique patients labelled for 
14 diseases (in which each image may have multi-labels), an increasing number of studies have adopted DNNs 
to develop automated systems to detect diverse diseases on chest X-ray  images11,14–22. CheXNet14, a DNN with 

Figure 1.  A graphical illustration of pneumothorax. [Medical gallery of Blausen Medical 2014, WikiJournal of 
 Medicine5].
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DenseNet121  architecture26, has been trained on ChestX-ray14 dataset and achieved radiologist-level detection 
of pneumonia. Since then, many DNN architectures have been proposed for a variety of tasks ranging from 
 localization21, lateral and frontal dual chest X-ray  reading15, integration of non-image data in  classification20, 
attention-guided  approaches27, location-aware  schemes6, weakly-supervised  methods28,29 as well as generative 
 models8.

For detecting pneumothorax, a recent study collected 13,292 frontal chest X-rays (3107 with pneumothorax) 
to train a DNN to verify the presence of a large or moderate-sized pneumothorax. Another recent  study4 col-
lected 1003 images (437 with pneumothorax and 566 with no abnormality) to detect pneumothorax with DNNs. 
So far, there has been no study to investigate pneumothorax detection in a large dataset, perhaps by combining 
the three large public datasets.

Deep learning for content‑based image retrieval. Retrieving similar images given a query image is 
known as Content-Based Image Retrieval (CBIR)30 or Content-Based Medical Image Retrieval (CBMIR)31 for 
medical applications. While classification-based methods provide promising  results32, CBMIR systems can assist 
clinicians by enabling them to compare the case they are examining with previous (already diagnosed) cases 
and by exploiting the information in corresponding medical  reports31. It may also help radiologists in faster and 
more reliably preparing reports for particular  diagnosis31.

While deep learning methods have been applied to CBIR tasks in recent  studies33,34, there has been less atten-
tion on exploring deep learning methods for CBMIR  tasks35,36.

One study investigated the performance of DNNs for MR and CT images with human anatomy  labels35. 
Another study investigated the retrieval performance of DNNs among multimodal medical images for differ-
ent body  organs36. There is also a study exploring hashing deep features into binary codes, testing among lung, 
pancreas, neuro and urothelial bladder  images37. Deep Siamese Convolutional Neural  Networks38 have also 
been tested for CBMIR to minimize the use of expert labels using multiclass diabetic retinopathy fundus images. 
Another study explored deep learning for CBMIR among multiple modalities for a large number of  classes39. 
So far, there has not been any report to validate CBMIR techniques for a challenging case like pneumothorax 
detection in large datasets. We attempt to close this gap by reporting our results on a large dataset of chest x-ray 
images by fusion three public datasets.

Methods
Given a query chest X-ray image, the problem is to output whether it contains pneumothorax using image search 
in archived images through majority vote among retrieved similar images from the archive.

The proposed method of using image search as a classifier comprises of three phases (Fig. 2): (1) Tagging 
images with deep features (all images in the database are fed into a pre-trained network to extract features), (2) 
image searching (tagging the query image with features and calculating its distance with all other features in the 
archive to find the most similar images), (3) classification (majority vote among the labels of retrieved similar 
images).

Phase 1: tagging images with deep features. In this phase, all chest X-ray images in the archive are 
tagged with deep features. To represent a chest X-ray image as a feature vector with a fixed dimension, the last 
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Figure 2.  An overview of using image search as a classifier to recognize pneumothorax in chest X-ray images. 
Phase 1: Tagging images with Features. Phase 2: Image Search (distance calculation between the query features 
and all other features in the database). Phase 3: Classification (the majority voting of the retrieved images as a 
classifier).
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pooling layer may be used as image representation. In other words, the pre-trained deep convolutional neuronal 
network is considered as a feature extractor to convert a chest X-ray image into an n-dimensional feature vector 
with n = 1, 024 being a typical value for many networks. In our study,  DenseNet12126 is used for converting a 
chest X-ray image into a feature vector with 1,024 dimensions. DenseNet topology has a strong gradient flow 
contributing to diverse features and is, compared to many other architectures such as ResNet and EfficientNet, 
quite compact with only 7 million weights. We adopted DenseNet121 also for a fair comparison in experiments 
with CheXNet, which has also used DenseNet121 as its backbone architecture. Three configurations are explored 
to extract deep features from a chest X-ray image (Fig. 3):

• Configuration 1—a feature vector is extracted from the entire chest X-ray image. Representing the entire 
image with one feature vector is quite common and assumes that the object or abnormality will be adequately 
quantified in the single feature vector for the entire image.

