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Abstract
Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying

heterogeneity in melanoma driver genes and altered gene expression profiles. These char-

acteristics of melanoma also make the development of drugs and identification of novel

drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative

approach to re-explore the genes or gene sets that display dysregulated behaviour without

being differentially expressed. In this study, we have performed systems biology studies to

enhance our knowledge about the conserved property of disease genes or gene sets

among mutually exclusive datasets representing melanoma progression. We meta-ana-

lysed 642 microarray samples to generate melanoma reconstructed networks representing

four different stages of melanoma progression to extract genes with altered molecular cir-

cuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma

network-rewired genes are not differentially expressed and the disease genes involved in

melanoma progression consistently modulate its activity by rewiring network connections.

We found that the shortlisted disease genes in the study show strong and abnormal network

connectivity, which enhances with the disease progression. Moreover, the deviated network

properties of the disease gene sets allow ranking/prioritization of different enriched, dysre-

gulated and conserved pathway terms in metastatic melanoma, in agreement with previous

findings. Our analysis also reveals presence of distinct network hubs in different stages of

metastasizing tumor for the same set of pathways in the statistically conserved gene sets.

The study results are also presented as a freely available database at http://bioinfo.icgeb.

res.in/m3db/. The web-based database resource consists of results from the analysis pre-

sented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval

and further analysis.
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Introduction
Advance malignant melanoma represents a deadly cancer state due to its high dissemination
potential and increasing therapy resistance [1]. In general, melanoma initiates with marked dis-
ruption of cellular homeostatic mechanisms leading to a malignant transformation of skin
melanocytes (cutaneous non-metastatic; CnM). Melanoma initiation is followed by its prolifer-
ation to different layers of skin via multiple growth phases (cutaneous metastasis; CM) and
finally to lymph nodes (LN), which metastasize tumour to different organs [2].

After the advent of the ‘omics’ era, despite several attempts to identify gene signatures and
genetic changes in melanoma, inconsistencies in the results still exists [3–5]. The likely reason
for the inconsistency is the diverse histological types and multivariate nature of melanoma,
making consensus view about melanoma gene expression behaviour, a challenge, which also
hinders development of novel anti-melanoma therapies.

Historically, high-throughput (HT) melanoma studies have been mainly confined to identi-
fication and validation of mutated genes and multitude of Differentially Expressed (DE) genes
for various classified melanomas or melanoma sub-types. Although the information about DE
genes enhance our understanding of diseases, recent studies indicate that alteration in gene
activity is not limited to its fold change in expression alone and the interactomes undergo re-
wiring as a result of cellular or adaptive response [6]. Systems biology offers a range of alterna-
tive methods that allows identification of such disease linked genes characterised by abnormal
linked behaviour. The new systems biology methods based on gene co-expression values allows
prediction of gene essentiality beyond modules and hubs; which even helps generate novel
hypotheses for disease mechanisms [7].

It has been found that in a normal cellular homeostasis, the genes display a robust set of cor-
related oscillations, herein referred as network connections, which are disrupted in diseases [7,
8]. Thus, dysregulation linked with disease states cause differential correlation of various genes
due to their altered gene expression pattern leading to reformation of network wiring circuitry
[9]. It is expected that the genes that amplify its connectivity or expression in disease as com-
pared to that in control stages are more likely to be involved in disease progression. In such
stress conditions, several genes lose connections in the perturbed network while some may
even gain alternate sets of connections [10]. Fig 1 illustrates the differential connectivity in net-
work-1 as compared to network-2, which shows that some connections are lost while new con-
nections (even new nodes) may be established in the altered network-2. Additional
experimental evidence for this concept is a report by Hudson et al. [11], who conducted differ-
ential wiring analysis of expression data to correctly predict myostatin as the gene containing
the causal mutation, characterised by differential wiring rather than differential expression.
Anglani et al. described the loss of gene connections as a measure of its molecular dysfunction
in five different cancers, which occurs when genes lose its role as an effector [12]. The study
highlighted that oncogenic alterations in coding regions and post-translational modifications
can modify gene connections and hence functions, without any changes in expression levels. In
another study, Kim et al. correlated the gene essentiality with rewiring in yeast and mouse
interactome and suggested that circuitry rewiring allow genes to integrate into alternative path-
ways [13]. A similar study utilizes the number of connections gained and lost by a gene to mea-
sure its overall rewiring score [8]. The analysis revealed that the disease genes tend to rewire its
network circuit and hence gene-rewiring scores are suitable for gene prioritization. Moreover,
previously it was found that ERK-MAPK activity in melanoma leads to pathway rewiring
which results in its connection of ERK to JNK pathways- this observation lead to identification
of additional melanoma therapeutic targets [14]. Thus, the available literature suggests that not
only genes but the associated pathways too get dysregulated after connection rewiring,
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understanding of which is a critical step in designing novel and more effective therapeutics
[15]. An additional advantage of exploiting the network based system biology approach for the
prediction of genes involved in disease is that the sensitivity of reconstructed network increases
with heterogeneity in expression dataset, which is a common feature of melanoma samples [5,
16].

There is no report of any study, which attempts to identify and measure the network depen-
dent dynamicity and reproducibility of such potential and novel disease genes or gene sets (i.e.
pathways) involved in melanoma progression, based on the analysis of heterogeneous mela-
noma datasets. In this study we exploited the publicly available cross-platform melanoma tran-
scriptomic data (sample size> 600, grouped into four different stages per semelanoma
progression), to decipher differentially wired genes in each stage.

In this study we have identified gene sets that are rewired and connected similarly in mutu-
ally exclusive datasets. Moreover, we have investigated the differential network properties of
functional clusters developed from the shortlisted disease genes. The deviated network profile
analysis assisted in identification of important stage specific pathway terms involved in stage
transition. We demonstrate that there is a sudden increase in quantitative complexity of the
predicted pathways with tumour progression especially after the onset of metastasis. Such pri-
oritized/ranked gene clusters were found to possess strong disease association on the basis of
disease linkage analysis. We also attempted to understand the dynamicity and flow of ranked
pathway terms enriched during melanoma progression. The complete results are presented as
a SQL database using DHTML and cytoscape-web [17] for user friendly visualization, retrieval
and further analysis. The database resource is freely available at http://bioinfo.icgeb.res.in/
m3db/.

Fig 1. Gene connections in biological networks are dynamic andmay show altered co-expression
under variable conditions, even if genes shows no significant differential co-expression.Gene
connections are marked as lines, new genes marked as hollow circles (marked with arrows) and dotted lines
represent new connections.

doi:10.1371/journal.pone.0142443.g001
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Results
Melanoma gene expression data collected from publicly available data repositories was manu-
ally stratified into four different stages, in the order of melanoma progression involving normal
skin melanocytes (N) and the three transition events {N! CnM! CM! LN}. Table 1 shows
the number of cross-platform gene expression dataset sizes and series, representing each stage
and different sources (for details of each of the study data set, see S1 File). We performed esti-
mation and removal of batch effect resulting from different experimental conditions, prior to
the data analysis. The results are summarized in S1 Fig, which suggests that a large proportion
of genes were affected with batch effect, removed by ComBat batch adjustment (see materials
and methods).

Meta-analysis revealed a novel DE melanoma gene signature
We initiated the analysis by checking the dataset quality and validation by prediction of known
melanoma markers amongst statistically significant DE genes (logFC> 1 and adj.p< 0.05)
between control (N) and different stages of melanoma (CnM, CM and LN). Comparative anal-
ysis highlights several stage specific changes (Fig 2). We identified 324, 622 and 1398 DE genes
in CnM, CM and LN, respectively. We observed that despite the low fold change threshold,
only 55 genes are expressed across all the stages of melanoma and indicate that the genes are
essentially required for melanoma progression.

We looked for melanoma biomarkers and known cancer related genes in the conserved
gene set (n = 55) and found several unique sets of genes previously reported to be melanoma or
cancer linked. The gene set is enriched with several melanoma-associated genes including
MAGEA1,MAGEA12, IL8, FOXD1, IL1B, POSTN, PRAME,MMP9, SERPINE and CTGF.
Genes conserved between metastatic stages (n = 67) too holds several key regulators of mela-
noma like VEGFA, GDF15, SPP1, UPP1, SPRY4, FGF2, CENPN, SERPINA3, BUB1. The com-
plete list of both gene sets along with its description is given in the S2 File. Despite
heterogeneity in the conditions used to generate the datasets, the meta-analysis shows that
these few biomarkers and known cancer linked genes show consistent upregulation, which not
only statistically revalidates their significance and essential similarities in the dataset but also
reveals novel melanoma associated genes.

