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Abstract

Motivation: 3D neuron segmentation is a key step for the neuron digital reconstruction, which is essential for explor-
ing brain circuits and understanding brain functions. However, the fine line-shaped nerve fibers of neuron could
spread in a large region, which brings great computational cost to the neuron segmentation. Meanwhile, the strong
noises and disconnected nerve fibers bring great challenges to the task.

Results: In this article, we propose a 3D wavelet and deep learning-based 3D neuron segmentation method. The
neuronal image is first partitioned into neuronal cubes to simplify the segmentation task. Then, we design 3D
WaveUNet, the first 3D wavelet integrated encoder–decoder network, to segment the nerve fibers in the cubes; the
wavelets could assist the deep networks in suppressing data noises and connecting the broken fibers. We also pro-
duce a Neuronal Cube Dataset (NeuCuDa) using the biggest available annotated neuronal image dataset,
BigNeuron, to train 3D WaveUNet. Finally, the nerve fibers segmented in cubes are assembled to generate the com-
plete neuron, which is digitally reconstructed using an available automatic tracing algorithm. The experimental
results show that our neuron segmentation method could completely extract the target neuron in noisy neuronal
images. The integrated 3D wavelets can efficiently improve the performance of 3D neuron segmentation and
reconstruction.

Availabilityand implementation: The data and codes for this work are available at https://github.com/LiQiufu/3D-
WaveUNet.

Contact: llshen@szu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Neuron reconstruction aims to establish a digital model of the neu-
ron morphology structure by tracing nerve fibers in neuronal
image, which is of great significance to explore the brain micro-
structure and understand brain functions. 3D microscopic optical
imaging technology, such as Micro-Optical Sectioning
Tomography (MOST) (Li et al., 2010), has established a founda-
tion for the brain neuron reconstruction. Tens of automatic or
semi-automatic tracing algorithms (Liu et al., 2018b; Quan et al.,
2016; Xiao and Peng, 2013) have been developed to reconstruct
the neurons in optical images. However, the low signal-to-noise
ratio and disconnected nerve fibers are usually big challenges to
these algorithms, as Figure 1 shows.

A natural way to improve the performance of existing neuron
tracing algorithms is to extract the complete neuron from the noisy
image first and then automatically reconstruct it. Deep learning,
which achieves excellent results in many fields, has also been
applied into 3D neuron segmentation (Huang et al., 2020; Jiang
et al., 2021; Klinghoffer et al., 2020; Li et al., 2017; Li and Shen,
2020). As nerve fibers can spread in a very large brain region, a
large neuronal image has to be processed for segmenting the com-
plete neuron, which leads to great computational cost for the deep
networks-based 3D neuron segmentation. In addition, the recent
researches (Li et al., 2020; Zhang, 2019; Zou et al., 2020) show
that the sampling operations used in the deep networks result in
aliasing effects, which lead to noise propagation and break the
basic object structures. Due to the amount of noises available in
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the neuronal image and the neuron’s fine line-shaped structure, 3D
neuron segmentation is more sensitive to these aliasing effects.
Therefore, the current 3D deep network-based segmentation meth-
ods might not work well for the 3D neurons with fine line-shaped
structure in the noisy neuronal images.

1.1 Related works
1.1.1 Neuron reconstruction

The recent brain imaging technologies, including Micro-Optical
Sectioning Tomography (MOST) (Li et al., 2010), fluorescence
MOST (fMOST) (Gong et al., 2013), CLARITY (Chung et al.,
2013; Chung and Deisseroth, 2013), Magnified Analysis of the
Proteome (MAP) (Ku et al., 2016) and Stabilization under Harsh
conditions via Intramolecular Epoxide Linkages to prevent
Degradation (SHIELD) (Park et al., 2019), etc., establish the foun-
dation for neuron reconstruction of animal brain.

Various 3D data visualization software, such as Vaa3D (Peng
et al., 2010b), NeuroBlocks (Ai-Awami et al., 2016),
ManSegTool (Magliaro et al., 2017), TeraVR (Wang et al.,
2019b), etc., have been developed to show the complex arboriza-
tion fibers in neuronal images and assist the experienced techni-
cians in tracing neurons. BigNeuron project (Peng et al., 2015),
initiated by Peng et al., releases hundreds of optical neuronal
images and their high precision reconstructions traced by experi-
enced experts. More than 1� 105 digitally reconstructed neurons
are released on NeuroMorpho.Org (Ascoli et al., 2007), while
the corresponding neuronal images are not available.

It is impossible to manually reconstruct the millions of neurons
in the whole brain image, so various automatic neuron tracing algo-
rithms have been designed. The BigNeuron project (Peng et al.,
2015) collects the tens of these algorithms, such as SnakeTracing
(Wang et al., 2011), All-Path-Pruning (APP) (Peng et al., 2011),
APP2 (Xiao and Peng, 2013), NeuroGPSTree (Quan et al., 2016),
Rivulet (Liu et al., 2016), Rivulet2 (Liu et al., 2018b), etc., and inte-
grates them into the Vaa3D software (Peng et al., 2010b).
Generally, these algorithms mathematically model neuron morph-
ology and trace nerve fibers based on graph theory. However, they
would either classify background noise as nerve fibers or miss lots of
nerve fibers, as Figure 1 shows. In other words, while the tracing
algorithms are sensitive to image quality, the existing neuronal
imaging technologies are usually associated with low signal-to-noise
ratio.

