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Protein domains are the basic units of proteins that can fold, function, and evolve independently.
Knowledge of protein domains is critical for protein classification, understanding their biological func-
tions, annotating their evolutionary mechanisms and protein design. Thus, over the past two decades,
a number of protein domain identification approaches have been developed, and a variety of protein
domain databases have also been constructed. This review divides protein domain prediction methods
into two categories, namely sequence-based and structure-based. These methods are introduced in detail,
and their advantages and limitations are compared. Furthermore, this review also provides a comprehen-
sive overview of popular online protein domain sequence and structure databases. Finally, we discuss
potential improvements of these prediction methods.
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1. Introduction

Protein domains are the fundamental units of protein structure,
folding, function, evolution and design. They are considered to be
homologous portions of sequences encoded in different gene con-
texts that have remained intact through evolution at the sequence
level. They are local, compact units of structure, with hydrophobic
interiors and hydrophilic exteriors forming a globular-like state
that cannot be further subdivided from structural terms [1]. Small
proteins are often found to be composed of only a single domain,
while most large proteins consist of multiple domains for
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Fig. 1. Schematic diagram of structure and domain of an archaeal intein-encoded
homing endonuclease PI-PFUI.
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achieving various composite cellular functions. For example,
the archaeal intein-encoded homing endonuclease PI-PFUI
(PDB:1DQ3), which is shown in Fig. 1, includes 4 domains:
[Cys1–Ile137 (green)|Gly415–Asn454(purple)], [Phe138–Asp224
(blue)], [Asn225–Phe338 (red)], and [Gly339–Glu414(yellow)].
Moreover, [Cys1–Ile137(green)] and [Gly415–Asn454(purple)] are
separate in sequence but close in spatial orientation and constitute
a discontinuous domain. A domain is a compact unit and often
linked to others by domain linker areas. One way to identify a
domain is to find the part of a target protein that has sequence
or structural similarities with a template through homology align-
ment. Another way is to predict the domain boundaries from a pro-
tein sequence. One challenge for such methods is assembling two
fragments separated in sequence into discontinuous domains. In
early stages, most sequence-based methods ignore discontinuous
domains. Until recently, discontinuous domains have received sig-
nificant attention, and some methods have attempted to identify
discontinuous domains.

Domains can work independently or cooperate with neighbour
domains, and different arrangements of domains can create pro-
teins of different functions. Therefore, the correct detection of pro-
tein domains and their boundaries is pivotal not only for protein
classification and understanding their biological functions but also
for protein structure prediction and protein design. For example,
DCS [2] integrated domain compositions of proteins for protein
function prediction. PANDA [3] used domain architecture as input
to improve protein function prediction. INGA [4] combined
sequence similarity, domain architecture searches and protein–
protein interaction network to predict GO functional terms of
unknown protein. When predicting the structure of large multido-
main proteins, the state-of-the-art protein structure prediction
tools like I-TASSER [5] often first predict domain boundaries and
then predict single-domain structure for reassembly. In the past
two decades, many approaches have been developed to identify
protein domains. Meanwhile, a variety of protein domain data-
bases have been constructed that allow for the classification of pro-
tein sequence and structure and enable the transfer of
experimentally obtained functional annotations to other proteins
in the same protein domain family.

This review is organized as follows: Section 2 provides a
detailed summary of sequence-based and structure-based protein
domain identification methods. Section 3 presents protein domain
sequence and structure databases. Section 4 provides discussion
and conclusion.
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2. Protein domain detection methods

Domains are considered to be the structural, functional, and
evolutionary units of proteins. On a sequence level, domains are
homologous segments in evolution, and on a structure level,
domains are units that can fold and work independently. Proteins
can usually be decomposed into domains based on their similar
sequence or structural characteristics.

Many methods have been developed to detect domains in pro-
tein sequences based on these characteristics over the past two
decades. Table 1 lists most of the protein domain identification
methods with a brief description and URL when available. In gen-
eral, domain detection methods can be classified into those that
are sequence-based or structure-based. A detailed introduction of
these methods follows.
2.1. Sequence-based domain identification methods

Compared with structural information, protein sequence infor-
mation is easier to obtain. Moreover, with the development of
sequencing technology, the amount of protein sequence data
has grown rapidly, which facilitates sequence-based methods to
identify domains. Based on the observation that similar domains
often occur in different proteins, homology-based methods have
been developed to detect domains by comparing them with
homologous sequences with known annotated domains.
Homology-based methods can achieve good accuracy when
sequences with domain information can be identified. However,
their prediction accuracy decreases sharply for targets lacking
homologous templates. Ab initio methods have been developed
to overcome this limitation. Ab initio methods assume that
domain boundaries have some features that are different from
other regions in a protein. Statistical methods and machine learn-
ing methods are often used to learn these features and identify
domain boundaries. With the development of machine learning
technology and the growing number of protein sequences in data-
bases, these ab initio methods have progressed significantly in
recent years. Table 1 lists most of the sequence-based protein
domain identification methods with a brief description and URL
when available.
2.1.1. Homology-based methods
The basic principle of homology-based methods is finding the

homologous segments in different protein sequences through
sequence alignment. Homology-based methods need templates
with known domain annotations and efficient sequence alignment
algorithms to find templates that match a target sequence. For
example, CHOP [6] implements three hierarchical steps to predict
domain boundaries. Target sequences are aligned with data from
PDB [7], Pfam-A [8], and SWISS-PROT [9] to find homologous
sequences with domain annotations.

