
Received: 10May 2022 Revised: 1 August 2022 Accepted: 1 August 2022

DOI: 10.1002/dad2.12354

R E S E A RCH ART I C L E

Integrative analysis of DNAmethylation and gene expression
identifies genes associatedwith biological aging in Alzheimer’s
disease

Bo-Hyun Kim1,2,11 Aparna Vasanthakumar3 Qingqin S. Li4

Kelly N.H. Nudelman5,6,7 Shannon L. Risacher1,6 JustinW. Davis3 Kenneth Idler3

Jong-Min Lee9 SangWon Seo2,10,11 Jeffrey F.Waring3 Andrew J. Saykin1,6,7

Kwangsik Nho1,6,8 for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)*

1Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School ofMedicine, Indianapolis, Indiana, USA

2Samsung Alzheimer Research Center, SamsungMedical Center, Seoul, Republic of Korea

3Genomics Research Center, AbbVie, North Chicago, Illinois, USA

4Neuroscience Therapeutic Area, Janssen Research &Development, LLC, Titusville, New Jersey, USA

5National Centralized Repository for Alzheimer’s Disease and Related Dementias, Indiana University School ofMedicine, Indianapolis, Indiana, USA

6Indiana Alzheimer Disease Center, Indiana University School ofMedicine, Indianapolis, Indiana, USA

7Department ofMedical andMolecular Genetics, Indiana University School ofMedicine, Indianapolis, Indiana, USA

8Center for Computational Biology and Bioinformatics, Indiana University School ofMedicine, Indianapolis, Indiana, USA

9Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea

10Department of Neurology, SamsungMedical Center, SungkyunkwanUniversity School ofMedicine, Seoul, Republic of Korea

11Department of Health Sciences and Technology, SHAIST, SungkyunkwanUniversity, Seoul, Republic of Korea

Correspondence

Kwangsik Nho, Department of Radiology and

Imaging Sciences, Center for Neuroimaging,

Indiana University School ofMedicine, 355W

16th St. Methodist hospital, GH 4101,

Indianapolis, Indiana 46202, USA.

Email: knho@iupui.edu

*Data used in preparation of this article were

obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators

within the ADNI contributed to the design and

implementation of ADNI and/or provided data

but did not participate in analysis or writing of

this report. A complete listing of ADNI

investigators can be found at:

http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf

Abstract

Introduction: The acceleration of biological aging is a risk factor for Alzheimer’s

disease (AD). Here, we performed weighted gene co-expression network analysis

(WGCNA) to identify modules and dysregulated genesinvolved in biological aging in

AD.

Methods: We performed WGCNA to identify modules associated with biological

clocks and hub genes of the module with the highest module significance. In addi-

tion, we performed differential expression analysis and association analysis with AD

biomarkers.

Results: WGCNA identified five modules associated with biological clocks, with the

module designated as “purple” showing the strongest association. Functional enrich-

ment analysis revealed that the purplemodule was related to cell migration and death.

Ten genes were identified as hub genes in purple modules, of which CX3CR1 was
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downregulated in AD and low levels of CX3CR1 expression were associated with AD

biomarkers.

Conclusion:Network analysis identified genes associatedwith biological clocks, which

suggests the genetic architecture underlying biological aging in AD.
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Highlights

∙ Examine links between Alzheimer’s disease (AD) peripheral transcriptome and

biological aging changes.

∙ Weighted gene co-expression network analysis (WGCNA) found five modules

related to biological aging.

∙ Among the hub genes of themodule, CX3CR1was downregulated in AD.

∙ The CX3CR1 expression level was associated with cognitive performance and brain

atrophy.

1 INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative dis-

ease, characterized by accumulation of amyloid beta (Aβ) plaques and
neurofibrillary tangles in the brain.1,2 AD develops from multiple fac-