1.1.2 Neuron segmentation

Segmenting the neuron before reconstruction is an effective ap-
proach to improve the performance of neuron tracing algorithms.
Inspired by the superior performance in computer vision, pattern
recognition and natural language processing, etc., deep learning has
also been introduced into the 3D neuron segmentation (Huang
et al., 2020; Jiang et al., 2021; Klinghoffer et al., 2020; Li et al.,
2017; Li and Shen, 2020; Wang et al., 2019a). The first 3D residual
deep network for neuron segmentation is proposed in (Li et al.,

2017). The authors improve their method by applying multi-scale
kernels and 3D U-Net (Wang et al., 2019a). Because they take as in-
put the original neuronal image, these deep networks require high
computational cost. Li and Shen (2020) designed 3D U-Net Plus to
separate the target neuron from its surrounding nerve fibers. As 3D
U-Net Plus is trained and evaluated on the neuronal images with
size of 32� 128� 128, the small nerve fibers may disappear during

the image down-sampling. The above deep network-based neuron
segmentation methods are not suitable for neurons with long-
distance fibers. Using ray-shooting model, Jiang et al. (2021) design
dual channel Bidirectional Long Short-Term Memory (BLSTM) for
3D neuronal image segmentation. The authors extract nerve fibers
from the 2D neuronal image slice-by-slice, which does not utilize the
relevance between the nerve data in the neighboring 2D neuronal sli-

ces. To utilize the unlabeled 3D neuronal data, self-supervised and
weakly supervised 3D neurons segmentation methods are studied
(Huang et al., 2020; Klinghoffer et al., 2020). In all of these works,
the BigNeuron (Peng et al., 2015) neuronal images are taken to test
their methods.

1.1.3 The aliasing effects in deep networks

The recent studies (Li et al., 2020; Zhang, 2019; Zou et al., 2020)
reveal the aliasing effects in the deep learning, which are introduced
by the commonly used sampling operations in the deep networks.
The aliasing effects result in noise accumulation and break the basic
object structure in deep networks, which are very harmful to the 3D

neuron segmentation in noisy images.
To suppress the aliasing among the low-frequency and high-

frequency components of the data in deep networks, Richard
(Zhang, 2019) designs Anti-aliased CNNs by applying low-pass fil-

ters before the down-sampling in common Convolutional Neural
Networks (CNNs). Zou et al. (2020) propose an adaptive content-
aware low-pass filtering layer to adapt the varying frequencies in
different locations and feature channels. These works only consider
the low-frequency component of input data, which cannot extract
and utilize the data details represented by the high-frequency com-
ponents. Li et al. (2020) integrated discrete wavelet transforms
(DWT) into deep networks to separate the components of data in

different frequency intervals. They illustrate the usefulness of wave-
let transforms in assisting deep networks in extracting robust fea-
tures, keeping basic object structure and recovering data details.

The above works suppress the aliasing effects in 2D deep net-

works, while they are not available to 3D deep networks for the 3D
neuron segmentation. The 3D neuronal images contain a lot of
noises and the neurons are line-shaped, which are more easily bro-
ken by the aliasing effecting in 3D deep networks. Inspired by Li
et al. (2020), we try to introduce 3D wavelet transforms into deep
learning to suppress the aliasing effects in 3D deep networks. In the
previous works, such as Shi and Pun (2017); Yang et al. (2019), and
so on, 3D wavelet have been developed as pre-processing or post-

processing tools for deep networks. Shi and Pun (2017) apply 3D
wavelet to decompose hyperspectral image into various components
wavelet domain, and apply 3D CNNs on the components to extract
features for the hyperspectral image classification. Yang et al.
(2019), using 3D CNNs, predicted the coefficients of hyperspectral
image in 3D wavelet domain, to reconstruct hyperspectral image
with super-resolution. In these works, only Haar wavelet was
applied to evaluate their methods. Because they do not integrate 3D

wavelets into 3D deep networks, they cannot suppress the aliasing
effects in 3D deep networks. In contrary, in this article, we rewrite
3D wavelet transform as network layers in PyTorch, which are ap-
plicable to various discrete wavelets (such as Haar, Cohen and
Daubechies wavelets), and could be flexibly integrated into 3D deep
networks to suppress the aliasing effects in networks.

In this article, we will rewrite 3D DWT/IDWT as general net-
work layers, and design 3D wavelet integrated encoder–decoder net-
works, to improve the 3D neuron segmentation and reconstruction
in noisy images.

