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Abstract

Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute
mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to
TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary
factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex
became acidic, consistent with data from humans following brain trauma. Administering HCO3

2 after FPI prevented the
acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we
also studied ASIC1a2/2 mice and found reduced neurodegeneration after FPI. Both HCO3

2 administration and loss of
ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates
ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse
consequences of TBI.
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Introduction

Traumatic brain injury (TBI) is a common public health issue

that affects an estimated 1.7 million individuals annually in the

United States [1]. The pathophysiology of TBI involves at least

two stages. The initial mechanical event causes structural damage

to brain tissue. That primary injury is followed by a secondary

injury, a complex process that can extend from minutes to months

and leads to impaired function and death of neurons [2–4]. The

acute and typically unpredictable timing of the primary injury

supports the adoption of preventive measures, but also accounts

for the many practical problems and constraints associated with

immediate therapeutic intervention [5]. However, the more

prolonged time during which secondary injury progresses suggests

that there is a window of opportunity to intervene and reduce the

adverse consequences and long-term sequelae of TBI.

Multiple potential mechanisms for secondary TBI have been

identified and include reduced cerebral blood flow causing brain

ischemia [6–8], brain edema causing increased intracranial

pressure that can further impair cerebral blood flow and cause

herniation syndromes [9,10], excitotoxicity [11–13], oxidative

stress [14–16], and inflammation [17–20]. Acidosis is also a factor

that could contribute to the secondary injury. Previous studies

have shown that brain tissue pH falls after TBI, and the reduction

is greater in patients with more severe injury [21–25]. Acidosis

may be due to ischemia and to metabolic changes induced by the

injury [26].

A reduced pH could potentially enhance TBI severity by

activating acid sensing ion channels (ASICs) [27–31]. ASICs are

members of the degenerin/epithelial Na+ channel family of ion

channels and are widely expressed in the central nervous system

[32–35]. Neuronal ASIC channels are hetero-trimers [36]

composed primarily of ASIC1a and ASIC2 subunits [32–35].

These subunits form non-voltage gated channels that are activated

by a reduction of extracellular pH and conduct Na+ and to a lesser

extent Ca2+. The ASIC1a subunit is required for currents in

response to acidic stimuli of less than pH 5 as demonstrated in

neurons from mice with a disrupted ASIC1a gene (ASIC1a2/2

mice) [35,37].

Previous studies have shown that acidosis can cause neuronal

injury that is at least in part mediated by ASIC channels. For

example, extracellular acidosis accompanying cerebral ischemic

stroke contributed to neuronal injury, and eliminating ASIC1a

from neurons attenuated acidosis-induced cell injury and death

[38–40]. Inhibiting ASICs also attenuated neuronal injury

following reperfusion after an ischemic insult in rats [40].

Extracellular pH also falls during autoimmune encephalomyelitis,

a mouse model of multiple sclerosis, and loss of ASIC1a in

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e72379



ASIC1a2/2 mice was neuroprotective [41]. It has also been

proposed that ASIC channels contribute to the pathological

consequences of Parkinson’s disease [42–44] and Huntington’s

disease [45]. Earlier studies of TBI in rats examined the effect of

amiloride, which can inhibit ASIC currents. One study suggested

that amiloride administered before TBI could attenuate severity

[46], and another study suggested that amiloride administered

30 min after TBI exacebated the injury [47]. Further limiting the

interpretation of such studies, amiloride can also inhibit the type-

1 Na+-H+ exchanger and the Na+-Ca2+ exchanger.

Based on this background, we hypothesized that TBI induces an

acidosis that activates ASIC channels and thereby contributes to

the neuronal injury following mechanical trauma. To test this

hypothesis, we used the lateral fluid percussion injury (FPI) model

in which a fluid pressure pulse is delivered to the intact dura [48].

The lateral FPI model is one of the most widely used animal

models of TBI because it provides an injury of reproducible

severity [49].