Table 1. Dataset description.

Melanoma stage Dataset size Series Platforms†

Normal 97 13 07[a,b,c,d,e,f,g]

Cutaneous non-Metastatic 183 09 05[d,e,f,h,g]

Cutaneous Metastatic 246 10 05[d,e,f,h,g]

Lymph Node Metastatic 116 07 05[a,c,d,e,h,i]

† Microarray platforms used by submitter.

a:GPL10558

b:GPL4133

c:GPL5175

d:GPL570

e:GPL571

f:GPL6883

g:GPL96

h:GPL1708

i:GPL6884

doi:10.1371/journal.pone.0142443.t001
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To further validate the reliability of the study datasets and analysis results, we compared the
fold change analysis of DE genes across different stages (Fig 2A). The average fold changes
observed for CnM, CM and LN are ~0.4, ~0.5 and ~0.7, respectively. The total number of up-
regulated genes in LN is also much higher than any of the other stages, as evident from the
major drift in fold change volcano plot, whereas, CnM contains the least number of DE genes.
Fold change analysis suggests a significant down-regulation of gene expression in cutaneous
melanoma stages, especially during disease metastasis (S2 Fig). Closer investigation of the DE
gene list for each stage revealed several melanoma biomarkers and associated genes. For exam-
ple, the MAGE family genes (few of which are considered as melanoma biomarkers) and IL8 (a
well-known cancer related gene) are among the top-ranked genes enriched in our significantly
up-regulated gene list [18–21]. Table 2 highlights the top 20 DE up-regulated genes in decreas-
ing order of fold change in each stage. It is not a surprise that a known melanoma biomarker
gene PRAME [22] is consistently found to be topmost up-regulated gene in all the melanoma
stages. Among the MAGE family genes,MAGEA12 is consistently highly up-regulated in all
the melanoma stages, whereasMAGEA1 is up-regulated only in the metastatic melanoma
stages. CnM is also characterised by the expression of several keratin family genes involved in
building structural framework of epithelial cells along with S100 family genes, involved in

Fig 2. A. Scatter plot of log2 ratio (fold change; FC) versus adjusted p-value to measure the associated significant differential expression of each
gene. Genes which are significantly differentially expressed (DE; log(FC) > 1 or < 1; adj.p value < 0.05) are shown in dark blue color B. Significantly
DE gene count (up- and down-regulated) in each stage. C. Number of up-regulated genes conserved across different melanoma stages.

doi:10.1371/journal.pone.0142443.g002
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calcium binding and cellular immune responses. Apart from the genes mentioned above, sev-
eral other genes that are known to be expressed in melanoma are also represented in the top-20
gene list, which includes GDF-15, CDH2, CTGF, SERPINA3 and POSTN. Interestingly, POSTN
(Periostin) is reported to play a role in accelerating melanoma metastasis via the integrin/mito-
gen-activated protein kinase (MAPK) signalling pathway [23].

We also investigated the likely global changes due to DE genes, by performing gene ontology
(GO) enrichment analysis (using a threshold p< 0.01). After the first transition, the most
over-represented GO term corresponds to skin development and immune response (S3 Fig).
However, as melanoma progresses, the representation of GO terms associated with blood vessel
development and adhesion increases, whereas the representation of skin development related
GO terms decreases. In LN, the most over-represented GO terms for up-regulated genes are
immune response related processes and cell cycle.

In a nutshell, the DE analysis shows expected outcomes and from the large set of DE genes
only a small number of genes are conserved, however the conserved gene set contains several
known melanoma and cancer associated genes which validates the authenticity of our data pro-
cessing procedure and quality of the processed data.

Co-expression networks
For further analysis and prediction of novel dysregulated genes, four gene interaction maps
were constructed using gene pair-wise Pearson Correlation Coefficient (PCC; see materials and
methods). The reason for choosing PCC is that it is the most widely used method to identify
the linear relationship between two random variables and captured significant relationships
even when the genes have non-normal distribution [24]. We identified the correlation coeffi-
cient (r) distribution and also estimated the p-value and False Discovery Rate (FDR) associated
with each correlation coefficient which is summarized in S4 Fig. Moreover, the analysis of free

Table 2. Differentially Expressed Genes (in the decreasing order of fold change).

CnM CM LN

PRAME PRAME PRAME

S100A7 SPP1 SPP1

S100A8 IL8 IL8

S100A9 MAGEA12 MAGEA12

SPRR1B FOXD1 POSTN

KRT14 POSTN IGFBP3

KRT16 IGFBP3 TNC

KRT6B MAGEA1 GJC1

POSTN FAM198B CTGF

FAM198B SULF1 LILRB1

SERPINB3 IL13RA2 HLA-DRA

CXCL10 CTGF IL13RA2

SERPINB4 GDF15 FAM198B

FOXD1 HAS2 SERPINA3

LPPR4 CDH2 EIF2S3

CXCL9 PLAT ID3

CSTA SNX10 CD74

IL8 CCL20 MAGEA1

KRT5 SDC3 SULF1

MAGEA12 IL1B CCL5

doi:10.1371/journal.pone.0142443.t002
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node count at different network thresholds helped us in deciding the reference network thresh-
old, i.e. r> = 0.5 and FDR< = 0.05 (see S5 Fig).

Next, we evaluated the network qualities by comparing its topological properties with ran-
dom networks of the same average degree and genes. Random networks were generated using
Erdos-Renyi model [25], which creates every possible edge with equal probability 'p', indepen-
dent of other edges. The degree of a vertex in such a random graph follows a Poisson distribu-
tion with most nodes having approximately same number of links. Kolmogorov-Smirnov test
[26], which evaluates the significance of deviation, suggest significant deviation of the inferred
gene network from random networks (P<2.2e-16, Figure A in S6 Fig).

Generally in biological systems, a few genes have a significantly higher number of connec-
tions as compared to the other genes in the network i.e. they act as hub genes. Such scale free
topology signifies the network robustness and its resistance to random gene knockout. Any
scale free network is generally characterized by “heavy tailed” nature of node degree distribu-
tion (Figure B in S6 Fig) [27]. We observe a similar distribution of decreasing degree distribu-
tion with increasing links, marking the presence of genes with few connections to the 'hub'
genes. We then performed a statistical measure to check scale free topology by testing power
law distribution fit to each of the network model using bootstrapping hypothesis test [28]. We
found that the Normal and CM networks do not significantly fit to a power law model
(P<0.1), and hence the networks are not scale-free. However, “heavy tailed” degree distribution
of the entire network and their deviation from the random networks provides the characteristic
of a true complex biological network. Other fundamental network topological parameters are
given in the Table 3. It is observed that data size has no significant impact on fundamental
topological network properties with normal being the most connected network model and
CnM, the least connected. Although a significant variability among the four network models
exists, yet metastatic samples are closely related to each other owning to similar topological
properties like edges, clustering coefficient and degree centralization. Overall, these topological
properties suggest the differences in the expression or connectivity profiles of the same genes
under variable conditions.

Differential network analysis
Most of the differential network analysis, not specific to melanoma, relies on the gene degree
difference (Differential Connectivity; DC) across two or more networks to elucidate altered
gene set. In order to study DC in melanoma genes, we measured each gene DC across different
stages of melanoma with respect to the normal network and its statistical significance in terms
of p-value and false discovery rate (adj.p or FDR adjusted p< 0.01). As expected, a significantly
high degree loss is observed in different melanoma stages (Fig 3A). For each melanoma stage,
more than a two-fold increase in number of genes with connectivity loss than gain exists. Ana-
lysing the differential connectivity as a function of p-value suggests that a majority of the genes

Table 3. Fundamental network properties.