(a) (b) (c) (d)

Fig. 1. (a) A noisy neuronal image with size of 291� 3298� 1881 (z-y-x), contain-

ing a complete neuron. (b) The manual reconstruction of the neuron. (c) An auto-

matic reconstruction which incorrectly takes background noises as nerve fibers. (d)

Another automatic reconstruction which overlooks the weak nerve fibers
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1.2 Contributions
In this article, to completely segment the neuron and efficiently im-
prove its reconstruction, we present a 3D wavelet and deep learning-
based 3D neuron segmentation method. First, to simplify the task,
we partition the neuronal image into small cubes. Then, we design a
3D wavelet integrated encoder–decoder network (3D WaveUNet) to
segment the nerve fibers in the cubes. As far as we know, 3D
WaveUNet is the first 3D wavelet integrated deep network. In 3D
WaveUNet, 3D Discrete Wavelet Transform (3D DWT) and 3D
Inverse DWT (3D IDWT) are applied to down-sample and up-sample
3D neuronal data. While 3D DWT help the encoders in maintaining
the fine structure of neurons and suppressing the noise propagation,
3D IDWT could recover the neuron details in the decoders. In add-
ition, based on the biggest available annotated neuronal image data-
set, BigNeuron (Peng et al., 2015), we produce a Neuronal Cube
Dataset (NeuCuDa) to train and evaluate the 3D WaveUNet. Finally,
we assemble the nerve fibers segmented in cubes according to the cube
locations to get the complete segmented neuron, and reconstruct it
using the existing automatic tracing algorithms, such as All-Path
Pruning 2.0 (APP2) (Xiao and Peng, 2013). In summary:

1. We propose a 3D wavelet and deep learning-based 3D neuron

segmentation method, to segment neurons in large size 3D neur-

onal images.

2. We rewrite 3D DWT/IDWT as general network layers, and de-

sign 3D WaveUNet by applying 3D DWT and IDWT as the sam-

pling operations in 3D encoder–decoder network, which is the

first 3D wavelet integrated deep network.

3. We produce a neuronal cube dataset, NeuCuDa, to train and

evaluate the 3D WaveUNet. Experimental results show that 3D

WaveUNet efficiently improve the performance of 3D neuron

segmentation and reconstruction in the noisy images.

2 Materials and methods

2.1 The method pipeline
The pipeline of our 3D neuron segmentation method is illustrated in
Figure 2 and summarized as below:

1. Partition. The neurons with long-distance nerve fibers could

spread in a large brain region, which result in high computational

cost for the 3D neuron segmentation in the images with large size.

Therefore, the neuronal image is partitioned into small cubes to

simplify the segmentation task. We set the z–y–x-size (depth–

height–width) of the cubes as 32� 128� 128 (The typical voxel

resolution is 1lm� 0:35lm� 0:35lm for brain imaging technol-

ogies, such as MOST.), which is a compromise between the con-

nectivity of nerve fibers in the neuronal cubes and the

computational complexity of the following segmentation.

2. Segmentation. Using the well-trained 3D WaveUNet, we segment

the nerve fibers in the cubes. The 3D WaveUNet is an encoder–de-

coder network integrated with 3D wavelet, which are trained on

the neuronal cube dataset, NeuCuDa. The network architecture

and NeuCuDa are described in Sections 2.2 and 2.3, respectively.

3. Assembling. According to the cube locations in the neuronal

image, we assemble the segmented nerve fibers to complete the

3D neuron segmentation.

4. Reconstruction. Based on segmented neuronal image, we recon-

struct the neuron using APP2 (Xiao and Peng, 2013) algorithm.

Considering its low computational complexity, we choose APP2

as the benchmark algorithm in this article.

2.2 3D WaveUNet
The aliasing effects could significantly affect the performance of
deep network-based 3D neuron segmentation, due to the fine line-
shaped structure of nerve fibers and interference of noises. To sup-
press the aliasing effects in the 3D deep networks, we design 3D
wavelet integrated encoder–decoder network (3D WaveUNet),
the first 3D wavelet integrated deep network, for 3D neuron
segmentation.

In current, encoder–decoder networks, such as U-Net and 3D U-
Net, are widely used in medical image segmentation (Li and Shen,
2020; Ronneberger et al., 2015). Although ResNets (He et al.,
2016) and Transformer (Dosovitskiy et al., 2020; Touvron et al.,
2020) are hot-spots in the image vision, they are hardly applied in
medical image processing. Because ResNets and Transformer are
pretrained using a large dataset (such as ImageNet) before they are
taken as backbones in the deep networks for image segmentation,
and, for 3D medical image processing, it is very hard to collect such
large dataset. The proposed 3D DWT and IDWT layers are natural
substitutes for the down-sampling and up-sampling operations in
encoder and decoder of 3D U-Net. Therefore, we take 3D U-Net as
the basic architecture, to evaluate the proposed 3D DWT/IDWT
layers in 3D neuron segmentation.

2.2.1 3D DWT/IDWT layers

Wavelets (Daubechies, 1992) are powerful analysis tools used in the
fields of data denoising (Donoho, 1995; Donoho and Johnstone,
1994), image compression (Bahce and Bayazit, 2020; Kim and
Pearlman, 1997; Wu et al., 2009), etc., and 2D wavelets have been
introduced into deep learning (Duan et al., 2017; Guan et al., 2019;
Huang et al., 2017; Liu et al., 2018a, 2020a,b; Shi and Pun, 2017;
Williams and Li, 2018; Yang et al., 2019; Yoo et al., 2019). Alike
2D wavelets in deep learning, 3D wavelets are applied as pre-
processing or post-processing tools in deep networks. Shi and Pun
(2017) applied 3D wavelet to decompose hyperspectral image into
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A B C D

Fig. 2. The pipeline of our 3D neuron segmentation method. A: Partition. B:

Segmentation. C: Assembling. D: Reconstruction Xlll Xllh Xlhh

Xhll Xhlh Xhhl Xhhh

X Max-pooling image Max-pooling indices

Max-pooling

Max-unpoolingXlhl

Fig. 3. The comparison of 3D max-pooling/max-unpooling and 3D DWT/IDWT.