• Configuration 2—two feature vectors are extracted, one from the left chest side and one from the flipped 
version of the right chest side. The final feature vector is a concatenation of these two feature vectors. If 
 DenseNet12126 is adopted as the feature extractor, the feature vector has 2, 048 values. The rational behind 
this idea is to allow expressive features for each side of the chest to be quantified separately to make feature 
matching easier for the unsupervised search. As well, flipping the right lung is a registration-like operation 
to facilitate alignment in matching.

• Configuration 3—three feature vectors are extracted as described in previous two configurations. The final 
feature vector is a concatenation of these three feature vectors. If  DenseNet12126 is adopted as the feature 
extractor, the dimension of the final feature vector is 3072 real-valued features. The rationale behind this 
configuration is that matching a combined feature vector that represents the whole image, the left chest side 
and the flipped right chest side not only provides a global image view but also more focused and aligned 
attention to each chest side to emphasize their features in the search and matching process.

Phase 2: image search. In this phase, the distance between the deep features of the query chest X-ray 
image and all chest X-ray images in the database are computed. The chest X-ray images having the shortest dis-
tance with those of the query chest X-ray image are subsequently retrieved. The Euclidean distance, as the most 
commonly used norm for deep feature matching, was used for computing the distance between the deep fea-
tures of two given chest X-ray images. It is the geometric distance in the multidimensional space recommended 
when all variables have the same  metric40. The calculated distances can be sorted to retrieve as many as matched 
images as desired. The impact of distance norms on retrieval may be investigated in future works.
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Figure 3.  An overview of the three configurations using  DenseNet12126 to extract features from a chest X-ray 
images. Configuration 1: a feature vector is extracted from the entire chest X-ray image. Configuration 2: 
two feature vectors are extract from the left chest side and flipped right chest side. The final feature vector is a 
concatenation of these two feature vectors. Configuration 3: three feature vectors are extract from the left chest 
side, the flipped right chest side, and the entire chest X-ray image, respectively.
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Phase 3: classification. In this phase, the majority vote among the labels of retrieved chest X-ray images is 
used as a classification decision. For example, given a query chest X-ray image, the top k most similar chest X-ray 
images are retrieved. If m chest X-ray images are labelled with pneumothorax (with m ≤ k), the query image is 
classified as pneumothorax with a class likelihood of m/k. The larger k the more reliable the classification vote 
will become. This, in turn, requires a large archive of tagged images to increase the probability of finding similar 
images.

Compressing feature dimensionality using autoencoders. The dimensionality of the feature vec-
tors, especially the concatenated ones, may become a computational obstacle but it can be reduced by employing 
autoencoders. One may use an autoenoder for all configurations but our main motivation was a size reduction 
for the longest feature vector for configuration 3. Two steps are required to construct an encoder to reduce fea-
ture vector dimensionality:

• Step 1: Unsupervised end-to-end training with a decoder An autoencoder with the architecture summarized 
in Fig. 4a is first constructed. A dropout  layer41 with a probability of 0.2 is introduced between each layer 
to reduce the probability of overfitting. The model is then trained for 10 epochs by backpropagation with 
outputs being set equal to inputs. The batch size, loss function and optimizer were set to 128, Mean Squared 
Error and Adam, respectively. The training details are visualized in Fig. 5.