Results

FPI Causes Cerebral Acidosis that is Prevented by HCO3
2

Administration
Based on reports that TBI reduces brain pH in humans [21,22]

and rats [50], we tested the hypothesis that FPI induces cerebral

acidosis in mice. We prepared mice with a craniotomy and placed

a modified plastic hub on the right parietal bone. One day later

mice were anesthetized and one group received an FPI and the

other was sham-treated. We then inserted a fiber-optic pH probe

through the craniotomy site into parietal cortex and measured pH

one hour after FPI. Because TBI and anesthesia might change

ventilation and thereby pH, we ventilated animals to maintain a

constant PCO2. Compared to the sham-treated mice, pH was

reduced in mice that received FPI (Fig. 1).

An earlier study showed that HCO3
2 administration raised the

pH of brain tissue and cerebral spinal fluid [51]. Moreover,

delivering HCO3
2 blunted the acidosis induced by breathing CO2

[51]. We found that delivering intraperitoneal NaHCO3 imme-

diately after FPI prevented the FPI-induced reduction in pH

(Fig. 1). These results indicate that as in humans with TBI, FPI

produced cerebral acidosis in mice. Moreover, administering

HCO3
2 prevented the pH drop.

Eliminating ASIC1a or Administering HCO3
2 Attenuates

FPI-induced Neurodegeneration
Previous work has shown that FPI causes the death of neurons

[52,53]. We asked if disrupting the ASIC1a gene, and thereby

eliminating ASIC-dependent acid-evoked currents, would attenu-

ate neuronal degeneration. We used fluoro-jade staining to detect

degenerating neurons [54,55]. Observers unaware of the treat-

ment condition counted fluoro-jade-stained neurons in standard-

ized parts of the ipsilateral cortex. One day after FPI, we found

abundant staining in wild-type mice (Fig. 2A). In contrast,

ASIC1a2/2 mice had approximately half as many fluoro-jade

positive cells. By four days after the injury, fewer fluoro-jade

positive cells were observed in both the wild-type and ASIC2/2

mice (Fig. 2B), which likely reflects death of cells that were

previously labeled. The reduction in fluoro-jade stained cells in the

ASIC2/2 mice was not statistically different from that in the wild-

type mice.

The FPI-induced fall in pH and attenuation of neuronal

degeneration by eliminating ASIC1a channels suggested that an

acidic pH was responsible. To test that hypothesis, we adminis-

tered HCO3
2 immediately after the FPI. Compared to control

mice, animals that received HCO3
2 had a reduction in fluoro-jade

staining (Fig. 2B). We also tested the effect of delivering the

HCO3
2 1 hr after the FPI. As with immediate administration, we

observed a substantial reduction in the number of fluoro-jade

positive cells. These results suggest that a reduced pH activates

ASIC channels and exacerbates neuronal degeneration. However,

the greater reduction in neurodegeneration with HCO3
2 admin-

istration compared to ASIC1a gene disruption suggests that the

reduced pH had additional injurious effects.

Loss of ASIC1a and HCO3
2 Administration Prevent FPI-

induced Deficits in Spatial Memory
FPI can impair hippocampal function and hippocampus-

dependent spatial memory [56,57]. Our finding that disrupting

the ASIC1a gene and HCO3
2 treatment protected neurons from

FPI suggested that these interventions would also attenuate spatial

memory deficits. To test this hypothesis, we used a Barnes maze to

assess hippocampus-dependent spatial learning and memory [58];

previous work showed that TBI impairs performance on a Barnes

maze [59,60]. In the Barnes maze, mice must use spatial memory

to locate an escape hole among 43 holes around the circumference

of a circular table. Mice were studied on four consecutive days,

during which time we measured the latency to reach the escape

hole (Fig. 3A). During this acquisition phase of the assay, neither

FPI, loss of ASIC1a nor HCO3
2 administration had a statistically

significant effect on latency to find the escape hole.

On the fifth day, we performed a probe trial to test for memory

of the escape hole (Fig. 3B). The escape nest was removed, and we

measured the amount of time mice spent in the quadrant that had

contained the escape hole. Sham-treated wild-type and ASIC1a2/

2 mice spent a similar amount of time in the escape quadrant. In

wild-type mice, FPI reduced the time in the escape quadrant. In

contrast, FPI had no effect on performance of the ASIC1a2/2

mice. Treating wild-type mice with HCO3
2 after FPI also

prevented a reduction in time spent in the escape quadrant.