Max-pooling would magnify the noise in the neuronal data, while noise in the low-

frequency component X lll is suppressed by 3D DWT, as the three enlarged regions

show. When max-unpooling recovers the cube size, it normally breaks the nerve

fibers. In contrast, IDWT could completely recover the neuronal data using the com-

ponents of DWT decomposition
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various components wavelet domain, and extract features from the
components using 3D CNNs to classify the hyperspectral image.
Yang et al. (2019) predicted the coefficients of hyperspectral image
in 3D wavelet domain using 3D CNNs, to reconstruct hyperspectral
image with super-resolution. These works do not apply 3D wavelets
into the design of 3D deep networks, cannot exploit the efficiency of
wavelets to process the internal 3D feature maps in deep networks.

We rewrite 3D DWT and Inverse DWT (IDWT) as general net-
work layers, to integrate 3D wavelets into deep networks. For a
given 3D neuronal data X 2 R

d�m�n, and eight filters of a 3D dis-
crete wavelet, i.e. one low-pass filter flll and seven high-pass filters
fllh; flhl; flhh; fhll; fhlh; fhhl; fhhh, 3D DWT decomposes the data into one
low-frequency component Xlll and seven high-frequency compo-
nents Xllh;Xlhl;Xlhh;Xhll;Xhlh;Xhhl;Xhhh, where

Xc0c1c2
¼ ð# 2Þðfc0c1c2

�XÞ; c0; c1; c2 2 fl;hg (1)

and �; ð# 2Þ denote the 3D convolution and naive down-sampling,
respectively. In theory, the size of every component is 1/2 size of X
in every dimension, i.e.

Xc0c1c2
2 R

d
2b c� m

2b c� n
2b c; c0; c1; c2 2 l; hf g: (2)

Therefore, d, m, n are usually even numbers.
Using the dual filters ~f c0c1c2

; c0; c1; c2 2 fl;hg, 3D IDWT recon-
structs the original data X based on the eight components,

X ¼
X

c0 ;c1 ;c22fl;hg
~f c0c1c2

� ð" 2ÞXc0c1c2
; (3)

where ð" 2Þ denotes the naive up-sampling operation. The dual fil-
ters of orthogonal 3D wavelet are the same with the original filters,

~f c0c1c2
¼ fc0c1c2

; c0; c1; c2 2 fl; hg: (4)

Equations (1) and (3) present the forward propagations of 3D
DWT and IDWT, where the naive down-sampling and up-sampling
operations are explained in Supplementary Material (Supplementary
Section S.2). It is onerous to deduce the gradients for the backward
propagations from these expressions. Fortunately, the modern deep
learning framework PyTorch (Paszke et al., 2017) could automatic-
ally deduce the gradients for tensor arithmetics. We have rewritten
3D DWT and IDWT as general network layers in PyTorch, which
will be publicly available for other researchers. One can flexibly de-
sign end-to-end 3D wavelet integrated deep networks using these
layers.

For the noisy neuronal cube X, the random noise mostly shows
up in its high-frequency components, while the basic nerve fiber
structure is presented by the low-frequency one. Therefore, 3D
DWT and IDWT could be used to denoise the neuronal cube while
maintaining the structure of nerve fiber at the same time. DWT
halves the size of the neuronal data, and IDWT recovers it, which
are good substitutes for the commonly used sampling operations in
the 3D deep networks. They could be used to reduce the aliasing
effects in the 3D deep networks, and improve the performance of
3D neuron segmentation and reconstruction. Figure 3 compares the
results of 3D DWT/IDWT and max-pooling/max-unpooling on a
neuronal cube.

2.2.2 The architecture of 3D WaveUNets

In this section, we design 3D WaveUNet using 3D DWT and
IDWT to increase neuron segmentation performance for better
reconstruction.

As Figure 4 shows, the encoder–decoder architecture could be
decomposed into several nested dual structures with a bottom block.
The dual structure consists of forward process and reverse process
connected via a branch path. While the forward process contains a
serial of 3D convolutions followed by a down-sampling operation,
the reverse process is an up-sampling operation followed by a num-
ber of 3D convolutions. The reverse process up-samples the feature
maps, and exploits the data transmitted from the forward process
via the branch path. The bottom block is variant in different en-
coder–decoder architectures. 3D U-Net (Ronneberger et al., 2015)
takes a convolution block as the bottom block, while 3D U-Net Plus
(Li and Shen, 2020) uses a 3D ASPP (Chen et al., 2018). We denote
the all connected forward processes and reverse processes, together
with the bottom block, as main path, and denote the data flowing
through it as mainstream.