Normal CnM CM LN

Sample size 97 183 246 116

Edges 4,269,800 368,136 1,605,642 1,835,739

Unconnected nodes 488 2406 2546 1228

Clustering coefficient 0.57 0.39 0.53 0.53

Density 0.04 0.004 0.15 0.02

Centralization (degree) 0.166 0.06 0.12 0.12

doi:10.1371/journal.pone.0142443.t003
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Fig 3. A. Number of genes significantly differentially connected (DC; either loss or gain) in each tumor stage with respect to the normal stage
network. B. For each gene DC is plotted with its statistical significance (FDR adj.p-value) and with disease progression, number of genes with
increased network connectivity increases under the significant p-value (p < 0.01) as revealed by horizontal line on the positive x-axis. C. For each
gene, the calculated gained co-expression (Rw) is plotted with its overall DC score. The graph explains that with disease progression, genes tends
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with high differential connectivity have significantly low p-value (Fig 3B). The higher loss of
connections with low p-value statistically confirms the edge loss from normal to cancer tissue.
Also, the asymmetrical nature of the graphs suggests the presence of genes with a higher num-
ber of lost connections than gained. Both the metastatic stages are characterized by a nearly
symmetrical graph, whereas the non-metastatic stage is asymmetric.

Differential connectivity vs edges rewiring
We deciphered the altered connection types in each of the melanoma stages as compared to
that in the normal, by overlapping the respective networks. In order to scrutinize the assump-
tion whether edge rewiring produces different results than DC, we compared the results pre-
sented by the two approaches.

For each of the melanoma stages, we found a high number of genes with novel connections
in-spite of the overall degree loss as compared to that in the control (Fig 3C; II quadrant). Each
comparison is characterised by a diagonal relationship between connectivity loss and nodes
lost (EL); connectivity gain and novel nodes gain (EG). The dense nature of the graph reflects
high proportions of edge rewiring during metastasis, LN the most gene-rewired state. Thus,
melanocyte to melanoma transformation begins with significant loss of network robustness,
however, progression to metastatic transformation occurs only after multi-edge gains. We
believe that the multi-edge gain, displayed by a gene set could be an important phenomenon
for transformed biological activity and can help identification of genes in the most aberrantly
rewired networks. Therefore, in the upcoming part of this manuscript, we will primarily focus
on the shortlisted DC genes with significantly gained novel connections.

Multi-edge rewiring in melanoma progression
For elucidation of aberrantly networked genes, network connectivity rewiring analysis was per-
formed for a stage-wise assessment of the edge rewiring. The analysis reveals that melanocyte
to melanoma conversion initiates with a significant edges loss (highest EL = 2059) as compared
to the number of edges gained (highest EG = 422). We observe a sudden increase in genes dis-
playing EG, while maintaining its connectivity loss after the second transition (Fig 4A). Box-
plot analysis clearly illustrates the effect of melanoma on gene connections, the number of
edges lost is found to be as high as ~2000 in all the stages of melanoma (Fig 4B). In order to
confirm if the genes with lost connections in CnM retain its connectivity profile in later stages,
we compared the genes that lost more than 20 edges (arbitrarily selected value) across different
stages of melanoma. More than 90% of the CnM genes that displayed EL continue to loose
edges in CM and LN (Fig 4C). Thus, global analysis suggests that a large set of genes actively
rewires its connection types, many of which gain novel connections and, if not significantly
down-regulated, may actively be involved in aberrant networks in melanoma progression,
especially in the cells programmed for metastasis.

A closer analysis of the results reveal that the gene that gained maximum edges during the
first transition is KIDINS220 (EG = 422, EL = 211) while the gene with the highest loss of con-
nections is C1orf216 (EG = 4, EL = 2059). During the non-metastatic to metastatic transition,
the gene LRP5 gained the highest number of connections (EG = 1283, EL = 113), while
C1orf216 continued to be the gene with the highest edge loss (EG = 0, EL = 2065). After the

to intensify the alterations in the connection types by gaining as well as loosing connections whichmay or may not alter its DC. Four quadrants
suggest that genesmay gain novel edges with increased DC (quadrant I) or gain novel connection despite losing overall DC (quadrant II) or lose
edges with decreased DC (quadrant III) or show increased DC despite losing connections (quadrant IV). In the graph single gene was plotted two
times to correlate Rw (+ve) versus DC and Rw (-ve) versus DC as both of the terms were found to be independent.

doi:10.1371/journal.pone.0142443.g003
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third transition, gene ASNSD1 gained the highest number of edges (EG = 1254, EL = 32)
whereas gene ARMC9 (EG = 19, EL = 1924) lost maximum number of edges. However, the
analysis of top five rewired genes do not list any known recognized melanoma marker, thus
such genes may be explored as potential targets.

Disease genes are significantly rewired
By comparing the dataset of each stage with the normal dataset, we generated a gene list of dis-
ease genes that are either significantly upregulated or abnormally connected (see materials and
methods). Our aim was to derive a novel gene set that could possibly account for stage-wise
network aberrations during melanoma progression. Interestingly, the metastatic stages include
a very high number of shortlisted genes (i.e. disease genes). The highest number of putative dis-
ease genes is found in LN as compared to that in other stages (Fig 5A–5E). It is evident that the
high number of disease genes may help us to understand the metastatic behaviour of the genes
in the dataset and identify novel associated biomarkers. It is found that 60% of the CnM genes
retain its activity profile in one of the other two metastatic stages. We found that 59% of the
uniquely stage specific disease genes in LN that maximally shares 1317 genes with CM.

Fig 4. A. Line graph to observe the difference between edges lost (color: green) and gain (color: red) by a single gene in different melanoma
stages. The observed trend suggests consistent and significant increase in novel edges gain, after the onset of metastasis. B. Boxplot showing
the differences in the number of novel edges gained (color: red) and lost (color: green) by genes in each stage. C. Comparison for the genes that
displayed connectivity loss (edge loss > 20) across different melanoma stages. Venn diagram suggests remarkable similarity of gene behavior
acrossmutually exclusive datasets and loss of connections is a conserved phenomenon.

doi:10.1371/journal.pone.0142443.g004
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Fig 5. A. Total number of shortlisted putative disease genes with abnormal behavior (either up-regulated and/or network rewired) in each stage
duringmelanoma progression. B. Number of shortlisted genes conserved acrossmultiple stages which is comparatively many fold higher than
DE genes alone. C. Number of different known tumor associated genes (tumor suppressor, oncogene and other tumor associated genes)
identified among shortlisted disease genes for each stage. D. Oncogenes identified in eachmelanoma stage, the genes common in each stage are
also displayed as intersections. E. Line graph showing the frequency of differential correlation coefficient observed for each edge between
putative disease genes in eachmelanoma stage network versus control network. High value of differential correlation coefficient means high
strength of association between disease genes in perturbed network as compared to normal.

doi:10.1371/journal.pone.0142443.g005
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Interestingly, 209 disease genes are dysregulated across all the stages, including the genes
which are not necessarily differentially expressed, presumably required for melanoma progres-
sion. To gain further insights, we investigated its GO terms and found that the over-repre-
sented processes are mainly related to immune response, cell activation and migration (data
not shown). A closer investigation reveals that 91.15% (n = 762), 97.83% (n = 2520) and
89.56% (n = 2969) of the rewired genes in the disease gene list are not DE in CnM, CM and
LN, respectively. Moreover, out of the 209 conserved genes, only 7 DE genes are rewired too.
The seven genes are IFI30, CXCL10, APBB1IP, POSTN, C1QA,MMP9 and GBP1. The results
suggest that cancer genes in melanoma mainly modulate its activity either by changing its
expression or the expression of other genes. We also found that few well-known melanoma
biomarkers like NRAS, CDK4 and CCND1 are significantly rewired in different metastatic mel-
anoma stages, even if not differentially expressed (in the particular stage). For example NRAS
is not differentially expressed in CM (logFC = 0.8), yet it is rewired with an edge gain of 234.

Although, different oncogenes and tumour suppressor genes may exert opposing roles in
different forms of cancer, yet in order to elucidate novel cancer associated genes, we searched
disease gene list for known human cancer related genes. Not surprisingly, cancer related genes
are found to show stage-wise amplified aberration in CnM (136 genes), CM (275 genes) and
LN (349 genes). In all the stages, alteration of tumour-associated genes seems to be a necessary
phenomenon. We collected annotated cancer associated genes from several databases [29–31]
and classified our disease gene lists into three categories: oncogenes, tumour suppressors and
other tumour associated genes. We found a high number of tumour suppressor and other
tumour associated genes than oncogenes, showing aberrant behaviour in each of the melanoma
stages (Fig 5C). The Fig 5D shows different oncogenes predicted to gain alteration with the
stage wise progression of melanoma. The list comprises of several well-known melanoma-asso-
ciated-oncogenes including RAF1, AURKA and SRC along with putative novel oncogenes.
Interestingly, CTGF gene conserved in all the three stages, plays an important role in cell adhe-
sion, migration, proliferation, angiogenesis and recently reported to be a therapeutic target
against malignant melanoma [32]. Another oncogeneMCTS1 is preserved in both the stages of
cutaneous melanoma and surprisingly the gene product is under clinical trials as a drug target
for small cell lung cancer [33]. The oncogenic potential of most of these genes is already well
recognized (e.g. SRC, NRAS, VEGFA, NFKB2 etc.), this validates our findings and the dataset as
well as suggests that the other genes in the list for exampleMCTS1, ELK1 and ZNF146may be
further investigated for its potential role in melanoma metastasis.