• Step 2: Supervised fine-tuning with labels After the training, the decoder in the model is removed as we only 
need the encoding part as dimensionality reduction. Instead, a one-dimensional fully connected layer of 
neurons with the sigmoid function as activation function was used in training phase. The network was trained 
for 10 epochs with the batch size of 128 using binary cross-entropy loss function and Adam optimizer. The 
training details are visualized in Fig. 5. During training, to deal with class imbalance, individual class weight 
was set for each class using the following formula:

where wc j is the class weight of class c j; C is the total number of classes; S is the total number of training 
samples; Sc j is the total number of training samples belonging to class c j.

(1)Wcj =
S

C × Scj
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Figure 4.  An overview of autoencoder topologies: (a) an autoencoder, with an encoder (highlighted in blue) 
and an decoder (highlighted in yellow), is constructed during step 1: Unsupervised end-to-end training with 
decoder, (b) an encoder (highlighted in blue) with an extra layer added (highlighted in green) is constructed 
during step 2: supervised fine-tuning with labels, (c) an encoder (highlighted in blue) is constructed by 
removing the 1-dimension layer.
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The model architecture is summarized in Fig. 4b. Similarly, a dropout  layer41 was introduced between the 
256-dimensional layer and the one-dimensional layer to reduce the probability of overfitting. The model is then 
trained with through backpropagation. After the training, the one-dimensional fully connected layer is removed. 
The model architecture of the final encoder is summarized in Fig. 4c.

Model architecture. The architecture of AutoThorax-Net to obtain features from a chest X-ray image is 
illustrated in Fig. 6.

Results
In this section, we first describe the datasets collected and the prepossessing procedures. We then describe the 
experiments that were conducted, followed by the analysis. The main goal of experiments is to validate the per-
formance of image search via matching deep features. In order to establish performance quantification, we treat 
search like a classifier by taking a consensus vote guided by the ROC statistics. We also compare the results with 
the CheXNet (without any modification or fine-tuning) which is an end-to-end deep network specially trained 
for classifying chest X-ray images.

Dataset collection. Three large public datasets of chest X-ray images were collected. The first is MIMIC-
CXR24,42, a dataset of 371,920 chest X- rays associated with 227,943 imaging studies. A total of 248,236 frontal 
chest X-ray images in the training set were used in this study. The second dataset is  CheXpert19, a dataset consist-
ing of 224,316 chest radiographs belonging to 65,240 patients. A total of 191,027 frontal chest X-ray images in 
the training set were used in this study. The third dataset is ChestX-ray1413 consisting of 112,120 frontal-view 
X-ray images of 30,805 patients. All chest X-ray images in this dataset were used in this study.

Figure 5.  Visualization of training and validation loss in both phases (for the first fold). The weights of the 10th 
epoch, for both phases, are used in the experiments.
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Figure 6.  A graphical illustration of AutoThorax-Net. Three extracted feature vectors (FVs) (left) are 
concatenated and fed into into an encoder to compress them into 256 values for image search. During training 
the same compressed FV is used as input to a fully connected layer (FC) to classify images as pneumothorax 
with a likelihood of p.
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In total, 551,383 frontal chest X-ray images were used in our investigations. 34,605 images (6% of of all 
images) were labelled as pneumothorax. The labels refer to the entire image; the collapsed lungs were not high-
lighted in any way.

Implementation and parameter setting. We used the library Keras (http:// keras. io/) v2.2.4 with Ten-
sorflow  backend43 to implement the approach. As we used a pre-trained network for feature extraction, the 
DenseNet121 was  selected26, and the weight file was obtained through the default setting of Keras. For  CheXNet14, 
the weight file was downloaded from GitHub (https:// github. com/ bruce chou1 983/ CheXN et- Keras). All images 
were resized to 224 224 before feeding into networks. All other parameters were default values unless other-
wise specified. All experiments were run on a computer with 64.0 GB DDR4 RAM, an Intel Core i9-7900X 
@3.30 GHz CPU (10 Cores) and one GTX 1080 graphic card.

Performance evaluation. Following relevant  literature14,19, the performance of classification was evalu-
ated by the area under the curve (AUC) for the receiver operating characteristic curve (ROC curve) to enable 
the comparison over a range of prediction thresholds. As a tenfold cross-validation was conducted in the experi-
ments, average ROC was computed with 95% confidence interval.