Figure 5 shows the 3D versions of dual structures used in previ-
ous encoder–decoder networks (Badrinarayanan et al., 2017; Chen
et al., 2018; Çiçek et al., 2016; Li and Shen, 2020; Ronneberger
et al., 2015). DS-PU, Dual Structure with max-Pooling and max-
Unpooling, is a 3D version of dual structure used in SegNet
(Badrinarayanan et al., 2017). As Figure 5a shows, DS-PU applies
max-pooling in its forward process to reduce the feature map reso-
lution and transmits the pooling indices to the reverse process for
feature map up-sampling via max-unpooling. However, the max-
pooling operation would accumulate the data noise, and the max-
unpooling cannot restore the lost details, as Figure 3 shows.
Figure 5b shows DS-PDc, Dual Structure with max-Pooling and
Deconvolution, used in 3D U-Net (Çiçek et al., 2016) and 3D U-Net
Plus (Li and Shen, 2020). While DS-PDc applies the max-pooling for
the down-sampling in its forward process, it uses deconvolution for

... ...
3D Tensor 3x3x3 Conv + BN + ReLU

Reverse process

Up-sampling

Bottom 

Fig. 4. The encoder–decoder architecture

... ...Mainstream

3x3x3 Conv + BN + ReLU Max-pooling Max-unpooling

Pooling indices

DS-PU, 3D version of dual structure used in SegNet
(Badrinarayanan et al., 2017)

... ...Mainstream

3x3x3 Conv + BN + ReLU Max-pooling DeConv

Tensor (copy and concatente)

DS-PDc used in 3D U-Net Plus (Li and Shen, 2020) and 3D
U-Net (Çiçek et al., 2016)

... ...Mainstream

3x3x3 Conv + BN + ReLU Strided-convolution Linear interpolation

Tensor (copy and concatente)

DS-ScIn, 3D version of dual structure used in DeepLabV3+ (Chen
et al., 2018)

(a)

(b)

(c)

Fig. 5. The 3D versions of the commonly used dual structures
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the up-sampling in the reverse process. DS-PDc copies the feature
maps from its forward process to reverse process via the branch
path, then concatenates it with the up-sampled feature map in re-
verse process to recover the low-level information in mainstream.
DS-ScIn, shown in Figure 5c, has the same structure with DS-PDc,
while it applies Strided-convolution and linear Interpolation for
down-sampling and up-sampling, respectively. In DS-PDc and DS-
ScIn, the data tensor injected from their forward processes to reverse
processes contains redundant information including noises, which
could interfere with 3D neuron segmentation.

We design four 3D Wavelet-based Dual Structure (WADS) by
replacing the sampling operations with 3D DWT/IDWT, as
Figure 6 shows. In comparison, WADS-DDc (Fig. 6a) and
WADS-DIn (Fig. 6b) are designed by replacing the down-
sampling operations in DS-PDc and DS-ScIn with 3D DWT, re-
spectively. In their forward processes, while the feature map is
decomposed by 3D DWT into eight components, only the low-
frequency one is kept to extract the robust high-level features, and
the seven high-frequency components are abandoned. WADS-DI
(Fig. 6c) and WADS-DIDn (Fig. 6d) apply 3D DWT and 3D
IDWT for down-sampling and up-sampling in their forward and
reverse processes, respectively. In the forward process, while fea-
ture map is decomposed by 3D DWT, the low-frequency compo-
nent is kept to extract the robust high-level features, and the seven
high-frequency components are transmitted, via the branch path,
to reverse process for feature map up-sampling in 3D IDWT.

WADS-DIDn utilizes a denoising block to filter the high-frequency
components; the denoising block is implemented using hard
shrinkage, which is shown in Supplementary Material.

Using the seven dual structures, we design seven 3D encoder–
decoder networks, including four wavelet integrated ones
(3D WaveUNets), for neuron segmentation. They are named as
3D U-Net(x), x 2 fPU; PDc; ScIng and 3D WaveUNet(y),
y 2 fDDc; DIn; DI; DIDng, respectively. The detail configura-
tions for these deep networks are shown in Supplementary
Material (Supplementary Section S.3).

2.3 The neuronal cube dataset
As we partition the large neuron images into small cubes for neuron
segmentation, it is crucial to collect an appropriate dataset to train
and evaluate 3D WaveUNets. We here introduce the Neuronal Cube
Dataset, NeuCuDa, generated from the BigNeuron images. The
neuronal images in BigNeuron are captured from various specials,
including silk moth, frog, mouse, etc., using different imaging equip-
ments. The diversity of neuronal data helps to train robust deep net-
works. The procedure to produce NeuCuDa is shown in Figure 7
and summarized as below:

1. Selection. In BigNeuron, some neuronal reconstructions do not

provide full information (such as nerve fiber radius) of the

... ...Mainstream

3x3x3 Conv + BN + ReLU 3D DWT DeConv

Tensor (copy and concatente)

low-frequency component

WADS-DDc (DWT, Deconvolute)

... ...Mainstream

3x3x3 Conv + BN + ReLU 3D DWT Linear interpolation

Tensor (copy and concatente)

low-frequency component

WADS-DIn (DWT, Interpolate)

... ...Mainstream

3x3x3 Conv + BN + ReLU 3D DWT 3D IDWT

High-frequency components

low-frequency component

WADS-DI (DWT, IDWT)