To further elucidate the disease linked properties of the disease gene list; we compared the
differential correlation strength (rd − rc) of disease gene edges in the disease and normal stages
(Fig 5E). The differential analysis suggests that melanoma linked genes strongly communicate,
especially in metastasis, with an edge strength difference as high as�0.9. We observe that the
maximum number of genes generated differences in edge strengths�0.4, which is statistically
significant for a large dataset.

Identification of integrated pathway clusters
To gain insight into the functional themes and its qualitative drift during each transition of
melanoma progression, we scanned the shortlisted disease gene list for different “integrated
pathway clusters (IPCs)” (adj.p< 0.05) for each stage. IPC is a large gene set build upon a par-
ticular biological theme and comprised of several sub-clusters, each representing a particular
biological pathway which may or may not be overlapping [34]. For each of the disease stage we
predicted several IPCs composed of disease genes and investigated its respective fundamental
network properties (Fig 6). Interestingly, we observe several stage-specific IPCs along with
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IPCs preserved across two consecutive conditions, whereas only two IPCs are common across
all the three stages of melanoma. The stage-wise information about different IPC IDs, associ-
ated genes and adjusted p-value is given in the S3 File.

For cutaneous melanoma IPCs “H003”, “H005” and “H008”, which corresponds to “Cell
adhesion molecules”, “Extracellular matrix (ECM) organization” and “Cellular responses to
stress”, respectively, are aberrant in both the stages of cutaneous melanoma but absent in LN.
In CnM, the cluster “H003” (n = 98, p = 7.70E-009) contains genes that allow cells to interact
its surrounding environment like CDH1, CNTN1, CD2 and CLDN7, which increases by two-
fold in number after metastatic transition (n = 193; p = 4.3E-004). Cluster “H005” contains 63
genes (p = 2.5E-006) in CnM and 142 genes in CM (p = 3.8E-008) including multiple collagen,
thrombospondin 1 (THBS1), MMP family genes along with few cell signalling receptor genes
like TGFBI. We found two CnM specific clusters, i.e. “H002” and “H034” that corresponds to
“hemostasis” (n = 185; p = 9.2E-003) and “Amoebiasis” (n = 24, p = 9.9E-004) respectively.

After metastasis, the cluster related to cell cycle (H007; n = 202, p = 4.12E-014) displays its
appearance, marking its importance for metastatic growth, and continues to thrive in LN
(n = 254, p = 2.0E-013). Several new IPCs emerge in CM that is retained in LN too (70% of
CM), indicating its importance in promoting metastasis. Apart from the cell cycle, the cluster

Fig 6. Predicted IPCs identified in eachmelanoma stage along with the two fundamental network
properties (clustering coefficient and density) of its enriched genes. The colored strip represents stage
specific IPCs; orange is CnM specific, grenn is CM specific and voilet is LN specific. More information about
the IPCs is available in S3 File.

doi:10.1371/journal.pone.0142443.g006

Gene Network Rewiring to Study Melanoma Stage Progression

PLOS ONE | DOI:10.1371/journal.pone.0142443 November 11, 2015 13 / 30



corresponding to PLK1 signalling (H047; n = 30, p = 3.4E-004) (an important signalling path-
way mediated by “polo like kinase” in a wide range of cancers [35]) displays exceptionally high
networked properties unique to CM. This cluster contains AURKA, BUB1, CDK1, CDCA8 and
other genes known to be associated with cell cycle related processes. Interestingly, the cluster
“H033” (n = 29, p = 0.04) is uniquely expressed during CM and represents “HIF-1-alpha tran-
scription factor network”, a pathway expressed in cells thriving under high metabolic condi-
tions or low oxygen concentration (i.e. hypoxia) and thus potentially corresponds to the
angiogenesis related events in cutaneous metastasis.

After the final transition from CM to LN, 70% of the CM IPCs are retained; however, four
new IPCs corresponding to various cellular events emerge in LN. The new IPCs include
“H016” (n = 186, p = 0.0015), “H017” (n = 79, p = 0.02), “H026” (n = 118, p = 0.003) and
“H036” (n = 121, p = 0.001) which corresponds to “chromatin modifying enzymes”, “Signalling
by NOTCH”, “Organelle biogenesis and maintenance” and “Endocytosis” respectively. Inter-
estingly, “H019” a cluster that corresponds to immune related processes shows exceptionally
higher statistical significance in LN (n = 244, p = 2.6E-011) as compared to that in CM
(n = 141, p = 0.02), despite a high increment in corresponding gene counts. Another immune
related or cancer related cluster identified by “H001” is conserved across all the three stages of
melanoma, with conserved network properties and gene count.

Summarily, the IPC themes covered a wide range of processes essential for cancer progres-
sion, including IPCs related to immune system, signalling events, cell cycle related process, cell
adhesion and ECM organization. We found several unique stages specific as well as conserved
IPCs composed of DE as well as rewired genes. We found several cancer related IPCs and also
investigated the connectivity profile of clusters in respective networks. The enriched list of can-
cer related processes and networked genes potentially contain novel markers or biological
associations.

IPC pathways distribution analyses reveal dysregulated metastatic
melanoma pathways
We also analysed the distribution of pathway components within each theme. We measured
the intra-disease gene connectivity profile of each pathway members (n> 5, density> 0, clus-
tering coefficient> 0) and analysed its differential network properties with normal (control).
Our primary aim in this analysis was to elucidate the pathways that can act as a better represen-
tative of a particular metastatic stage by prioritizing each pathway term using significantly
deviating network properties with respect to that in the normal. There are 110, 537 and 668
pathway clusters predicted in the three stages in the order of melanoma stage progression.
There are 70 different pathways that are perturbed across all the stages of melanoma, corre-
sponding to diverse cellular events, including pathways like MAPK and PI3K/Akt signalling.
However, the pathway gene set generated from our “unbiased” approach represents a crude
picture of gene expression which must be processed for more meaningful global phenotypic
inference, as suggested by Markowetz et al. [36]. Therefore, for each of the pathway, we mea-
sured the gene-gene association by calculating its intra-modular (IM) density (Fig 7A). Com-
parative analysis of IM density reveals strong differences in gene associations for a given
pathway in each perturbed network as compared to the normal stage network. Once melanoma
metastasizes, we observe a sudden increase in the number of predicted pathways, along with its
gene count and IM density. As expected, the connectivity profile of disease gene set in each
pathway tends to decrease with melanoma progression as revealed by IM density comparison.
We also observed that 90% of CnM pathways are also found in one of the other metastatic

Gene Network Rewiring to Study Melanoma Stage Progression

PLOS ONE | DOI:10.1371/journal.pone.0142443 November 11, 2015 14 / 30



stages of melanoma, whereas 83.4% of CM pathways are retained after metastasizing to LN
(Fig 7B).