Dataset preparation & preprocessing. There is a concern for ChestX-ray1413 dataset that its chest X-ray 
images with chest tubes were frequently labelled with  Pneumothorax44,45. As we combined ChestX-ray14 with 
 CheXpert19, and MIMIC-CXR24,42 datasets in our experiments, the concern was mitigated to address the bias.

Dataset 1 (semi‑automated detection). If there is a suspicion of pneumothorax by the user, then the 
search will limited to the archived images that are either normal (i.e., no finding) or pneumothorax. We This is a 
dataset comprising of 34,605 pneumothorax chest X-ray images and 160,003 normal chest X-ray images. Search-
ing in this dataset means there is already a suspicion by the expert that the image may contain pneumothorax, 
hence the search is guided to only search within archived images that are diagnosed as either pneumothorax or 
normal (no finding). The pneumothorax images were obtained from the collected frontal chest x-ray images with 
the label "Pneumothorax". They were considered as the positive (+ ve) class. The normal images were obtained 
from the collected frontal chest x-ray images with label the "No Finidng". These chest X-ray images were consid-
ered as the negative (− ve) class. A summary of dataset 1 is provided in Table 1.

Dataset 2 (fully‑automated detection). If there is no concrete suspicion from user, we match the input 
image against all other images regardless of their tagged disease label. This dataset is comprising of 34,605 pneu-
mothorax chest X-ray images and 516,778 non-pneumothorax chest x-ray images. Searching in this dataset 
means the computer is automatically searching in all images to verify the likelihood of pneumothorax without 
any guidance of the expert. The pneumothorax images were obtained from the collected frontal chest X-ray 
images with the label "Pneumothorax". They were considered as the positive (+ ve) class. The non-pneumothorax 
images were obtained from the collected frontal chest X-ray images without the label "Pneumothorax", meaning 
that they may contain cases such as normal, pneumonia, edema, cardiomegaly and more. They were considered 
as the negative (-ve) class. A summary of dataset 2 is provided in Table 2.

First experiment series: semi‑automated solution. The first experiments series focuses on a “semi-
automated” solution for pneumotharx. We confine the search and classification to cases that are either normal or 
diagnosed with pneumotharx (Dataset 1). We test all three configurations (Fig. 3), CheXNet, and the proposed 
AutoThorax-Net.

Table 1.  A summary of chest X-ray images in the Dataset 1 through combination of three public datasets.

MIMIC-CXR24,42 CheXpert19 ChestX-ray1413 Total

+ ve: pneumothorax 11,610 17,693 5,302 34,605

− ve: normal 82,668 16,974 60,361 160,003

Total 94,278 34,667 65,663 194,608

Table 2.  A summary of chest X-ray images in the Dataset 2 through combination of three public datasets.

MIMIC-CXR24,42 CheXpert19 ChestX-ray1413 Total

+ ve: pneumothorax 11,610 17,693 5302 34,605

− ve: Non-pneumothorax 236,626 173,334 106,818 516,778

Total 248,236 191,027 112,120 551,383

http://keras.io/
https://github.com/brucechou1983/CheXNet
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Experimental workflow. All images of Dataset 1 for all configurations were first tagged with deep features. 
We constructed the receiver operating characteristics (ROC) curve for the dataset to find the trade-off between 
sensitivity and specificity (Fig. 7). We used Youden’s  index46 to find the trade-off position on the ROC curve 
providing the threshold for match selection. The Youden’s index can be calculated as “sensitivity + specificity 1”. A 
standard tenfold cross-validation was adopted for tests that showed a very low standard deviation for all experi-
ments apparently due to the large size of the datasets. All tagged chest X-ray images were divided into 10 groups. 
In each fold, one group of chest X-ray images was used as validation set, while the remaining chest X-ray images 
were used as “archived” images to be searched. The above process was repeated 10 times, such that in each fold a 
different group of chest X-ray images was used as the validation set. In each fold, an encoder was trained using 
the archived set of that fold. The encoder was then used for compressing deep features for each chest X-ray image 
in the validation set.