... ...Mainstream

3x3x3 Conv + BN + ReLU 3D DWT 3D IDWT

High-frequency components

low-frequency component

Denoising block

WADS-DIDn (DWT, IDWT; Denoise)

(a)

(b)

(c)

(d)

Fig. 6. The 3D wavelet integrated dual structures (WADS)

A

B

Fig. 7. A neuronal image and three cubes cut from it. A: labeling, B: cutting. The

cubes are corrupted by random noises; some weak nerve fibers in the cubes are dis-

connected, as marked by the yellow arrows. The 3D label matrices are shown below

the cubes
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neurons. For such neuronal images, we cannot correctly label

the fibers for segmentation. Therefore, we exclude these neuron-

al images in designing NeuCuDa. From the remaining 89 neur-

onal images, we randomly choose 61 images to generate the

neuronal cubes for the training of 3D deep networks, and 28

images to generate the testing cubes. The 28 testing images will

also be used to evaluate the performance of reconstruction

method proposed in Section 2.1.

2. Labeling. For each of the chosen 89 (61 þ 28) neuronal images,

we generate a 3D 0-1 label matrix according to its standard

digital reconstruction. Every voxel in the images is assigned to 0

(background) or 1 (nerve fiber). An example neuronal image

with its 3D label matrix is shown in Figure 7.

3. Cutting. Neuronal cubes with size of 32� 128� 128 are ran-

domly cut from the 3D image. Meanwhile, their label cubes are

cut from the 3D label matrix. Figure 7 shows three example

neuronal cubes.

NeuCuDa contains 19251 and 7132 neuronal cubes for the
training and testing of 3D WaveUNet, respectively.

3 Results

We first train and evaluate the seven 3D deep networks on
NeuCuDa. Then, using the well-trained networks, we segment and
reconstruct the neurons in the 28 test neuronal images with the pro-
posed method in Section 2.1.

3.1 3D neuronal cube segmentation
On the 19251 training cubes, we train the 3D U-Nets and 3D
WaveUNets for 30 epochs, using stochastic gradient descent (SGD).
The training is driven by cross-entropy loss with weights 1, 5 for
‘background’ and ‘nerve fiber’ voxels, to address the imbalances in
the cubes. We initially take a learning rate of 0.1 and reduce it fol-
lowing a polynomial decay for each iteration. The batch size, mo-
mentum and weight decay are set as 32, 0.9 and 0.0001,
respectively. The segmentation performances on the 7132 test cubes
are shown in Table 1. We train 3D WaveUNets when various
wavelets are used, and for each network architecture, the results of
three wavelets are shown in Table 1. In the table, ‘haar’ stands for
the Haar wavelet, while ‘dbp’ and ‘chp:~pp:~p’ stand for Daubechies
with approximation order p and Cohen wavelet with orders p; ~p, re-
spectively. The filters of these wavelets are shown in Supplementary
Material (Supplementary Section S.1).

3D U-Net(PU), applying max-pooling/max-unpooling, performs
the worst on neuronal cube segmentation among the seven deep net-
works. This result suggests that the pair of sampling operations is
not suitable for neuron segmentation, which matches our analysis.
Comparing the segmentation results of 3D U-Net(PDc) and 3D
WaveUNet(DDc), one can find that DWT performs better than
max-pooling, when deconvolution is taken as up-sampling oper-
ation; 3D WaveUNet(DDc) achieves the best segmentation perform-
ance (mIoU, 77.06%).

Among the seven networks, the segmentation performances of
3D U-Net(ScIn) and 3D WaveUNet(DIn) are only better than that
of 3D U-Net(PU), which indicates that the linear interpolation used
in their decoder is not a good up-sampling operation for 3D neuron
segmentation.

3D WaveUNet(DI) and 3D WaveUNet(DIDn), which apply 3D
DWT and IDWT for neuron data down-sampling and up-sampling,
perform also well for neuronal cube segmentation. Comparing their
results, we conclude that denoising on high-frequency components
could slightly improve the performance of neuronal cube segmenta-
tion. The segmentation performance of 3D WaveUNet(DIDn) is
close to that of 3D WaveUNet(DDc), although the convolutions in
decoder of 3D WaveUNet(DDc) uses more parameters. InT
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summary, the 3D wavelets improve the performance of neuron seg-
mentation in 3D noisy images.

In Table 1, the last column lists the No. of multiply-add opera-
tions required by various 3D deep networks, for processing a neur-
onal cube with size of 32� 128� 128. 3D U-Net(PU) applies the
simple down-sampling and up-sampling operations, i.e. Max-
pooling and Max-unpooling, which takes the least No. of multiply-
add operations (1.3771 G). 3D U-Net(PDc) and 3D U-Net(ScIn)
apply strided-convolution and DeConv for their down-sampling and
up-sampling, which require 1.8010 G and 1.7990 G multiply-add
operations, respectively. In 3D WaveUNets, the No. of operations
required by wavelet transforms are less than 3% of that of 3D U-
Net(PDc) and 3D U-Net(ScIn), while the segmentation and recon-
struction performances of 3D WaveUNets are superior.

For segmentation of the 28 test neuronal images, Table 2 shows

the average processing time of various 3D deep networks, on an
Nvidia V100 GPU. In average, our method needs about two seconds
to segment a 3D neuronal image.