tors, such as genetics, lifestyle factors, and aging. The actual cause of

AD is still an open question, but the greatest known risk factor for AD

is aging, although chronological age is not a sufficient marker of indi-

vidual health outcomes anddoes not reflect sensitivity to aging-related

diseases.3 Over the past decade there have beenmany studies to iden-

tify aging biomarkers that measure biological aging processes, also

called biological age or biological clocks.4–8 The acceleration of biologi-

cal age has been reported to associatewith biomarkers of AD including

the presence of neuritic plaques, amyloid load, and the decline of global

cognitive functioning, episodic, andworkingmemory.9–14

Telomere length (TL) and epigenetic clocks are the most promising

biological clocks and have been reported to be associated with the risk

of AD. Telomeres are repeated sequences at the end of chromosomes

that are shortened with each cell cycle.15,16 Telomere shortening was

associated with aging, age-related diseases, including AD, and cog-

nitive performance in AD.13,14,17–19 Epigenetic clocks are based on

the changes in DNA methylation levels of multiple cytosine-guanine

dinucleotide (CpG) sites. Age-related changes in methylation levels

have been studied20–23 and may cause various age-related diseases

including AD.24–27 Moreover, epigenetic clocks have been linked to AD

pathology,10 and the acceleration of epigenetic clocks has been associ-

ated with neuritic plaques and amyloid load in the prefrontal cortex10

and the decline of cognitive function, episodic memory, and working

memory.9–11,28

With the rapid development of high-throughput screening tech-

niques, gene expression analysis has become increasingly popular in

studying the molecular mechanisms of human diseases. Previous stud-

ies have identified genes that are significantly dysregulated inAD.29–32

In addition, individual genes do not work alone but interact with other

genes.33,34 Network analysis of gene expression profiles may offer

the potential for identifying dysregulated genes that play important

roles in complex diseases.Weighted gene co-expression network anal-

ysis (WGCNA) has been developed to identify co-expression modules

of highly correlated genes, evaluate associations between modules

and clinical outcomes, and identify potential disease-associated gene

sets.35–38 WeusedWGCNAto identifymodules by constructing a gene

network using the correlation patterns between gene expression lev-

els and evaluated the associations between modules and biological

clocks.

To date, several biological clocks have been proposed.4,5,39,40

Although previous studies reported the association between biologi-

cal clocks and AD, transcriptomic factors influencing biological aging

in AD are unknown. The objective of this study is to identify path-

ways and genes associated with biological aging and AD biomarkers

in the AD continuum by integrating RNA profiling, DNA methylation,

telomere lengths, cognition, and magnetic resonance imaging (MRI)

scans from 551 non-Hispanic White participants in the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). First, we used DNA methy-

lation data to estimate DNA methylation–based epigenetic clocks5,6

and DNA methylation–based TL.4 In addition, we used TL measured

using quantitative polymerase chain reaction (qPCR) to compare to

DNA methylation–based estimated TL. After estimating biological

clocks, we performedWGCNAonmicroarraymessenger RNA (mRNA)

expression profiles to identifymodules (gene sets) as significantly asso-

ciated with biological clocks. Then we identified hub genes in a module

andperformeddifferential expression analysis and association analysis

of hub genes with AD diagnosis and AD biomarkers.
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2 METHODS

2.1 Study participants

The data used in the study were downloaded from the ADNI database

(http://adni.loni.usc.edu/). ADNI is a longitudinal study with more

than 50 sites across the United States and Canada launched as a

public-private partnership in 2004, and details have been described

previously.41,42 In this study, a total of 551 ADNI participants includ-

ing 181 cognitively normal older adults (CN), 272 mild cognitive

impairment (MCI), and 93 ADwere used for analysis.

2.2 Gene expression profiling

Gene expression profiling from blood samples was performed on the

Affymetrix Human Genome U219 Array (www.affymetrix.com, Santa

Clara, CA, USA). Raw microarray expression data were processed

according to the standard quality control (QC) procedures described

previously.30 In brief, all probe sets were annotated with the reference

human genome (hg19), and raw expression values were normalized.

A sex discrepancy check was performed using expression levels of

sex-specific genes. After quality control, the RNA expression pro-

files contained 21,150 probes. To adjust for the confounding effects,

we used batch effects and RNA integrity number (RIN) values as

covariates.

2.3 Telomere length measurement

Telomere length (or TL) measurement was performed on DNA from

blood or a buffy coat sample of ADNI participants using a real-time

qPCR) assay. TL was measured at the same visits with DNA methyla-

tion profiling and quantified by comparing the amount of the telomere

amplification product (T) to that of a single copy gene (S). The relative

telomere to single copy gene (T/S) ratio was calculated to yield a value

that correlates with the average TL, and the T/S ratio was adjusted for

experimental variables to correct for batch effects. The TL acquisition

and quality control have been described in detail previously.43

2.4 DNA methylation profiling

DNA methylation was profiled in blood or buffy coat samples using

Illumina EPIC chips (Illumina, Inc., San Diego, CA, USA) according to

the Illumina protocols. A detailed protocol describing DNA measure-

ment has been described previously.44 In brief, genomic DNA samples

were obtained from NCRAD (National Centralized Repository for

Alzheimer’s Disease and Related Dementias), and normalization and

quality controlwere conducted.45 One samplewas excluded because it

had no CpG calls, and four samples were excluded because ≥1% of the

CpG sites had a detection P-value > .05.46 The remaining 1915 sam-

ples were normalized using wateRmelon.47 After quality control and

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using a PubMed and Google Scholar search. There