These results are consistent with our studies of neuronal

degeneration and suggest that eliminating ASIC1a or preventing

a reduction in brain pH can at least partially attenuate the adverse

effects of TBI on spatial learning.

Figure 1. HCO3
2 administration prevents the FPI-induced

decrease in brain pH. Data are cortical brain pH one hr after FPI.
NaHCO3 was administered as indicated immediately after FPI. Animals
were anesthetized and mechanically ventilated. N= 9 control, 6 FPI, and
7 FPI plus NaHCO3 mice. Each data point indicates an individual animal.
* indicates P,0.05; ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0072379.g001
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HCO3
2 Administration Restores Contextual Fear Behavior

After FPI
ASIC1a is more abundantly expressed in the amygdala than in

the hippocampus [37]. Contextual fear conditioning assays depend

on amygdala function, in addition to hippocampal function [61–

63]. Moreover, our earlier work showed that loss of ASIC1a

decreased contextual fear conditioning [37]; because of that

performance defect, we did not test them with FPI. In the fear

conditioning assay, mice are trained to associate a novel

environment, a context, with a foot shock, and freezing behavior is

measured as an expression of a threat-induced defense reaction.

During the training phase of fear conditioning, mice received five

foot shocks, and we recorded the percentage of time they spent

freezing (Fig. 4A). FPI did not significantly alter freezing behavior.

Twenty-four hours after training, we returned the mice to the

same context and measured the percentage of time they spent

freezing in the absence of foot shocks (Fig. 4B). Compared to

sham-treated animals, FPI reduced the threat-induced defense

reaction by,40%. However, mice that had received a NaHCO3
2

injection following FPI showed less freezing behavior, and the time

they spent freezing did not differ from that of sham-treated

animals. In contrast, mice that received NaCl instead of NaHCO3

showed no improvement in freezing behavior.

Discussion

Our data indicate that FPI induced brain acidosis that

contributed to neuronal injury through ASIC channels. We

discovered that reducing brain acidosis by administering HCO3
2

decreased neuronal degeneration and improved performance in

tests that assess spatial memory and memory involving the reaction

to threat. Likewise, eliminating a target of an acidic pH, ASIC1a

Figure 2. Loss of ASIC1a and NaHCO3 administration reduce
FPI-induced neuronal degeneration. A. Brain was removed one
day after FPI. Data are fluoro-jade positive neurons per microscopic field
in the cortex (0.9 mm2). N= 5 wild-type and 5 ASIC1a2/2 mice. Scale
bar = 0.1 mm. Each data point indicates an individual animal. * indicates
P,0.05, unpaired t-test. B. Brain was removed four days after FPI. N = 9
sham-treated mice, 11 FPI-treated wild-type mice 3 of which received
NaCl after FPI, 9 FPI-treated mice with NaHCO3 administered
immediately after FPI, 7 FPI-treated mice with NaHCO3 administered
1 hr after FPI, and 5 FPI-treated ASIC1a2/2 mice. * indicates P,0.05,
ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0072379.g002

Figure 3. Disruption of the ASIC1a gene and NaHCO3 admin-
istration reduce the FPI-induced decrement in spatial memory.
A. Data from 4 days of training on the Barnes maze. Data are latency to
find the escape hole. N= 11 wild-type, sham-treated mice, 17 FPI-
treated wild-type mice, 14 ASIC1a2/2 sham-treated mice, 19 ASIC1a2/2

FPI-treated mice, and 10 FPI-treated wild-type mice that received
NaHCO3 immediately after FPI. None of the groups showed a
statistically significant difference. B. Data are time during 90 sec. that
mice spent in the quadrant that had contained the escape hole. *
indicates P,0.05 compared to sham treated wild-type mice; ANOVA
with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0072379.g003
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channels, reduced neuronal degeneration and improved perfor-

mance in spatial learning. In addition, we found that HCO3
2

administration was more effective than ASIC1a gene disruption at

preventing neurodegeneration. That result suggests that the acidic

brain pH may have had injurious effects in addition to activation

of ASIC channels.