The parameters of the encoder construction process are described as follows:
Step 1 Unsupervised end-to-end training with decoder: The training epoch and batch size were set as 10 and 

128, respectively. The loss function was chosen as mean-squared-error. Adam  optimizer47 was used. The dropout 
rate was set to 0.2, i.e., a probability of 20% setting the neuron output as zero to counteract possible overfitting.

Step 2 Supervised fine-tuning with labels: The loss function was chosen as binary cross-entropy. Other param-
eters remained the same as in Step 1.

Given a query chest X-ray image from validation sets, image search was conducted on the archived set to 
retrieve k similar images for each query image. The consensus vote among the top k retrieved chest X-ray images 
subsequently determines whether the query image is pneumothorax. Results were generated with k 11, 51, 101, 
251, 501, 1001. As we were using a large number of archived images, one was excepting to see better results for 
higher k values.

Results. Experimental results on Dataset 1 are summarized in Table 3 for AutoThorax-Net, ChexNet and all 
three feature configurations from Fig. 3. We calculated area under the curve (AUC), sensitivity and specificity 
for all 10 folds. Standard deviations were quite low (< 1%), hence not reported. Figure 8 shows the confusion 
matrices for both AutoThorax-Net and ChexNet.

The average sensitivity and specificity obtained by Configuration 3 for k = 1001 are higher than those obtained 
by Configuration 1 although they have almost the same AUC. Configuration 1 shows higher sensitivity for k = 11 
(86% versus 83%) but its specificity is lower than Configuration 3 (76% versus 80%). Configuration 2 delivers 
the same AUC in range 88% but in individual comparison is always worse than other configurations with lower 
sensitivity and specificity.

AutoThorax-Net has clearly the highest AUC (92%). ChexNet delivers an AUC of 88% similar to the three 
search configurations. The highest sensitivity is 86% achieved by all tested methods. However, AutoThorax-Net 
also provides a specificity of 84% whereas the specificity of all other methods, including ChexNet, are in the 
70% range.

To verify that the improvements of the proposed methods are significant, we have performed the two-sided 
Wilcoxon Signed-Rank  test48 between the performance of CheXNet and our best performing configuration which 
is AutoThorax-Net with k = 1001. Our results, shown in Table 3, suggest that AUC and Specificity are improved 
from 88 to 92 and 76 to 84, respectively. The calculated p-values for these two metrics, both 0.005, are smaller 
than 0.05 and reject the null hypothesis which means significant differences exist between the performance of 
AutoThorax-Net with k = 1001 and CheXNet with respect to these two metrics.

Second experiment series: automated solution. In these experiments, we investigated the possibility 
of constructing a “fully automated” solution by searching the entire archive, i.e., Dataset 2. We summarize the 
experimental workflow, and report the results with some analysis.

k = 11, AUC=0.897 
k = 51, AUC=0.916 
k = 101, AUC=0.919 
k = 251, AUC=0.922 
k = 501, AUC=0.923
k = 1001, AUC=0.923
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Figure 7.  Analysis for Dataset 1. Left: Sample ROC curves for the proposed AutoThorax-Net for different k 
values in one fold and their area under the curve (AUC), Right: corresponding ROC thresholds for k = 1001 to 
select the sensitivity–specificity trade-off using Youden’s index.
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Experimental workflow. We constructed the receiver operating characteristics (ROC) curve for Dataset 2 to 
find the trade-off between sensitivity and specificity (Fig. 9). We used Youden’s index to find the trade-off posi-
tion on the ROC curve providing the threshold for match selection. A standard tenfold cross-validation was 
adopted for testing that showed a very low standard deviation (< 1%) for all experiments apparently due to the 
large size of the datasets. All chest X-ray images were divided into 10 folds. In each fold, one group of chest X-ray 
images was used as validation set, while the remaining chest X-ray images were used as archived set. The above 
process was repeated 10 times, such that in each fold a different group of chest X-ray images was used as the 
validation set. In each fold, an encoder was trained using the archived set of that fold. The encoder was then used 
for compressing deep features for each chest X-ray image in the validation set.