is increasing evidence that the acceleration of biolog-

ical aging has been reported to be associated with

Alzheimer’s disease (AD). It is, therefore, possible that

expression levels of biological clock–associated genes

could be associated with cognition and AD biomarkers.

2. Interpretation: This is the first study to show that bio-

logical clocks were associated with gene co-expression

network modules, whose hub genes were also associated

with cognition and brain atrophy, providing the genetic

architecture underlying biological aging in AD.

3. Future directions: Further replication and functional

studies in larger independent cohorts and animal models

should be performed to investigate the mechanistic roles

of CX3CR1 in biological clocks and AD pathology.

normalization, the data set of comprised beta values was used for

further analyses.

2.5 Prediction of DNA methylation–based
epigenetic clocks and telomere length

DNA methylation–based epigenetic clocks (DNAmGrimAge and

DNAmAgeSkinBlood)5,6 and TL (DNAmTL)4 were predicted using the

online biological clock calculator (http://dnamage.genetics.ucla.edu/)

(see Figure S1 for the correlation of biological clocks). DNAmGrimAge

and DNAmAgeSkinBlood are biological clocks (in units of years), and

DNAmTL predicts leukocyte TL (LTL in units of kilobase [kb]) based on

DNAmethylation at multiple CpG sites. It is well known that the abun-

dance of different cell types in blood changes with age,48,49 and DNA

methylation–based epigenetic clocks andDNAmTL are also associated

with age-related changes in blood cell composition.4–6 To adjust for

the effect of blood cell composition, we estimated blood cell counts

using DNA methylation profiles based on the Horvath method40 and

the Houseman method,50 and we included the following seven blood

cell counts in the multivariable regression to avoid multi-collinearity

between blood cell counts: B cells, CD8+ T cells, monocytes, plasma

blasts, exhausted cytotoxic CD8+ T cells, naïve CD8+ T, and naïve

CD4+ T.

2.6 Cognitive performance

Cognitive composite scores were downloaded from the ADNI

database. Comprehensive neuropsychological evaluations were used

to calculate composite measures for memory (MEM) and executive

http://adni.loni.usc.edu/
http://www.affymetrix.com
http://dnamage.genetics.ucla.edu/


4 of 13 KIM ET AL.

functioning (EF).51,52 Briefly, composite scores for memory included

theReyAuditoryVerbal LearningTest,Mini-Mental State Examination,

Logical Memory I-II, and AD Assessment Scale-Cognitive Test. Com-

posite scores for EF included Digit Span Backwards, Category Fluency,

WAIS-R (Wechsler Adult Intelligence Scale-Revised) Digit Symbol

Substitution, Trail Making Tests A and B, and the Clock Drawing Test.

2.7 Magnetic resonance imaging processing

Three-dimensional T1-weighted MR images were downloaded from

ADNI, and all MR images were processed with the FreeSurfer soft-

ware (http://surfer.nmr.mgh.harvard.edu/). The detailed procedure has

been described previously53,42 Mean cortical thicknesses in regions

of interest (ROIs) were estimated using Desikan-Killiany-Tourville

ROIs.54,55

2.8 Statistical analysis

2.8.1 Construction of gene co-expression network
and module detection

The gene co-expression network was constructed using the WGCNA

package56 in R. WGCNA was used to identify the modules of highly

correlated genes that are related to external traits. First, similarity

matrices of gene expression were calculated using Pearson’s corre-

lation Sij = |cor(i,j)|. Next, according to the theory of the network

construction algorithm described in57,58 the adjacency matrix (aij) was

constructed using the power function β to construct a scale-free net-

work aij = power (Sij, β) = |Sij|
β. To satisfy scale-free topology, scale

independence and mean connectivity were tested using a gradient

method ranging from 1 to 20, and an appropriate power value was

used. In this study, the power of β = 8 was selected to construct a

scale-free network. Then the adjacency matrix (aij) was transformed

into a topological overlap matrix (TOM). Finally, module detection

was conducted by performing average linkage hierarchical clustering

of 1-TOM dissimilarity matrix; detected modules are designated by

color.35,36,56,59

2.8.2 Identification of modules associated with
biological clocks

To identify functional modules in the gene co-expression network,

the module eigengene (ME) was summarized by the first principal

component of a given module, and module-trait relationships were

estimated using the correlation between MEs and biological clocks.