Although IM density helps in discovery of the most densely connected pathways, however
we found that only IM density was not sufficient to fetch the most significantly rewired

Fig 7. A. Comparison of Intra-Modular (IM) sub-network density for every over-represented pathway in eachmelanoma stage (color: black) vs
normal stage (color: red). It may be observed that the density of connections among disease genes in enriched sub-networks, generated from
normal stage, decreases with disease progression. B. Conservation of enriched pathways from disease genes across different melanoma stages.
C. Box-plot representing range of calculated R-scores for every pathway in each stage. HighR-score implies higher dysregulation in the
connectivity pattern of pathway disease genes in perturbed network as compared to the normal network. D. A combined bar and line graph
representing gene count and calculated R-score of the three most commonmelanoma associated pathways. MAPK pathway decreased R-score is
lowered after CM to LN transition despite increase in enriched gene count, whereas, other two pathways show consistent R-score irrespective of
gene count.

doi:10.1371/journal.pone.0142443.g007
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pathways. Hence we calculated pathway connectivity (PC and pathways sharing members; dis-
cussed later), total connectivity and module density for each pathway. For each sub-cluster,
these network properties were compared with that of the previous stage (control) by mapping
the same gene set onto respective weighted co-expression networks to generate a pathway spe-
cific relevance score (R-score; see materials and methods). The calculated R-score for each
pathway helped in prioritizing the most active pathways that are significantly altered or rewired
independent of gene counts, as compared to that in the normal stage. The comparison of R-
scores clearly reveals the distinct nature of dysregulated pathways in melanoma metastasis as
compared to that in the non-metastatic stage. In order to gain better understanding, we com-
pared R-score and gene count fluctuations of three well-established melanoma associated path-
ways conserved across the three stages of melanoma (Fig 7D). There is a sudden increase in
cellular response during non-metastatic to metastatic transition for all the three pathways. R-
score analysis represented in the Fig 7D suggests that there is an insignificant alteration of
“MAPK signalling pathway” during nodal metastasis as compared to the other two pathways,
despite consistent increase in its gene count. For “immune response” and “PI3K/Akt signal-
ling”, comparable increase in activity is observed after each transition.

Metastatic pathways prioritization using network properties
Our primary interest was to elucidate the most aberrant events from the perturbed networks of
melanoma metastasis. R-score distribution analysis helps in classifying the pathways list in
accordance to closeness with each other and deviation from normal set (Fig 8). We observe
~50% of the pathways have R> 3.0 in both the metastatic networks, which includes known

Fig 8. Pie chart representingR-score distribution of all the enriched pathways in eachmetastatic melanoma stage.

doi:10.1371/journal.pone.0142443.g008
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melanoma-associated pathways. For instance, pathways like “cell cycle”, “signalling by WNT
in cancer”, “PI3K/Akt signalling”, “EGFR signalling in cancer” and “MAPK signalling” have
R> 3.50 in both the metastatic networks. The small enrichment of pathways with high R-score
(>3.50) and its close association with the disease further highlights the relevance of R-score.

A comparison of the CM and LN pathway lists reveals that 448 pathways are altered in both
the perturbed networks. We measured the statistical significance of the reproducible pathways
by calculating gene set similarity for each pathway in both the stages. We observed a high sta-
tistical similarity (Fischer’s exact test FDR adj.p< 0.05) amongst all the gene sets of conserved
pathways across both the metastatic conditions (Fig 9A). These inferences of high pathway
similarity, thus creates an opportunity for deducing pathway dependencies in metastatic mela-
noma. R-score analyses reveals the most altered set of events that broadly include pathways
related to “immune system”, “gene expression”, “cell signalling”, “apoptosis” and “cell cycle”
(Fig 9B). Quite expectedly, the immune system related processes quantitatively exceeds in all
the aspects of the defined properties. Strikingly, we also observed the enrichment of limited
numbers of other disease related pathways, for instance HIV infection or prostate cancer. Such
significantly high R-scores indicate quantifiable characteristics of genes like having multi-dis-
ease association and most importantly help understand disease mechanisms. The complete list
of pathways comprises of several different cellular events involved in melanoma metastasis, the
aberration of which increases with metastatic progression.

Signalling pathways in metastatic melanoma
Emerging knowledge about several melanoma variations (e.g. oncogenic mutations) advanced
our understanding about the signalling events involved in melanoma. However, complex inter-
play between these events is still a least studied phenomenon. Therefore, in order to assess the
complex relationship between various signalling events and elucidate the most frequent cross-
talk event, we scanned the enriched pathways lists for various signalling events.

The numbers of signalling pathways predicted in CM and LN are 127 and 193, respectively.
Out of these, 85.8% CM signalling pathways are retained in LN (Fig 10A and 10B). After
metastasis, the signalling pathway that displays the most aberrant behaviour are related to “B-

Fig 9. A. Scatter plot representing the statistical significance of gene composition similarity in pathways conserved in bothmelanoma stage. Log
transformed fishers exact p-value is plotted against the common number of genes of a pathway commonly enriched within two different
metastatic melanoma stages. B. Bar graph representing the gene count enriched for top 5 (on the basis ofR-score represented on the right axis)
conserved within metastatic stages. Here, IS is “Immune System”; SP is “Signalling Pathway”; CC is “Cell Cycle”; GE is “Gene Expression”; AP
is “Apoptosis”.

doi:10.1371/journal.pone.0142443.g009
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cell signalling” (n = 36, R = 3.88), whereas, in LN “Cytokine Signalling in Immune system”

(n = 118, R = 3.84) generate the highest R score. In terms of gene count, one of the largest
observed clusters is associated with the “PI3K-Akt signalling pathway” (nCM = 76, nLN = 92) in
both the metastatic melanoma stages, which plays an essential role in melanoma and progres-
sion in other cancers too. We also observed several other recognized oncogenic signalling path-
ways commonly found in both the stages of metastatic melanoma. Among these pathways,
“MAPK signalling”, “signalling by EGFR in cancer”, “PI3K/Akt signalling”, “signalling by
SCF-KIT”, “signalling by hedgehog” are the top ranked (amongst top 20; R> 3.5) in both the
metastatic melanoma stages. The closeness of R-score and progressively increasing gene count
among these top-ranked melanoma associated pathways, indicates its cooperative efforts in
maintaining the complexity of disease during melanoma progression. Moreover, the network
density and R-score of the common pathway terms follow a similar trend in both the mutually

Fig 10. A. Total number of conserved and predicted signalling pathways in eachmetastatic melanoma stage. B. Top 20 conserved signalling
pathways of CMwith their gene count in both the metastatic stages. C. Comparison of R-score trend observed for the conserved signalling
pathways. It can be observed that conserved signalling pathways possess similarR-score acrossmutually exclusive datasets. D. Peaks
representing IM density of conserved signalling pathways, follows similar pattern in both the metastatic melanoma stages.

doi:10.1371/journal.pone.0142443.g010
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exclusive datasets (Fig 10C and 10D), which also reveals the conserved behaviour not deduced
by any traditional expression based analysis.

Cross-talks of signalling pathways
For efficient drug development for a desired therapeutic action, an understanding of the coor-
dinated action of different signalling pathways is essential. Further investigation was carried
out by elucidating the statistically significant co-members between two different pathway gene
sets (PC> 1, n> 5, Fisher’s exact test adj.p< 0.05), which directly leads to an indication of
pathway cross-talk. This pathway linkage network revealed several important highly connected
signalling pathways in each metastatic stage.

We observe a higher number of probable signalling cross-talk events (sigPC) for selected
pathways in LN as compared to that in CM, presumably positively correlated to the disease
complexity (see S4 File). Surprisingly, “signalling by NGF”, for cell invasion and migration dur-
ing metastasis, putatively cross-talks with the maximum number of signalling pathways
(sigPCCM = 73, sigPCLN = 80), followed by “cytokine signalling in immune system” (sigPCCM

= 71, sigPCLN = 79). Among the other events, angiogenic pathways like “Signaling by FGFR in
disease” (sigPCCM = 63, sigPCLN = 67) and “signalling by PDGF” (sigPCCM = 59, sigPCLN =
67) are also listed among the highly connected pathways in metastasis, possibly fulfilling the
vascular requirements of metastasizing melanoma. Among the well-documented melanoma
associated pathways, PI3K/Akt signalling (sigPCCM = 58, sigPCLN = 76) along with MAPK sig-
nalling (sigPCCM = 44, sigPCLN = 58) and EGFR signalling (sigPCCM = 49, sigPCLN = 59) too
shares genes with a significant number of pathways. Apart from the aforementioned cellular
events, a common feature in both metastatic stages is the presence of highly connected immune
response, especially signalling by interleukins (sigPCCM = 50, sigPCLN = 69).