3.2 3D neuron reconstruction
After segmenting the nerve fibers in the partitioned cubes, we assem-

ble 3D neurons in the 28 test neuronal images, and reconstruct them
using APP2, as described in Section 2.1. We evaluate the accuracy of
automatic reconstructions by comparing them with the manual one,

using three metrics (lower is better), i.e. ‘entire structure average
(ESA)’, ‘different structure average (DSA)’ and ‘percentage of differ-
ent structures (PDS)’, proposed in the study by Peng et al. (2010a).

Table 2. Average processing times of various 3D deep networks for segmentation of the 28 test neuronal images

Architecture 3D U-Net 3D WaveUNet

Dual structure PU PDc ScIn DDc DIn DI DIDn

Times (s) 1.4810 1.4657 1.4703 1.7276 1.7751 2.0980 2.1678

The bold numbers indicate the best result of various 3D deep networks.

Manual

ESA =   9.9707
DSA = 16.7343
PDS =   0.4335

APP2

ESA = 40.5418
DSA = 49.6887
PDS =   0.5034

APP2

ESA =   2.5400
DSA = 10.3238
PDS =   0.1434

3D U-Net(PU) + APP2

ESA =  1.4128
DSA =  5.6501
PDS =  0.1063

3D U-Net(PDc) + APP2

ESA =  1.5146
DSA =  6.0784
PDS =  0.1112

3D U-Net(ScIn) + APP2

ESA =  1.3485
DSA =  5.2949
PDS =  0.1034

3D WaveUNet(DDc) + APP2

ESA =  1.4073
DSA =  5.5981
PDS =  0.1083

3D WaveUNet(DIn) + APP2

ESA =  1.3949
DSA =  5.5615
PDS =  0.1054

3D WaveUNet(DI) + APP2

ESA =  1.3640
DSA =  5.3237
PDS =  0.1046

3D WaveUNet(DIDn) + APP2

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. The reconstructions of various methods. (a) The reconstruction manually traced by experts. (b, c) Two reconstructions of APP2 on the original neuronal image, with dif-

ferent parameters. (d–f) The reconstructions of APP2 on the images segmented by the three 3D U-Nets. (g–j) The reconstructions of APP2 on the images segmented by the four

3D WaveUNets. In the reconstructing experiments, we tune two parameters of APP2, i.e. background threshold and length threshold. For the neuron reconstructions shown in

(b), we set the two parameters as 10 and 5, respectively, which are the default values in APP2. For the one shown in (c), we set both two parameters as 1. For all the neuron

reconstructions traced on the images segmented by 3D deep networks, we set both of the APP2 parameters as 1

3D WaveUNet 815



Table 1 shows the three mean metric values of the 28 neurons
reconstructed using APP2 on the segmentation results of 3D U-Nets
and 3D WaveUNets.

The three mean metric values (9.3942, 14.3641 and 0.3573) of
APP2 on the 28 original noisy images are taken as baseline. From
Table 1, one can find that the reconstruction performance on the
segmented images of the seven deep networks is clearly superior to
the baseline, which indicates that our method significantly improves
the 3D neuron reconstruction. Generally, with the application of 3D
DWT and IDWT in the encoder and decoder of the deep networks,
the reconstruction performance is getting better and better, and 3D
WaveUNet(DIDn) with wavelet ‘db4’ achieves the best reconstruc-
tion performance (1.9973, 6.0173 and 0.1897). In summary, our
3D wavelet and deep network-based method efficiently improve the
automatic reconstruction performance for 3D neurons in the noisy
images.

Comparing the segmentation and reconstruction results shown
in Table 1, we find that the deep network with better segmentation
performance may not lead to the better neuron reconstruction,
mainly due to the label noises in the dataset NeuCuda. According to
the manual reconstructions of neurons in BigNeuron, we design an
automatic software to label the neuronal cubes of NeuCuDa.
However, during the implementation, some label noises are intro-
duced into the dataset. As Figure 7 shows, some background voxels
surrounding the nerve fibers are incorrectly labeled as neuronal vox-
els. These label noises result in the inconsistency between the neuron
segmentation and its final reconstruction.

In Supplementary Material (Supplementary Section S.4), to bet-
ter illustrate the effectiveness of 3D wavelet integrated deep net-
works on 3D neuron segmentation and reconstruction, we apply
various automatic tracing algorithms to reconstruct the test images
segmented by the different 3D deep networks integrated with or
without 3D wavelets.

Figure 8 visually shows the reconstructions of an example noisy
neuronal image. In Figure 8, the original size of the image is 291�
3298� 1881 (z-y-x), while the previous deep network-based 3D
neuron segmentation methods (Li et al., 2017; Li and Shen, 2020;
Wang et al., 2019a) cannot process the neuronal images with such a
large size. Figure 8a shows the manual reconstruction of the neuron,
which perfectly reflect the neuron morphology. Figure 8b and c
shows the reconstructions of APP2 with different parameters on the
original neuronal image. The following three subfigures show the
reconstructions of APP2 on the neurons segmented by the three 3D
U-Nets, and the last four subfigures show that of the four 3D
WaveUNets. While the segmentation process takes the three 3D U-
Nets about 4.2 s, it takes the four 3D WaveUNets about 4:9; 5:0; 6:1
and 6.4 s, respectively.