The associations between MEs and biological clocks were estimated

after adjusting for age and sex. To adjust for multiple testing, we used

false discovery rate (FDR) corrected P-values. To evaluate correlation

strength,we calculatemodule significance (MS),which is definedby the

average of the absolute gene significance for all genes in a given mod-

ule, where the gene significance is defined by the correlation between

the trait and gene expression levels of the gene. The relationships

between modules were estimated by correlations between MEs, and

hierarchical clustering ofMEswas performed. In theWGCNA,modules

with the highestMS are usually defined as the keymodule and selected

for further analysis.36,56,59

2.8.3 Functional enrichment analysis of a module

To understand the biological relationships of genes within a mod-

ule, gene-set enrichment analysis (GSEA)60 was performed to iden-

tify enriched biological pathways. We selected genes in a module

of WGCNA and performed GSEA with pathways from the Gene

Ontology (GO) database (http://geneontology.org/). Pathways with

FDR-corrected P-value< .05 were considered as significant.

2.8.4 Construction of a protein-protein interaction
(PPI) network and identification of hub genes in a
module

Weconstructed a protein-protein interaction (PPI) network of genes in

amodule. To identify experimentally validated interactions in themod-

ule, PPIs from the STRINGdatabase (https://string-db.org/) were used.

Interactions with a confidence score >0.7 were used for network con-

struction. To identify hub genes of the module, we used the maximal

clique centrality (MCC) algorithm.61 The MCC of each protein node

was calculated using cytoHubba61 in the Cytoscape platform (https://

cytoscape.org/). In this study, genes with the top 10 MCC scores were

considered hub genes of themodule.

2.8.5 Associations of expression levels of hub
genes with AD and AD endophenotypes

First, we performed differential expression analysis of probes belong-

ing to hub genes between diagnostic groups using analysis of covari-

ance (ANCOVA) with age and sex as covariates. Then we performed a

post hoc analysis of probes significantly associated with the diagnos-

tic groups using AD endophenotypes. We used composite scores for

memory and EF and entorhinal cortical thickness measured from MRI

scans as AD endophenotypes. We performed linear regression analy-

sis to investigate the association between expression levels of probes

and AD endophenotypes. Age, sex, education, and intracranial volume

(ICV) were used as covariates, if appropriate.

3 RESULTS

3.1 Study participants

A total of 551 ADNI non-Hispanic White participants were used for

gene co-expression network analysis (181 CN, 272 MCI, and 93 AD)

http://surfer.nmr.mgh.harvard.edu/
http://geneontology.org/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
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TABLE 1 Demographic characteristics of the study participants

CN MCI AD P

N (N= 551) 186 272 93

Age 76.2 (6.44) 72.6 (7.72) 77.1 (7.91) 4.66× 10–9

Sex (female/male) 92/94 120/152 35/58 1.64× 10–1

Education 16.4 (2.71) 16.2 (2.71) 15.9 (3.03) 4.43× 10–1

Number of APOE ε4 alleles (0/1/2) 137/45/4 157/95/20 30/46/17 1.52× 10–10

RIN 6.90 (0.52) 7.01 (0.52) 6.98 (0.64) 1.35× 10–1

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E gene; CN, cognitive normal; MCI, mild cognitive impairment; RIN, RNA integrity number.

Note: Boldface indicates P-values less than .05. Themean and standard deviation of age, education, RIN values are shown in the table.

and demographic information is presented in Table 1. Age and sexwere

significantly different between diagnostic groups, whereas education

and RIN values did not show any significant differences between diag-

nostic groups. As expected, the number of apolipoprotein E (APOE) ε4
alleles was greater inMCI and AD.