Next, we set out to find how the cell signalling pathways are inter-connected at gene level. In
CM, NGF signalling genes display a dense nature of co-membership with other signalling events
and maximally co-membered (n = 37) with “signalling by FGFR in disease”, “signalling by EGFR
in cancer” and “signalling by PDGF”. Intriguingly, investigation of the cross-talk genes revealed
several known melanoma associated biomarkers, including NRAS, PTEN, SRC and RAF1. The
occurrences of the biomarkers together in multiple cross-talk events provide the necessary expla-
nation of its potential anti-melanoma drug target activity. Several other genes may also be
involved as mediator of signal from one pathway to another. Therefore we also investigated the
cross-talk potential of each gene by calculating its occurrence in different signalling pathways (i.e.
cross-talk frequency (cf), see S4 File). PIK3CB and PIK3R2, PI3K signalling mediators, are genes
involved in the highest number of signalling cross-talks (cf = 46). The relatively high cross-talk
frequency of these genes highlights the exceptional role of PI3K signalling in metastatic mela-
noma and suggests a reason of targeting it for anti-melanoma activity. Next three genes in the
order of decreasing cross-talk frequency areNRAS (cf = 41), RAF1 (cf = 38) and PTPN11
(cf = 38)- the genes are known for its aberrant behaviour in melanoma. We find 39 genes with
cf> 10, which can be explored further, in isolation or in combination, for viability as drug targets.

Similarly, in LN we observe the strongest co-membership between “Cytokine Signalling in
Immune system” and “Signalling by Interleukins” as well as “signalling by interferon”. How-
ever, “cytokine signalling in immune system” represents a general term for interferons and
interleukins and hence the obvious co-membership. After ignoring this cross-talk, the next
best cross-talk in terms of gene count is between “signalling by NGF” with the same set of path-
ways as in CM i.e. “signalling by FGFR in disease”, “signalling by EGFR in cancer” and “signal-
ling by PDGF”. However, the intensity in terms of gene counts increases in LN than CM. In
LN, 44 different genes are observed, out of which 17 cross-talk genes are common in CM too,
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which includes important genes like NRAS, PTEN and CDK1. The observed 27 new cross-talk
genes in this multi-pathway cross-talk event in LN include cancer related genes like AKT1,
AKT2,MAPK3, KRAS, JAK1 and JAK2. Investigation of cross-talk potential elucidates 53 dif-
ferent genes with cf> 10, out of which only 19 genes are common with CM. In LN,MAPK3
(cf = 53), PIK3R1 (cf = 51),HRAS (cf = 46), PIK3R2 (cf = 45) and KRAS (cf = 44) are the top 5
cross-talk genes, and as expected most of these are already recognized melanoma markers.

Other pathways in metastatic melanoma
Apart from signalling pathways several other events can control cell cycle machinery, especially
the ones related to cell cycle, activated in response to genomic instability or DNA damage [37].
218 and 217 different pathway terms are co-membered with cell cycle pathway with significant
number of common genes (fishers exact test p< 0.05) in CM (cell cycle R = 3.69) and LN (cell
cycle R = 3.79), respectively. The connected pathway list includes diverse set of events including
processes related to signalling pathways, tumour suppressors and cell cycle related events. The
R-score analysis (R> 3.5) gives a clue about the highly perturbed cell cycle related gene sets
intrinsic to the tumour cells. Among these, we observe several pathways that allow cells to skip
its checkpoints and mediate its unimpeded progression especially via G1 checkpoint to S-
phase. Interestingly, anaphase promoting complex (APC) mediated degradation events display
exceptionally high connectivity by small gene count (nCM = 13, RCM = 3.70, nLN = 32, RLN =
3.63). The pathway is composed of several proteasomes and mediates the programmed degra-
dation of tumour suppressor and cell cycle regulator genes. Majority of the shortlisted path-
ways, for instance- p53 mediated pathways, G1/S transition, G1/S checkpoint are already well
documented for aiding uncontrolled proliferation in different cancer types.

Apart from the aforementioned events, our pathway list comprises a variety of cancer
related events. For instance, “Apoptosis” (nCM = 43, RCM = 3.80, nLN = 71, RLN = 3.80), “Pro-
teoglycans in cancer” (nCM = 51, RCM = 3.56, nLN = 47, RLN = 3.36), “Disease” (nCM = 79, RCM

= 3.66, nLN = 288, RLN = 4.02), “Pathways in cancer” (nCM = 86, RCM = 3.66, nLN = 111, RLN =
3.68), “Hemostasis” (nCM = 83, RCM = 3.39, nLN = 116, RLN = 3.74), “cellular senescence” (nCM

= 40, RCM = 3.41, nLN = 27, RLN = 3.11), “melanoma” (nCM = 17, RCM = 3.41) are all enriched
with a different set of genes and significant R-score. Intriguingly, we observe an exceptionally
high surge in gene count and R-score for the pathway term “Disease”. Moreover, the IM den-
sity of the 17 genes in melanoma pathway in normal network is 0, whereas in CM it is 0.28.
Such findings indicate the essentiality of synergistic action of diseases related gene circuit
rewiring with gene upregulation, in driving the disease progression.

Intra-modular hub gene druggability analysis
Next, we investigated the gene level network properties by identification of representative
genes in each pathway. A representative gene (or hub gene) is centrally located and displays
highest connectivity among the disease genes, therefore, potentially exploitable as a biomarker
or therapeutic drug target. 99 hub genes in CM and 142 in LN are found in one or more path-
ways, and show remarkable aberrations in connectivity profile across both the metastatic
stages. We also observed that only 4 hub genes (MAPK9, RB1, CHUK andHDAC2) are con-
served across both the stages representing underlying heterogeneity among different stages.
The associated rewiring dissimilarities amongst the regulatory genes of conserved pathways
suggest stage specific regulation. To identify potential drug targets amongst the rewired genes,
we performed druggable genome analysis of the hub genes using DGidb webserver, which
searches existing collections of known or potential drug-gene interactions. (It includes over
40,000 genes and 10,000 drugs involved in over 15,000 drug-gene interactions) [38]. We found
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22 hub genes in CM and 19 genes in LN that are (or its gene product) already known to have
anti-cancer drug interactions. Further, we attempted to reproduce the results by submitting the
hub gene list to CancerResource [39], a comprehensive knowledgebase of validated or curated
gene-drug interactions especially for cancer dataset. Interestingly, 68 CM and 65 LN genes
code for the products that specifically interact with at least one listed drug. Summarily, we are
able to obtain 371 cancer relevant drugs targeting 129 different metastatic hub genes. Thus,
54.43% of the hub genes or its products are interacting with at least one cancer-related drug,
which not only reaffirms the robustness of our analysis results but also confirms the presence
of common features of cancer relevant genes across multiple cancer types. The analysis helped
shortlisting cancer relevant drugs, which includes several compounds with known anti-mela-
noma activity while for others, the potency or efficacy still remains to be experimentally
explored.

Discussion
The study utilizes melanoma differential expression and network-based analysis to show that
the traditional differential connectivity based analysis may miss several potential biomarkers,
which can only be elucidated via alternate methods like network rewiring analysis. Moreover,
the re-wiring analysis also overcomes the drawbacks associated with DE based analysis and the
short-listed genes are several times conserved, even in the heterogeneous datasets.

We started our analysis by determining DE genes, which is in agreement with the previous
findings, and we observed only a limited number of DE genes in heterogeneous datasets despite
the low fold change threshold (logFC> 1). However it is observed large number of genes dem-
onstrated similar network connectivity behaviour in perturbed networks without any changes
in the expression profile as compared to that in the control dataset. As expected, the control
network loses its robustness resulting in connectivity loss of a large proportion of genes. How-
ever, we observed that genes could gain a significant number of novel edges to get rewired,
despite showing overall connectivity loss in the perturbed networks as compared to that in con-
trol, which may reflect its continued but disrupted effectiveness. These rewired genes along
with the up regulated genes are much more strongly or uniquely connected to each other in the
perturbed networks as compared to that in the control network, which resembles the properties
of disease genes [40, 41]. Moreover, the correlation strength of the conserved edges amplifies
with disease progression.

To uncover the oncogenic potential of shortlisted disease genes, we scanned the genes for
the presence of known oncogenes. We found very limited number of oncogenes (~10–20) in
each melanoma stage as compared to the number of other cancer related genes. This observa-
tion suggests that only a few oncogenes consistently alter their activity to drive malignancy.
Moreover, the other possible explanation of this heterogeneity lies within the variety of genetic
or epigenetic alterations that activates specific lineage of oncogenes that drive malignancy.
Apart from this, we also observed significant disruption in the connectivity profile of tumor
suppressors and other cancer related genes.