The results of these studies suggest that cerebral acidosis plays

an important role in the secondary injury that is a key component

of TBI. Our findings have similarities to observations that ischemic

stroke and a model of multiple sclerosis induce cerebral acidosis

and that their severity is reduced by disrupting the ASIC1a gene

[38,39,41]. Reports that ASIC channels may play a role in

reperfusion injury [40], Huntington’s disease [45], and Parkinson’s

disease [42–44] suggest that in those disorders cerebral acidosis

might also contribute to disease severity. In these various diseases,

the mechanisms that produce acidosis could differ, but acidosis

may be a common pathway leading to neuronal pathology.

Although our data suggest that a reduced pH may contribute to

injury via more than one mechanism, activation of ASIC channels

may be one key component. ASIC channels could contribute to an

increased [Ca2+]i leading to cell injury and death by several

mechanisms [64]. ASICs have a small Ca2+ conductance that

could contribute, and Na+ entry could depolarize the cell

membrane thereby activating voltage-gated Ca2+ channels.

Depolarization might induce excitotoxicity. Activation of ASIC

channels depends on their subunit composition [65]. In cultured

neurons, pH values of 6.9–7.2 can activate these currents,

suggesting that they can respond to small pH changes

[32,51,66–68]. These considerations also lead us to speculate that

acidosis and activation of ASICs might contribute to other diseases

involving neuron injury and degeneration.

Our study has certain strengths as well as a number of

limitations. An advantage of the experimental design is that we

measured the effect of the interventions – HCO3
2 administration

and ASIC1a gene disruption – using both structural and functional

assays and obtained concordant results. Use of ASIC1a2/2 mice

also has an advantage compared to inhibiting ASIC currents with

pharmacological agents, which can often have partial effects on

the intended target and introduce additional unanticipated effects.

A limitation of our work is the use of mice and the FPI model;

there are several species and models of TBI, and each has

advantages and disadvantages [49]. Thus, it may be of value to

extend this work to other models. Our assay of brain pH probably

does not provide an accurate measure of absolute extracellular pH

because inserting the pH probe will cause local injury, and CNS

depression and mechanical ventilation might also alter pH.

Nevertheless, the probe likely indicates changes in pH based on

our study and previous work [51,69] showing that the probe

reports expected changes in pH with CO2 inhalation and HCO3
2

administration. In addition, similar pH electrode methods have

been used in other studies [70,71]. Our measurements indicate

that extracellular brain pH fell after FPI, but we were unable to

determine whether intracellular pH changed, and a reduced

intracellular pH might also contribute to injury. Moreover, a

decreased intracellular pH could affect many processes other than

ASIC channels. To carry this work toward therapeutics, it would

also be valuable to measure blood gases and serum HCO3
2

concentrations.

In this study, we tested one aspect of the secondary injury

component of TBI. However, several additional factors may

contribute to secondary aspects of TBI, and our data do not

exclude other proposed mechanisms. For example, other processes

involved in TBI include brain ischemia [6–8], brain edema

causing increased intracranial pressure [9,10], excitotoxicity [11–

13], oxidative stress [14–16], and inflammation [17–20]. In

addition, several potential treatments have shown some promise in

TBI including anti-depressants [61,62] and progesterone [72,73].

These studies emphasize the complexity of TBI and suggest that

understanding the pathophysiological mechanisms is essential in

order to rationally develop new therapies.

A challenge in managing TBI is to develop neuroprotective

strategies that will reduce the secondary injury that follows the

initial mechanical insult. Previous studies have focused on brain

acidosis as a potential therapeutic target in management of head

injury. CSF pH is reduced in humans during the acute phase after

head injury and greater reductions in pH are associated with more

severe injury and worse clinical outcomes [21–25]. Our experi-

ments suggest that minimizing brain acidosis and/or inhibiting

ASIC channels might have the potential to interfere with that

pathway and thereby attenuate functional deficits. Two observa-

tions suggest the potential feasibility of pursuing such a strategy.

First, TBI causes a reduction in brain pH in humans [21,22].