3.2 Construction of gene co-expression networks
and identification of modules

To identify gene modules, the gene co-expression networks were

constructed using WGCNA. To ensure a scale-free network, scale

independence and mean connectivity were tested using the gradient

method, with the power value ranging from 1 to 20, and the power of

β = 8 was selected. After the construction of the scale-free network,

the modules were detected using a hierarchical clustering dendro-

gram (Figure S2). As the result, 13,302 probes were grouped into 21

modules using the average linkage hierarchical clustering, and 7848

un-clustered probes (included in the gray module) were removed for

subsequent analysis. Twenty-one modules were labeled by color, and

the number of genes in eachmodule is shown in Table S1.

3.3 Identification of gene co-expression modules
associated with biological clocks

The module-trait relationships of 21 modules were tested by calculat-

ing the correlation between the MEs and biological clocks. Among the

21modules, five modules (purple, blue, brown, tan, andmagenta) were

associated significantly with TL, DNAmTL, and DNAmAgeSkinBlood

after adjusting for multiple testing using FDR correction (Figure 1A).

In particular, the purple module was significantly associated with TL (r

= −0.19, FDR corrected P = 1.59 × 10–4), DNAmTL (r = −0.22, FDR

corrected P= 6.25× 10–6), andDNAmAgeSkinBlood (r= 0.2, FDR cor-

rected P = 6.23 × 10–5) (see Tables S2, S3, and S4 for module-trait

relationships in each diagnostic group). MS is defined by the average of

the absolute gene significance for all genes in a given module, where

the gene significance is defined by the correlation between the trait

and expression levels of the gene. WGCNA usually defined the mod-

ule with the highest MS as the key module, and it was selected for

further analysis.36,56,59 In this study, the purple module has the high-

est mean MS across the biological clocks (Figure 1B). In addition, the

relationships between modules were tested. As shown in Figure S3,

modules were divided primarily into two clusters according to the cor-

relations between MEs. The results showed that, of the five modules

that are significantly associated with biological clocks, the tan and

magentamodules were clustered with the purple module, whereas the

brown and blue modules were not. Therefore, based on the relation-

ships between modules, further analysis was performed on the purple

module, a key module, as well as two modules, blue and brown, which

did not cluster with the purple module.

3.4 Gene set enrichment analysis of genes within
the modules

To understand the biological relationship of genes in the modules,

GSEAwas performedwith probes belonging to eachmodule. TheGSEA

analysis with pathways from GO showed 50 enriched pathways for

the purple module (Table 2). For the measured TL, the purple mod-

ule was significantly enriched in a nuclear protein-containing complex

(FDR corrected P= 1.90 × 10–2). For the DNAmTL, the purple module

was enriched in 11 pathways including leukocytemigration. Finally, for

theDNAmAgeSkinBlood, the purplemodulewas significantly enriched

in 39 pathways including cell and intracellular transport. The GSEA

results for the blue and brown modules are shown in Tables S6 and S7.

In the blue module, 25 pathways were enriched for TL and DNAmAge-

SkinBlood, including transferase complex, leukocytemediate immunity,

and cell activation (Table S6). In the brownmodule, five pathways were

enriched for DNAmGrimAge andDNAmAgeSkinBlood (Table S7).

3.5 Identification of hub genes in the modules

The interaction networks in each module were constructed using the

PPI network. The hub genes within a network were determined by the

MCC algorithm. The PPI network with the genes in the purple module

consisted of 49 nodes and 114 edges (Figure 2A). Genes with the top

10 higher MCC scores were selected as hub genes of the purple mod-

ule (Figure 2B and Table S5): CCR5 (C-C motif chemokine receptor 5),
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F IGURE 1 Identification of modules associated with biological clocks. (A) Relationship betweenmodules and biological clocks. Heatmap
displays the correlation coefficient (r) betweenmodule eigengenes (MEs) and biological clocks and false discovery rate (FDR)–corrected P-values.
(B) Average of themodule significance (MS) of biological clocks.

CCL4 (C-C motif chemokine ligand 4), CXCR6 (C-X-C motif chemokine

receptor 6), CX3CR1 (C-X3-C motif chemokine receptor 1), NMUR1

(neuromedin U receptor 1), S1PR5 (sphingosine-1-phosphate recep-

tor 5), CCL5 (C-C motif chemokine ligand 5), PRF1 (perforin 1), IL2RB

(interleukin 2 receptor subunit beta), andGZMB (granzyme B). The PPI

network with the genes in the blue module consisted of 1439 nodes

and 5752 edges, and the network with the genes in the brown module

consisted of 1398nodes and7874edges. Thehub genes in the blue and

brownmodules and their first connected genes are shown in Figures S4

and S5.