It is known that the gene set or pathway based analysis is better approach for determination
of novel therapeutic targets, as compared to gene based analysis [15]. Therefore, the above find-
ings further motivated us to functionally cluster the disease genes in each stage, which surpris-
ingly revealed several cancer and related pathway IPCs. We observed the emergence of new
clusters with metastatic progression, whereby CM acting as a connecting link between CnM
and LN. Melanoma begins with appearance of biological processes like haemostasis, coagula-
tion cascade and other cancer related biological processes. The comparison revealed aberration
in pathways related to cell adhesion molecule and ECM organisation preserved in both
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cutaneous stage but absent in LN. This suggests that the skin melanoma cells require organiza-
tion of structural scaffold for cell migration, possibly achieved by regulating epithelial topology.
Hence therapeutic targeting of these pathways as early as possible in disease progression is
potentially a more effective strategy, as the results of therapies are very poor in the late stages.
Metastatic programing leads to the activation of pathways that corresponds to cell cycle pro-
gression aided by signalling events like PLK1 signalling that can mediate neoplastic transfor-
mation via initiation of early trigger for G2/M transition. Genes related to immune response
pathways are consistent in all the stages, however in LN immune response related processes
demonstrate sudden enhancement of alteration along with other important processes like cell
cycle, RNA processing. Overall, the IPC analysis summarizes the first line of evidence that mel-
anoma progresses with the increase in functional complexity and connectivity strength among
a subset of genes, making it difficult for therapeutic targeting.

The information provided by IPCs analysis, however, did not specify the underneath biolog-
ical processes that could be of any therapeutic relevance. Therefore, we split each IPC into its
corresponding pathway components. Next we exploited the differential network properties of
these clusters for stage specific pathway prioritization. Comparative analysis revealed that dif-
ferent melanoma stages possess several common pathways. Intriguingly, 83.4% of the CM
pathways are statistically conserved in both metastatic melanoma stages. Expectedly most of
the pathways that occur in each stage were melanoma or cancer causing and covers wide range
of oncogenic events, e.g. immune response, cell cycle, apoptosis, hypoxia related events, signal-
ling pathways in cancer including EGFR signalling, PI3K/Akt signalling, MAPK signalling,
WNT signalling and other related pathways. The notable feature of the outcome was the sharp
increase in pathway count and corresponding sub-network properties after non-metastatic to
metastatic transition, which we believe is the regulated necessity of the cells programmed for
metastasis.

In addition, for each of the pathway, the comparison of network property deviations in dis-
ease network as compared to that in the control highlights the functional significance of each
pathway reflected by normalized R-scores. The relevance of a gene set was interpreted in con-
text to the disease phenotype by the number of roles a gene set can play in different events. Not
surprisingly, most of the well-known melanoma associated pathways have exceptionally high
R-scores (R> 3.0). The comparative analysis of the results from different stages revealed con-
sistent increase in defined properties and functional robustness of the predicted gene sets with
melanoma progression. This novel network based prioritization of the shortlisted pathways
can be exploited for stage specific therapeutic targeting of melanoma.

We know that the pathways are not static or isolated entity rather its dynamic properties
allow a gene set to play a significant role in multiple and diverse events. Hence, we exploited
this property for refinement of the pathway list by calculating statistically significant inter-
pathway co-membership and gene-gene connectivity along with intra-pathway connectivity.
Our analysis took the results a step further by investigating the co-membership attribute for
prediction of the important signalling cross-talk and associated gene sets. We observed that
p75 and trk family receptor mediated events, i.e. signalling by NGF, have genes with very high
potential to cross-talk with other cancer related events. The pathway is very well documented
to play functionally vital role in cell migration and invasion during melanoma tumorigenesis
and therefore possesses high R-score in our analysis (RCM = 3.58; RLN = 3.58) [42]. Apart from
this, several other melanoma-linked pathways like PI3K/Akt, MAPK signalling were also
found to cross-talk variety of pathways. Interestingly the number of cross-talks and the gene
strength amplifies with metastatic progression. This kind of information cannot be easily
obtained from traditional network module based analysis, in which, connected gene set is
treated as an isolated entity.
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In the last phase of our analysis, we identified the highly connected hub genes that uncov-
ered the variable co-expression relationships within same pathway across different stages of
metastasizing melanoma. The little intersection of hub genes suggests (n = 4) its underlying
heterogeneity and emergence of novel role as stage specific regulators, which leads to differen-
tial regulation of pathways in multiple cancer stages. To gain deeper insight we performed
druggable genome analysis of the highest connected genes and predicted ~58% of hub genes
known to play cancer related activity, thus rest of the genes may be potentially important for
cancer related activity but requires further investigations. Hence it is important to perform
pathway centric investigation for therapeutic targeting as suggested by Kreeger et al. [15].
Although the hub gene analysis did not play any role in proposing the underlying similarity
amongst melanoma datasets, yet it helped in reassuring the authenticity of the approach.

Our analysis not only reveals a stage specific prioritized list of pathways but also highlights
the underlying complexity associated with melanoma progression and reveals the important
components that govern the complexity. Since the generated data contains numerous events
with a huge number of novel relationships, we discussed the detail results of only the top-most
relevant events to validate the network rewiring analysis. However, the complete results are
available as a publicly available SQL database (M3db, S7 Fig) for further analysis. Our analysis
and approach was different from existing pathway centric approaches that utilize curated infor-
mation from different sources but single platform [43, 44]. The analytical approach discussed
here is independent of the previous melanoma findings and strictly depends upon microarray
analysis of the melanoma datasets. The approach validates several known network components
and hence highlights the need to investigate the novel genes, gene interaction and gene set pre-
dictions emerging out of this analysis. However, we believe that the information from several
other sources like transcription factor or protein-protein interaction can definitely aid in refin-
ing the current results, which is one of our future objectives.

Conclusion
The analysis performed in the study demonstrates that melanoma genes can modulate its activ-
ity by changing network connections independent of altered gene expression. We also observed
that the rewired genes are more consistent in expression and rewiring, as compared to DE
genes and may even be more significant than DC genes in certain pathways. Moreover, the pre-
dicted functional gene sets are also statistically reproducible across multiple datasets, which
indicates the robustness of our approach. Global increase in complexity of defined sub-network
properties and gene count with melanoma progression is a common feature observed in all the
sections of our analysis. This enabled us to reason how anti-melanoma drug target efficacy
decreases once the melanoma cells program itself for metastasis. We were also able to success-
fully identify the genes that allow signalling pathways to cross-talk in different stages of mela-
noma. The predicted hub genes that are targets of known anti-neoplastic compounds too, may
be explored for its potential anti-melanoma activity too.

Materials and Methods

Data collection, processing and differential expression
Expression profile datasets along with additional information were retrieved from different
data using R package GEOquery [45] and ArrayExpress [46]. Expression data Xn = {x1,� � �,xn}
was converted into R objects and processed with intra-array quantile normalization using
Limma R package [47]. For each microarray sample probe IDs were converted to its respective
entrez gene ID using platform annotation information section of GEO [48] or ArrayExpress
[49] with careful manual observations. Multiple probes for a single gene were combined using
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collapseRows function of WGCNA R package, using default parameters [50]. We merged the
datasets for further cross-platform microarray analysis using the common space across all the
microarray datasets from diverse platforms. This was followed by inter-array intensity normal-
ization and log transformation to obtain expression values in 16 bit resolution [51]. Since the
values represent diverse microarray experiments and platforms, therefore we estimated the
proportion of variance due to different experimental condition using PVCA R package [52].
The estimated batch effects were removed by rescaling the intensity values using Combat func-
tion in SVA package [53]. Finally, we were able to generate a large dataset D ¼ fxi; signi¼1 with
xi 2N the expression over N genes and si is the disease stage from meta-data available for each
sample in respective literature. Dataset was stratified into four classes, s 2 {N, CnM, CM, LN}
with p1, p2, p3, p4 samples in each stage and progress as {N! CnM! CM! LN}. In order to
remove the outlier sample(s), we performed standardized sample connectivities (Z.K) analysis
of each sample, in each melanoma stage, which involves clustering of samples on the basis of
biologically meaningful relationships defined by correlation matrix. The samples with Z.K val-
ues significantly lower (< -2.5) than other samples were removed from the analysis [54]. The
processed data is available at http://dx.doi.org/10.6084/m9.figshare.1577546. The final N × p
expression matrices were subjected to identify genes with a statistically different expression
than normal using lmfit function of Limma package [55].