Second, it may be possible to alter brain pH in humans. Although

brain pH was not measured, HCO3
2 has been administered to

patients with severe TBI [74,75]; hypertonic NaHCO3 was given

intravenously in place of hypertonic NaCl to reduce elevated

intracranial pressures. While NaHCO3 was as effective as saline at

reducing intracranial pressure, brain pH was not measured and

whether HCO3
2 administration had any additional long-term

benefits remains uncertain. Patients with TBI are sometimes

hyperventilated with a goal of managing intracranial pressure, and

Figure 4. NaHCO3 administration improves performance in
fear conditioning assay done after FPI. A. Percentage of time
freezing during 8 min on the training day. All the mice were wild-type.
N = 25 sham-treated, 10 FPI-treated controls, 14 FPI-treated with
NaHCO3 administered immediately after FPI, and 6 FPI-treated with
NaCl administered immediately after FPI. There were no statistically
significant differences between groups. B. Percentage of time freezing
during 6 min on the testing day. * indicates P,0.05; ANOVA with
Bonferroni post-hoc test. ** indicates P,0.05 compared to FPI control
and FPI treated with NaCl; ANOVA with Bonferroni post-hoc test.
doi:10.1371/journal.pone.0072379.g004
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that maneuver can also elevate brain pH. However, in severe head

injury, hyperventilated patients had a less favorable outcome,

perhaps due to the associated adverse effects of hyperventilation

[76]. pH buffers such as tormethamine have been tested in animals

[77]. Despite initial promise, these therapeutic approaches have

shown limited success for long term neurological outcomes in

humans [78–80]. Thus, greater understanding of the underlying

molecular mechanisms of acidosis-mediated injury and additional

approaches may be beneficial in improving long-term neurological

outcomes. Although our data indicate that administering

NaHCO3 one hour after FPI minimizes brain injury in mice, a

practical therapeutic strategy directed at reversing brain acidosis

or inhibiting ASIC channels in humans has yet to be developed

and tested. Nevertheless, the data suggest that normalizing brain

pH and/or inhibiting ASIC might be effective in reducing

functional deficits in patients who suffer a TBI.

Methods

Mice
Ethic statement. All animal protocols were approved by the

University of Iowa Animal Care and Use Committee. We used

male 2–4 month old wild-type and ASIC1a2/2 mice on a congenic

C57BL/6J background as previously described [35]. Littermates

were used as controls. Mice were adapted to handling prior to

testing in behavioral assays.

Fluid Percussion Injury
We used methods similar to those previously described [48].

Briefly, animals were anesthetized with pentobarbital. Hair was

removed from the skull, and mice were secured in a stereotactic

holder. The skull was exposed, a 3 mm diameter hole was placed

through the skull leaving the dura intact, and a modified Leur-lock

hub was placed over the hole and secured with glue. The hub was

filled with saline and capped. One day later, mice were

anesthetized with 2% isoflurane. The Leur lock adapter was then

connected to a fluid percussion injury device (Custom Design and

Fabrication, Virginia Commonwealth University), which delivered

a 0.9 atmosphere pulse. Following FPI, the Leur lock adapter was

removed, the scalp sutured, and mice were monitored until fully

recovered, at which time they were returned to their home cage.

Fluoro-jade Staining
Mice were euthanized with pentobarbital, perfused with saline

to clear blood, and then perfused with 4% paraformaldehyde.

Brains were removed and soaked in 4% paraformaldehyde

overnight at 4uC. Brains were then immersed in a 30% sucrose

solution until they were no longer buoyant and then frozen with

liquid nitrogen. Ten mm thick sections of brain were cut at 228uC
with a cryostat (HM 505E, Leica Microsystems, Wetzlar,

Germany). Sections were mounted on Superfrost Plus slides

(Fisher Scientific, Pittsburgh, PA). Slides were stained with fluoro-

jade according to manufacturer’s directions (Millipore, Billerica,

MA). Briefly, slides were air dried at 50uC for 25 min, placed in

1% NaOH in EtOH for 5 min, submerged in 70% EtOH for

2 min, washed in double distilled H2O for 2 min, immersed in

0.06% KMnO4 for 10 min, and washed again. Slides were then

incubated in a solution of 50 ml acetic acid, 2 ml fluoro-jade and

50 ml double distilled H2O for 30 min. They were then washed 3

times, dried at 40uC for 15 min, submerged in 95% EtOH, 100%

EtOH, and Xylems each for 1 min, air-dried and a cover slip was

applied. They were imaged with an Olympus FluoView1000

confocal microscope (Center Valley, PA). Sections for examination

were chosen from coronal sections of the cortex that were

referenced to the anterior, medial, and posterior hippocampus.