3.6 Association of blood expression levels of hub
genes with AD diagnosis and AD biomarkers

We performed differential expression analysis of probes belonging to

the 10 hub genes in each module. In total, 14 probes in the purple

module, 17 probes in blue, and 21 probes in the brown module were

used for the differential expression analysis. Among the 14 probes in

the purple module, one probe annotated on CX3CR1 gene showed a

significant difference of expression levels between diagnostic groups

(Table 3 and Figure S6).CX3CR1was significantly downregulated in AD

compared to MCI and CN (P = 3.27 × 10–2, AD-MCI P = 1.62 × 10–3,

AD-CN P = 1.40 × 10–3, MCI-CN P = 4.81 × 10–1). There were no dif-

ferentially expressed genes between diagnostic groups in the blue and

brownmodules (Tables S8 and S9).We evaluated the associations with

ADbiomarkers for the differentially expressed gene in the purplemod-

ule. The expression levels ofCX3CR1were significantly associatedwith

composite scores for MEM (β = 0.301, P = 2.27 × 10–2) and for EF (β
= 0.407, P = 5.22 × 10–3) (Figure 3A,B). Higher expression levels of

CX3CR1 were associated with higher composite scores for both MEM

andEF. In addition, higher expression levels ofCX3CR1were also signif-

icantly associatedwith thicker entorhinal cortical thickness (β= 0.153,

P= 2.40× 10–2) (Figure 3C).

4 DISCUSSION

Accumulating evidence suggests that acceleration of biological aging

may contribute to increasing risk for AD.10,11,13,14,19 Here, we con-

ducted WGCNA of transcriptomics profiles to identify modules and

hub genes of the modules associated with biological aging in the con-

tinuum of AD (MCI, AD) using four types of biological clocks including

measured TL, two DNA methylation–based clocks (DNAmGrimAge,
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TABLE 2 Gene-set enrichment analysis of the purple module for biological clocks

Biological age GeneOntology N genes NES FDR P

TL Nuclear protein–containing complex 6 −1.130 1.90× 10–2

DNAmTL Regulation of response to biotic stimulus 13 1.210 4.10× 10–2

Response to bacterium 8 1.200 3.60× 10–2

Granulocytemigration 6 −1.138 4.66× 10–2

Leukocytemigration 14 −1.141 4.67× 10–2

Positive regulation of intracellular signal transduction 16 −1.127 4.68× 10–2

Positive regulation ofMAPK cascade 7 −1.132 4.75× 10–2

Myeloid cell differentiation 6 −1.128 4.80× 10–2

Neutrophil migration 5 −1.142 4.82× 10–2

Regulation of leukocytemigration 7 −1.132 4.83× 10–2

Protein dimerization activity 6 −1.119 4.58× 10–2

Identical protein binding 21 −1.101 4.72× 10–2

DNAmAgeSkinBlood Positive regulation of intracellular transport 6 2.405 2.95× 10–4