The parameters of the encoder construction process were set as before described for Dataset 1.
For image search, given a chest X-ray image (from the validation set), the compressed deep feature was used 

for searching in the archived set. The consensus vote among the top k retrieved chest X-ray images to classify the 
query image from the validation set. Experiments were conducted with k 11, 51, 101, 251, 501, 1001 to observe 
the effect of more retrievals on consensus voting. For comparison,  CheXNet14 was adopted as a baseline to be 
applied to the validation set in each fold.

Table 3.  A summary of classification performance using image search as a classifier on Dataset 1. The 
numbers (in percentage) are the result of averaging 10 folds with very low standard deviation (< 1%).

Method Sensitivity Specificity AUC 

CheXNet14 classifier 86 76 88

Search via AutoThorax-net features (k = 1001) 86 84 92

Search via AutoThorax- net features  (k = 501) 86 83 92

Search via AutoThorax- net features  (k = 251) 84 85 92

Search via AutoThorax- net features  (k = 101) 85 84 92

Search via AutoThorax- net features  (k = 51) 85 84 92

Search via AutoThorax- net features  (k = 11) 81 86 90

Search via configuration 3 (3072 features, k = 1001) 85 74 88

Search via configuration 3 (3072 features, k = 501) 84 76 88

Search via configuration 3 (3072 features, k = 251) 81 79 89

Search via configuration 3 (3072 features, k = 101) 84 78 89

Search via configuration 3 (3072 features, k = 51) 86 77 89

Search via Configuration 3 (3072 features, k = 11) 83 80 88

Search via configuration 2 (2048 features, k = 1001) 86 70 87

Search via configuration 2 (2048 features, k = 501) 85 73 88

Search via configuration 2 (2048 features, k = 251) 84 75 88

Search via configuration 2 (2048 features, k = 101) 84 77 88

Search via configuration 2 (2048 features, k = 51) 79 81 88

Search via configuration 2 (2048 features, k = 11) 80 81 87

Search via configuration 1 (1024 features, k = 1001) 80 78 88

Search via configuration 1 (1024 features, k = 501) 81 78 88

Search via configuration 1 (1024 features, k = 251) 80 80 89

Search via configuration 1 (1024 features, k = 101) 81 80 89

Search via configuration 1 (1024 features, k = 51) 83 80 89

Search via configuration 1 (1024 features, k = 11) 86 76 88
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Figure 8.  Dataset 1: Confusion matrices for the best results of AutoThorax-Net (left) and CheXNet (right).
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Results. Experimental results on Dataset 2 are summarized in Table 4. Figure 10 shows the confusion matri-
ces for AutoThorax-Net and ChexNet.

The highest AUC of 82% is achieved by AutoThorax-Net for k = 251, 501 and 1001. The highest sensitivity of 
74% is achieved by Configuration 2 (for k = 251) and Configuation 3 (for 101). However, they both deliver low 
specificity values of 61% and 65%, respectively. The second highest sensitivity of 73% is achieved by Configuration 
1, Configuration 2 and AutoThorax-Net. Their specificity is 61%, 63% and 75%, respectively. AutoThorax-Net 
can clearly provide a higher and more reliable trade-off between sensitivity and specificity in a fully automated 
setting when applied on a large archive of X-ray images.

To verify that the improvements of the proposed methods are significant, we have performed the two-sided 
Wilcoxon Signed-Rank  test48 between the performance of CheXNet and our best performing configuration which 
is AutoThorax-Net with k = 1001. Our results, shown in Table 4, suggest that AUC and Specificity are improved 

k = 11, AUC=0.736 
k = 51, AUC=0.791 
k = 101, AUC=0.803 
k = 251, AUC=0.810 
k = 501, AUC=0.813
k = 1001, AUC=0.815
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Figure 9.  Analysis for Dataset 2. Left: Sample ROC curves for the proposed AutoThorax-Net for different k 
values in one fold and their area under the curve (AUC), Right: corresponding ROC thresholds for k = 1001 to 
select the sensitivity–specificity trade-off using Youden’s index.