Weighted gene co-expression network
Co-expression network or Graph (G) was mathematically represented as G = (V,E), where V is
the set of nodes (i.e. genes) and E represents the numbers of nodes co-expressed or connected.
The connectivity structure of graph was represented as adjacency matrix A(G), where Aij = rij if
a node i and j are correlated with Pearson correlation coefficient (PCC; r) and Aij = 0 otherwise.
After removing self-loops, i.e. Aii = 0, we performed the “tests of no correlation” for each PCC
which tests the null hypothesis of rij = 0 and evaluated the subsequent p-value in the large sam-
ple approximation (p> 10), adjusted with Benjamini-Hochberg False Discovery Rate. Finally
rij> 0.5 and FDR adj.p< 0.05 were selected as a final edge between two connected nodes. Sub-
sequent analysis on these weighted gene co-expression networks was performed using in-house
R/PERL scripts and igraph (a R package) [56].

Generation of random networks
In order to evaluate the significance of network measures, we generated random networks
using Erdos-Renyi model with a same node degree distribution and node count as real net-
work. In addition, the numbers of edges for each gene were also retained and only the connec-
tion types were scrambled. We defined elementary probability p = hdi/N for connecting each
node pair in each of the random graph, where N is the number of nodes and hdi is the average
degree of real network. The significant differences between the degree distribution of real and
random graphs were accessed by Kolmogorov-Smirnov test. Moreover, in order to evaluate if
our networks follow power law distribution we subjected our networks for bootstrapping
hypothesis test, using a R package poweRlaw [28].

Calculation of differential connectivity using a random weighted gene co-
expression network
For each node i, we measured its total connectivity (K) or degree with j-th nodes in each com-
plex network, which represents the number of gene co-expressed with gene i. The connectivity
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can be measured in terms of adjacency matrix as:

Ki ¼
Xm

j¼1

ðAijÞ

The above step resulted into data vector fKn
i¼1g representing the number of dependencies/

degree for each node in networks. We measured the differential connectivity of a gene across
two network conditions by the following definition:

dKi ¼ Kd
i � Kc

i

Where Kd measures the connectivity in disease sample whereas Kc measures the connectiv-
ity in control network. We measured the significance of Differential Connectivity (DC) by cal-
culating dKi from random networks, generated by randomly assigning expression values from
one group to another group and evaluating dKi for each permutation. The above step was
repeated 1000 times (t = 1000), sufficient to ensure random distribution of values. The statisti-
cal significance was evaluated by calculating the p-value using:

Pi ¼ DfjdKij > jdKijg=t

Where Δ{S} represent the cardinality of set S. Each p-value was corrected for multiple
hypothesis corrections using Benjamini-Hochberg False Discovery Rate (FDR) adjustment
(adj.p value). Finally only the DC genes with adj.p< 0.01 were selected for further analysis.

Multi-edge rewiring. We executed overlapping of each gene and its connections in a dis-
ease state onto control network and evaluated the connection types. For each gene three differ-
ent types of connections were obtained:

a. Edges unique in disease state (EG).

b. Edges lost by a gene in disease state (EL).

c. Edges commonly displayed by both state.

For the statistical significant assessment of multi-edge gene circuitry rewiring, we selected
genes z = γ1,� � �,γg with DC adj.p� 0.05 and defined unique-edge count threshold for short-
listed genes z. The threshold used to define rewiring potential of a gene was calculated using
power law distribution, which was approximated to novel connectivity of 70. Thus, the DC
genes that gained more than 70 new edges were considered as rewired.

Gene enrichment and sub-network analysis
The final selected rewired genes were allowed to mix with significantly up-regulated genes
(logFC> 1 and adj.p< 0.05) whereas significantly down-regulated genes (logFC< -1 and adj.
p< 0.05) were removed from the final gene lists of each cancer stage zs = γ1,� � �,γk. Each of the
three gene lists zs were subjected to a multi-way enrichment analysis using TargetMine webser-
ver (build 20141221) [57] which utilizes three different data sources for pathway enrichment
viz. KEGG [58], REACTOME [59], NCI-PID [60]. The initial analysis involves the identifica-
tion of significantly enriched IPCs Is = I1, . . ., IT (adj.p< 0.05), which represents the intercon-
nected pathways sharing a common biological theme. The gene symbol IDs for each It were
converted to its corresponding entrez gene IDs, which were mapped onto respective networks
for module density and global transitivity analysis.

Each IPC is then split into its pathway component by re-submitting a gene list of each It in
TargetMine and downloading an enriched pathway list. The entrez gene IDs for each pathway
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in a list for all the melanoma stages was mapped onto its respective stage network and normal
network for calculating sub-network properties in both disease and normal network. We also
connected two pathways if statistically significant number of genes is shared in the pathways,
estimated by fisher’s exact test (p< 0.05).

Various fundamental network properties for each pathway were normalized in a single R-
score to measure its overall relevance. R-score was defined as:

R ¼ logðPCÞ þ ;d � ;c
;d

þ @d � @c

@d

Where PC is the number of connected pathways, Ø is the per gene connectivity in disease
(d) stage and control (c) stage, @ is the sub-network density of the connected nodes. For each

melanoma stage, output of the calculations was a set of vector fPt;RtgTt¼1 where Rt corresponds
to relevance of pathway Pt over all other T-1predicted pathways.

Druggable genome analysis of hub genes
The most connected hub genes were selected from each of the predicted pathways and sub-
jected for druggable genome analysis. We utilized cancerResource [39] and DGIdb [38] for
mining the druggable genome (only cancer interactions) using our hub gene list for each meta-
static melanoma stage. The final results generated by the aforementioned/above mentioned
webservers were compiled into “gene-to-drug” and “drug-to-gene” lists, followed by manual
screening for priori evidences for cancer relevant activity of the filtered genes and compounds
known to target the genes.

Supporting Information
S1 Fig. Batch effect analysis. A. The proportion of variance in the dataset was analyzed before
and after batch effect removal using top 10 principal components. B. PVCA estimation bar-
chart analysis results suggesting the role of batches in explaining the dataset variation before
batch adjustment. The graph reveals significant loss of such dataset variation after ComBat
batch adjustment. C. The stage wise sample clustering (belonging to different platforms),
before and after batch adjustment. Results suggest that experiments from different platforms
overlap after batch adjustment. The different colors in each graph indicate different batches.
(TIFF)

S2 Fig. Volcano plot representing the differential expression of CM stage as compared to
CnM stage (logFC> 1 and adj.p value< 0.05). Significantly DE genes are represented as
dark blue dots. CnM to CM transition involves sudden down-regulation of large number of
genes and comparatively few genes show significant stage specific up-regulation including can-
cer biomarkers like GDF15.
(TIFF)

S3 Fig. Gene Ontology (GO) analysis of DE genes. Left panel shows GO terms enriched (p
value< 0.01) along with its gene count for up-regulated genes whereas right panel shows GO
terms enriched for down-regulated genes. With melanoma progression, genes associated with
skin development are down-regulated whereas genes related to cell adhesion, cell cycle and
immune system are up-regulate.
(TIFF)

S4 Fig. A. Distribution of Pearson Correlation Coefficient values (r) in different stage net-
works. Bottom graph shows comparison of correlation distribution density in all the four
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networks. B. Benjamini-Hochberg False Discovery Rate (FDR) as function of p-value in
different stages of melanoma.
(TIFF)

S5 Fig. The numbers of unconnected network genes were identified by increasing the net-
work threshold value in reference network. The network initiate to become sparse after r> =
0.4 and largest threshold that retain most of the connected components ranges from r> =
0.45–0.5.
(TIFF)

S6 Fig. A. Comparison of degree distribution of four stage specific real networks with ran-
dom networks (dotted lines; see materials and methods). CDF stands for Cumulative Dis-
tribution Function for the degree of connected genes in real and random networks. B.
Scatter plot of degree and gene count for each network, which shows heavy tail distribution
and only few genes are highly connected and hence these are hub genes, which resembles
the characteristic of biological networks. P value represents the score to determine if a
power law distribution is plausible for fitting heavy tailed distributions for a network.
(TIFF)

S7 Fig. M3db is a free web based platform for the analysis, visualization and retrieval of
predicted dysregulated pathways in two exclusive metastatic melanoma stages (CM and
LN). Processed or raw data at the different levels of the whole study can also be obtained in
standard formats.
(TIFF)

S1 File. Complete dataset details for all the stages of melanoma.
(XLS)

S2 File. List of differentially expressed genes in different melanoma stages.
(XLS)

S3 File. Integrated Pathway clusters predicted in different melanoma stages.
(XLS)

S4 File. Signalling Pathway connectivity for predicted dysregulated pathways in metastatic
stages.
(XLS)
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