On the original noisy image, the automatic tracing algorithm
APP2 either stop tracing weak nerve fibers (Fig. 8b) or over-
reconstruct strong noises as nerve fibers (Fig. 8c). From Figure 8,
one can find that the reconstructions of APP2 on the segmented
image are superior to that on the original image, which illustrates
the efficiency of our 3D neuron reconstruction method. The 3D U-
Nets either classify ‘background’ voxels as ‘nerve fiber’ voxels or do
not extract complete nerve fibers. Therefore, their segmented neur-
onal images contain much background noise (Fig. 8d and e), or the

reconstructions are not complete (Fig. 8d and f), as marked by the
yellow arrows. The 3D WaveUNets obtain cleaner segmentation
and more complete reconstruction, which justifies the effectiveness
of 3D wavelets in suppressing noise and keeping nerve fiber struc-
ture. Comprehensively, the 3D WaveUNet(DIDn), which utilizes
DWT, IDWT and denoising block, achieves the best segmentation
and reconstruction results.

We compare our method with three more recent deep networks
(Jiang et al., 2021; Li et al., 2017; Li and Shen, 2020). Table 3 lists
the results. For ‘3D Residual Net’, we compute the three mean met-
ric values (3.2892, 5.8900 and 0.3367) of APP2 performance on 17
BigNeuron images published in (Li et al., 2017). For ‘3D U-Net
Plus’, we reconstruct the neurons in 28 test neuronal images using
the well-trained 3D U-Net Plus and reconstruction method, and the
reconstruction performance is 33.5020, 40.3151 and 0.5539. On
the 28 test neuronal images, the three metrics of ‘Bidirectional Long
Short-Term Memory (BLSTM)’ are 6.7582, 13.0149 and 0.3646.
While the DSA value (5.8900) of 3D Residual Net is slightly better
than that of our method, the network uses significantly more param-
eters (11.41 M) than our 3D WaveUNets (0.17 M). The perform-
ance of 3D U-Net Plus is even inferior to the baseline (shown in
Table 1). As the method resizes the neuronal image into 32� 128�
128 before segmentation, it cannot completely segment the neurons
in large size neuronal images. BLSTM segment every 2D neuronal
slice to denoise the 3D image, which performs badly for discon-
nected nerve fibers. Comprehensively, among these four methods,
our 3D WaveUNets perform best in terms of both metrics and net-
work complexity.

4 Conclusion

We propose a 3D wavelet and deep learning-based neuron segmen-
tation method, which could improve the reconstruction performance
for 3D neurons with large size. We rewrite 3D DWT/IDWT as gen-
eral network layers, and design the first 3D wavelet integrated en-
coder–decoder network, 3D WaveUNet, for 3D neuron
segmentation. The 3D wavelet transforms could suppress the noise
propagation and keep nerve fiber structure during the deep network
inference, thus improve the performance of 3D neuron segmentation
and reconstruction in noisy neuronal images.

In future, we will study the 3D neuron instance segmentation for
images containing multiple neurons and extend the 3D wavelet inte-
grated deep networks to more 3D medical image applications.

Funding

This work was supported by the National Natural Science Foundation of

China [62006156, 91959108]; the Science and Technology Project of

Guangdong Province [2018A050501014]; and the Science Foundation of

Shenzhen [JSGG20180508152022006].

Conflict of Interest: none declared.

References

Ai-Awami,A.K. et al. (2016) Neuroblocks–visual tracking of segmentation

and proofreading for large connectomics projects. IEEE Trans. Vis.

Comput. Graph., 22, 738–746.

Ascoli,G.A. et al. (2007) Neuromorpho. org: a central resource for neuronal

morphologies. J. Neurosci., 27, 9247–9251.

Badrinarayanan,V. et al. (2017) Segnet: a deep convolutional encoder–decoder

architecture for image segmentation. IEEE Trans. Pattern Anal. Mach.

Intell., 39, 2481–2495.

Bahce,C.G. and Bayazit,U. (2020) Compression of Geometry Videos by

3D-Speck Wavelet Coder.Vis. Comput?., 37, 973–991.

Chen,L.C. et al. (2018) Encoder–decoder with atrous separable convolution for

semantic image segmentation. In: Proceedings of the ECCV, Munich,

Germany, pp. 801–818.

Chung,K. and Deisseroth,K. (2013) Clarity for mapping the nervous system.

Nat. Methods, 10, 508–513.

Table 3. Reconstruction performance of different 3D deep networks

Network Reconstruction Parameters

ESA DSA PDS

3D WaveUNet (Ours) 1.9973 6.0173 0.1897 0.17 �106

3D residual net (Li

et al., 2017)

3.2892 5.8900 0.3367 11.41 �106

3D U-Net Plus (Li and

Shen, 2020)

33.5020 40.3151 0.5539 3.60 �106

BLSTM (Jiang et al., 2021) 6.7582 13.0149 0.3646 0.60�106

The bold numbers indicate the best result of various 3D deep networks.

816 Q.Li and L.Shen

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab716#supplementary-data


Chung,K. et al. (2013) Structural and molecular interrogation of intact bio-

logical systems. Nature, 497, 332–337.
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