Table 4.  A summary of classification performance using image search as a classifier on Dataset 2. The 
numbers (in percentage) are the result of averaging 10 folds with very low standard deviation (< 1%).

Method Sensitivity Specificity AUC 

CheXNet14 classifier 72 67 77

Search via AutoThorax- net features  (k = 1001) 73 75 82

Search via AutoThorax- net features  (k = 501) 73 75 82

Search via AutoThorax- net features  (k = 251) 72 75 82

Search via AutoThorax- net features  (k = 101) 69 78 81

Search via AutoThorax- net features  (k = 51) 70 75 80

Search via AutoThorax- net features (k = 11) 72 67 74

Search via configuration 3 (3072 features, k = 1001) 72 63 75

Search via configuration 3 (3072 features, k = 501) 70 67 76

Search via configuration 3 (3072 features, k = 251) 71 67 76

Search via configuration 3 (3072 features, k = 101) 74 65 77

Search via configuration 3 (3072 features, k = 51) 65 74 76

Search via configuration 3 (3072 features, k = 11) 72 65 72

Search via configuration 2 (2048 features, k = 1001) 67 66 74

Search via configuration 2 (2048 features, k = 501) 64 70 75

Search via configuration 2 (2048 features, k = 251) 74 61 75

Search via configuration 2 (2048 features, k = 101) 70 66 75

Search via configuration 2 (2048 features, k = 51) 73 63 75

Search via configuration 2 (2048 features, k = 11) 68 66 70

Search via configuration 1 (1024 features, k = 1001) 73 61 74

Search via configuration 1 (1024 features, k = 501) 67 68 75

Search via configuration 1 (1024 features, k = 251) 67 69 75

Search via configuration 1 (1024 features, k = 101) 70 65 75

Search via configuration 1 (1024 features, k = 51) 67 68 74

Search via configuration 1 (1024 features, k = 11) 71 60 69
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from 77 to 82 and 67 to 75, respectively. The calculated p-values for these two metrics, both 0.005, are smaller 
than 0.05 and reject the null hypothesis which means significant difference exist between the performance of 
AutoThorax-Net with k = 1001 and CheXNet with respect to these two metrics.

Comparing Autoencoder against PCA. As one of the main contributions of the AutoThorax-Net is 
encoding the concatenated feature vector (i.e., reducing the dimensionality), the question arises whether the 
same level of performance can be achieved by traditional algorithms such as the principal component analysis 
(PCA). We did run the tenfold cross validation on both dataset configurations for k = 11 and k = 51. We observed 
in all settings that the performance of autoencoder was better than PCA. For instance, for the second experi-
ment, PCA achieved 72% and 76% AUC for k = 11 and k = 51, respectively, while autoencoder achieved 74% and 
80% AUC. As the performance of the dimensionality reduction is independent of k, one expects that a more 
capable compression should already manifest itself for any k. However, as we are using the compressed/encoded 
features for image search, good performance is expected to be particularly visible for a small number of matched 
cases.

Discussions
In our investigations, we experimented with image search as a classifier to detect pneumothorax based on 
autoencoded concatenated features applied on more than half a million chest X-ray images obtained through 
the merging three large public datasets.

In our experiments, we verified that the use of image search as a classifier with AutoThorax-Net as a feature 
extractor can improve classification performance. This was demonstrated by analysing the ROC curves to find 
the trade-off for each individual approach. We further confirmed that compressing concatenated deep features 
via autoencoders further improves the results of image search. This indicates that image search as a classifier is 
a viable and more conveniently explainable solution for the practice of diagnostic radiology when reports and 
history of evidently diagnosed cases of similar cases are readily available.

Please note that some of the folds we used may contain images that ChextNet has already seen during its 
training. This may bring a slight inflation of performance numbers for ChexNet. We ignored this unfair advantage 
for ChexNet over our AutoThorax-Net since we had to exploit the mixture of three public datasets and apply 
k-fold cross validation for maximum data usage and decreasing data bias.
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