Regulation of intracellular transport 6 2.405 3.69× 10–4

Positive regulation of locomotion 10 2.422 4.92× 10–4

Positive regulation of phosphorusmetabolic process 13 2.441 7.38× 10–4

Taxis 14 2.326 9.98× 10–4

Regulation of cellular componentmovement 17 2.456 1.48× 10–3

Locomotion 31 2.249 1.72× 10–3

Positive regulation of intracellular protein transport 5 2.258 1.94× 10–3

Regulation of intracellular protein transport 5 2.258 2.22× 10–3

Positive regulation of protein localization tomembrane 5 2.135 3.99× 10–3

Regulation of protein localization tomembrane 5 2.135 4.35× 10–3

Regulation of anatomical structuremorphogenesis 7 2.104 4.36× 10–3

Regulation of vasculature development 5 2.090 4.47× 10–3

Positive regulation of protein phosphorylation 12 2.144 4.52× 10–3

Secondmessenger mediated signaling 9 2.047 5.50× 10–3

Calciummediated signaling 9 2.047 5.87× 10–3

Cell migration 27 1.992 6.83× 10–3

Protein kinase b signaling 8 2.003 6.87× 10–3

Gliogenesis 6 1.981 7.41× 10–3

Regulation of intracellular signal transduction 23 1.928 1.12× 10–2

Positive regulation of protein kinase b signaling 5 1.902 1.33× 10–2

Intracellular transport 13 1.878 1.64× 10–2

Positive regulation of catalytic activity 14 1.869 1.72× 10–2

Organophosphatemetabolic process 6 1.864 1.72× 10–2

Blood vessel morphogenesis 10 1.857 1.79× 10–2

Cell chemotaxis 8 1.841 1.90× 10–2

Regulation of cell death 13 1.798 2.45× 10–2

G protein–coupled receptor signaling pathway 14 1.798 2.52× 10–2

Negative regulation of cell death 8 1.800 2.57× 10–2

Positive regulation of chemotaxis 5 1.773 2.70× 10–2

Regulation of chemotaxis 5 1.773 2.79× 10–2

Growth 8 1.775 2.86× 10–2

Anatomical structure formation involved inmorphogenesis 13 1.743 3.10× 10–2

Positive regulation of proteinmodification process 15 1.736 3.14× 10–2

Cellular componentmorphogenesis 8 1.745 3.16× 10–2

Biological process involved in symbiotic interaction 17 1.701 4.22× 10–2

Positive regulation of intracellular signal transduction 16 1.685 4.63× 10–2

Vasculature development 11 1.669 4.99× 10–2

Cell morphogenesis 8 1.671 5.00× 10–2

Abbreviations: FDR P, false discovery rate (FDR)–corrected P-value; N genes, the number of genes in gene sets; NES, normalized enrichment score.
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F IGURE 2 Visualization of the protein-protein interaction (PPI) network and hub genes. (A) PPI network with genes in the purple module. The
blue nodes represent the genes and edges present the associations between genes. (B) 10Hub genes with highest maximal clique centrality (MCC)
scores and their first connected genes. TheMCC scores are displayed in colors from red to yellow on the node.

DNAmAgeSkinBlood), and DNA methylation–based estimated telom-

ere length (DNAmTL).

Gene co-expression network analysis identified five modules signif-

icantly associated with biological aging, and among them the purple

module showed the strongest associations with four biological clocks.

GSEA of the purple module identified 50 significantly enriched path-

ways related to the acceleration of biological clocks. Our analysis

revealed the enriched pathways related to leukocyte migration and

intracellular transport. Leukocyte migration plays an important role

in inflammation, which is linked to AD development,62 and leukocyte

filtration in AD brain is stimulated by Aβ.63 The disruption of the intra-
cellular transport of enzymes involved in the production of Aβ has been
associated with the onset of AD.64 Furthermore, pathway analysis also

revealedpathways related to cellmigration, cell death, chemotaxis, and

gliogenesis. Cell death and migration are related to Aβ, a key molecule

in the pathogenesis of AD.65 The migration of monocytes into the AD

brain begins with Aβ deposition and contributes to neuronal cell death
that causes brain atrophy.66 Microglial chemotaxis is related to the

concentration of soluble Aβ,67 and migration of microglia induced by

Aβ constitutes a chemotactic response of neuroimmune brain cells.68

Gliogenesis in the adult brain regulates brain function and is involved

in neurological conditions such as AD.69,70

Therefore, genes in the purple module are likely linked to biological

processes relevant to AD. Furthermore, according to the MCC algo-

rithm, the top 10 genes with higher MCC scores were considered as

hub genes of the purple module, and their expression was found to be

downregulated in patients with AD compared with cognitively normal

older adults (or CN). Among them, CX3CR1 expression was signifi-

cantly downregulated in AD and was also significantly associated with

cognitive performance and brain atrophy.

The CX3CR1 (CX3C chemokine receptor 1) gene is a protein-coding

gene that binds to CX3CL1 (CX3C chemokine fractalkine), also known
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TABLE 3 Differentially expressed probes and related hub genes in the purple module