For each animal, we counted 3 microscopic fields of cortex from

each of the 3 areas and averaged the data from 9 fields to generate

the number of fluoro-jade positive cells per field for an individual

animal. Operators were unaware of genotype or treatment.

pH Measurement
Following FPI, a tracheostomy was placed and a mice were

ventilated at 50 breaths/min, tidal volume 35 ml/Kg, and an I:E

ratio of 1 with a rodent ventilator (SAR 830/P, CWE

incorporated, Veemarktade, Netherlands). During ventilation,

sedation was maintained with 2% isoflurane inhalation, and mice

were paralyzed with pancronium (0.1 ml/kg, intraperitoneal). We

monitored mice with electrocardiogram (emka Technologies, Falls

Curch, VA). Cortical pH was measured with a fiber optic pH

electrode (tip size 140 mm) (#502123, World Precision Instru-

ments, Sarasota, FL). Probes were calibrated before and after each

experiment with standard solutions ranging from pH 6 to 8 as

described by the manufacturer. Probes were inserted 500 mm into

the cortex at the site of craniotomy, and pH was recorded one hr

after the FPI.

Administration of NaHCO3 and NaCl
Some mice received an intraperitoneal injection of NaHCO3 or

NaCl immediately or 1 hr after FPI. Animals received 261023

moles/Kg of NaHCO3 or NaCl from 200 mM stock solutions; for

example, a 25 g mouse received 250 ml of solution.

Barnes Maze Assay
A Barnes maze assay was used to assess spatial memory. The

protocol was similar to that previously described [58]. The

apparatus was a circular table with a diameter of 122 cm, placed

95 cm above the ground. Forty four 5.1 cm diameter holes were

located equidistantly around the perimeter. During the training

period, an escape box containing bedding was placed under the

escape hole. The position of the escape hole was varied for each

mouse, but was constant during the training period. Each mouse

was tested 4 times per day for 4 days; 15 min separated each trial.

At the start of a trial, a mouse was placed on the center of the

maze. The trial lasted 3 min or until the mouse found the escape

hole. If at the end of 3 min the mouse had not found the escape

hole, it was shown the location. Once a mouse entered the escape

box it was allowed to remain there for 3–5 min. We measured the

time (latency) that a mouse took to find and enter the escape hole.

On the fifth day each mouse underwent a probe trial, during

which the escape box was removed. The mouse was place in the

center of the maze, and its position tracked for 90 sec. We

recorded the percentage of time it spent in the quadrant that had

contained the escape hole. During the training period and probe

trial, movement of mice was recorded by video and scored later.

Operators were not aware of genotype or treatment.

Context Fear Conditioning Assay
We used methods for context fear conditioning similar to those

previously described [63]. Experiments were performed using a

computerized video fear conditioning system (Med Associates, St

Albuns, VT). On day 1, the training day, mice were placed in a

conditioning chamber for 4 min. They then received a

0.75 mAmp foot shock for 1 sec. A total of 5 shocks were

delivered with 80 sec. intervals between shocks. Freezing behavior

was measured during the 8 min training period. Freezing behavior

was defined as the absence of movement other than respiration

and was scored with VideoFreeze software (Med Associates). Mice

pH in Traumatic Brain Injury
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were then removed and returned to their home cage. Twenty-four

hours later, the testing day, mice were placed in the training

chamber. No foot shocks were delivered, and freezing behavior

was assessed for 5 min. Operators were not aware of genotype or

treatment.

Statistical Analysis
Statistical significance was evaluated using unpaired t-test. For

multiple comparisons, we used an ANOVA with a Bonferroni

post-hoc test. Differences were considered statistically significant

with P,0.05.
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