probe ID Gene CN MCI AD P FDR P

11723048_at CX3CR1 0.032 0.005 −0.081 2.33× 10–3 3.27× 10–2

11752490_x_at NMUR1 0.000 0.013 −0.044 5.54× 10–1 7.65× 10–1

11740639_at NMUR1 −0.013 0.018 −0.033 6.52× 10–1 7.65× 10–1

11729977_a_at CXCR6 0.033 −0.017 −0.012 6.55× 10–1 7.65× 10–1

11747295_a_at PRF1 0.006 0.010 −0.046 6.02× 10–1 7.65× 10–1

11730909_s_at CCR5 0.043 −0.014 −0.040 2.74× 10–1 7.65× 10–1

11718983_x_at CCL4 0.027 −0.005 −0.038 3.49× 10–1 7.65× 10–1

11752664_a_at S1PR5 0.004 0.007 −0.031 8.35× 10–1 8.74× 10–1

11722635_at IL2RB 0.006 0.018 −0.073 1.15× 10–1 7.65× 10–1

11732275_at CCL5 0.018 0.004 −0.050 4.79× 10–1 7.65× 10–1

11718982_s_at CCL4 0.021 −0.005 −0.025 3.84× 10–1 7.65× 10–1

11753810_a_at CCL5 0.021 0.004 −0.057 3.13× 10–1 7.65× 10–1

11732276_x_at CCL5 0.022 0.007 −0.069 1.99× 10–1 7.65× 10–1

11724900_a_at GZMB 0.001 0.005 −0.018 8.74× 10–1 8.74× 10–1

Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal old adults; FDR P, false discovery rate (FDR)−corrected P-value; MCI, mild cognitive

impairment; P, P-value.
Note: Boldface indicates FDR P-values less than 0.05.

F IGURE 3 Associations between expression levels of CX3CR1 gene and Alzheimer’s disease (AD) biomarkers. Expression levels of CX3CR1
versus composite scores for memory (A), executive functioning (B), and entorhinal cortical thickness (C).

as fractalkine. The chemokine is involved in the adhesion and migra-

tion of leukocytes71 and chemokine, and chemokine receptors play a

role in the development of AD.72 Genetic mutations in the CX3CR1

gene are associated with the number of cells in lymphocytes,73,74

leukocytes,75–77 andmyeloidwhite cells.74 CX3CL1/CX3CR1, one type

of chemokine and chemokine receptors, has been reported to play

a role in AD.78,79 In the central nervous system (CNS), CX3CL1 is

highly expressed in neurons,80 and CX3CR1 is mainly expressed in

microglia.81 In our study, the CX3CR1 gene was downregulated in AD,

which is consistent with the previous study.82 Previous studies sug-

gest that the interruption of the CX3CL1/CX3CR1 signaling, which

plays an important role in neuro-microglia interaction, has beneficial

as well as detrimental effects on AD pathology.78 CX3CL1/CX3CR1

signaling has a neuroprotective effect in the CNS by reducing neu-

rotoxicity and microglial activation83,84 and has a beneficial effect

on Aβ clearance.82,85–88 Conversely, CX3CL1/CX3CR1 signaling has

also been reported to have a negative effect on AD pathology. Dis-

rupting the CX3CL1/CX3CR1 signaling pathway by ablation of the

CX3CR1 resulted in enhancement of tau accumulation.82,85–88 In addi-

tion, the disruption of CX3CL1/CX3CR1 signaling has been associated

with the dysregulation of microglial responses, neuronal damage,81,89

alleviation of Aβ neurotoxicity, andmemory deficiency.90,91

Among the hub genes in the purple module, five genes (CX3CR1,

CCL4, CCR5, CCL5, CXCR6) are chemokine or chemokine receptors.

Chemokines and their receptors have been reported to be related to

neuroinflammation in AD.72 CCR5 (C-C chemokine receptor type 5)
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is involved in neuroinflammation processes associated with AD72,92,93

and related to long-term and spatial memory functions in mice.94 In

addition, the absence of CCR5 modulates the expression of CCR2,

which is related to the activation of astrocytes, which may lead to

Aβ deposition.93 CCL4 (C-C motif chemokine ligand 4), also known

as macrophage inflammatory protein-1β (MIP-1β), binds to CCR5

and CCR8 (C-C chemokine receptor 8). The expression of CCL4 is

modulated by Aβ deposition.95

This study is limited due to its modest sample size. Replication

studies in independent cohorts with large sample sizes are needed to

validate our findings. In addition, we used only non-Hispanic Whites

from the ADNI cohort to avoid confounding by population stratifica-

tion. Further studies in racially diverse samples will be important for

generalization of these findings to community-based and ancestrally

diverse populations.

In conclusion, we performed a co-expression network analysis of

blood gene expression profiles to identify modules and dysregulated

genes associated with biological clocks in AD. We identified five mod-

ules related to biological clocks, where the purple module showed

the most significant association with biological clocks. Among hub

genes of the purple module, CX3CR1 was downregulated in AD and

associated with cognitive performance and brain atrophy. The biolog-

ical role of CX3CR1 in biological clocks merits further investigation.

This study may contribute to the understanding of the genetic archi-

tecture underlying biological aging and its role in relation to AD

pathophysiology.
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