In some cases, homologous templates cannot be identified by
simple alignment algorithms. Then, more advanced algorithms
are needed to find remote homologous templates. Profiles are
widely used in homologous sequence searching because these
can represent domain families rather than single domain
sequences and allow greater residue divergence in matched
sequences to find remote templates. A profile describes the fre-
quency of different amino acids at each position in a sequence that
belongs to a given domain family. For example, several advanced
alignment tools, such as HMMer [10], HHblits [11], HHsearch
[12], are widely used to identify domains. Based on the observation
that many proteins are not globally conserved but might be locally
conserved in separate phylogenetic clades, CLADE [13] modified
Pfam HMMs profile library and proposed a multi-source strategy



Table 1
Sequence-based protein domain identification methods.

Category Method Description Year URL Reference

Homology-based CHOP Search target sequences against PDB, Pfam-A, and
SWISS-PROT to find templates.

2004 http://www.rostlab.org/services/
CHOP/

[6]

DomPred Combine homology and secondary structure element
alignment to find templates.

2005 http://bioinf.cs.ucl.ac.uk/software.
html

[15]

SSEP-Domain Based on the secondary structure elements alignment
and profile-profile alignment.

2006 http://www.bio.ifi.lmu.de/SSEP/ [16]

ThreaDom Deduce domain boundary locations based on multiple
threading alignments.

2013 http://zhanglab.ccmb.med.umich.
edu/ThreaDom/

[18]

CLADE Identifie domains by a multi-source strategy which
combining multiple HMMs profile.

2016 http://www.lcqb.upmc.fr/CLADE [13]

MetaCLADE A multi-source domain annotation tool for metagenomic
dataset.

2018 http://www.lcqb.upmc.fr/metaclade [14]

Ab initio methods Domain Guess by Size Detect domain boundaries based on the distributions of
chain and domain lengths.

2000 [26]

CHOPnet Feed-forward neural network that uses amino acid
composition and secondary structure and solvent
accessibility as features.

2004 [27]

PPRODO Feed-forward neural network that uses position-specific
scoring matrix (PSSM) generated by PSI-BLAST as
features.

2005 http://gene.kias.re.kr/~jlee/pprodo/ [28]

DOMpro RNN uses secondary structure and solvent accessibility
as features.

2005 http://www.igb.uci.edu/servers/psss.
html

[31]

KemaDom Combine three SVM classifiers that use different features
as inputs to predict domain boundaries.

2006 http://www.iipl.fudan.edu.cn/lschen/
kemadom.htm

[30]

DomainDiscovery SVM uses inter-domain linker index, PSSM, secondary
structural, and solvent accessibility as features.

2006 [33]

IGRN An improved general regression network model that is
trained by the information of PSSM, interdomain linker
index, secondary structure, and solvent accessibility.

2008 [32]

DomSVR Sequence is encoded by physicochemical and biological
properties. SVR uses encoded sequence to predict
domain boundary.

2010 [35]

DoBo SVM uses evolutionary domain boundary signals
embedded in homologous proteins as input features.

2011 http://sysbio.rnet.missouri.edu/dobo/ [34]

DROP An SVM to predict domain linkers using 25 optimal
features selected from a set of 3000 features.

2011 http://tuat.ac.jp/~domserv/DROP.
html

[37]

DomHR Identify domain boundaries in proteins by defining the
edge of domain and boundary regions as a hinge region.

2013 http://cal.tongji.edu.cn/domain/ [39]

PDP-CON Combine predicted results from six single domain
boundary prediction methods.

2016 https://cmaterju.org/cmaterbioinfo/ [38]

ConDo Use long-range, coevolutionary features to train neural
networks.

2018 https://github.com/gicsaw/ConDo.git [40]

DNN-Dom Combine CNN and BGRU to predict domain boundary by
combining amino acid composition information, PSSM,
solvent accessibility, and secondary structure. A
balanced Random Forest is used to solve the imbalance
samples problem.

2019 http://isyslab.info/DNN-Dom/ [42]

DeepDom Use sequences information encoded by physical–
chemical properties to train a bidirectional LSTM model
to predict domain boundaries.

2019 https://github.com/yuexujiang/
DeepDom

[41]

FuPred Predict protein domain boundaries using predicted
contact maps generated by ANN.

2020 https://zhanglab.ccmb.med.umich.
edu/FUpred

[44]
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that combines multiple HMMs profile to identify a domain.
MetaCLADE [14] was further proposed to annotate metagenomic
dataset also based on a multi-source domain annotation strategy.
Predicted Secondary structure information is another item that
can provide additional information to help identify remote homol-
ogous templates. For example, DomPred [15] combines secondary
structure element alignment and multiple sequence alignment to
find homologous sequences. Then, the domain boundaries of
homologous sequences are used to predict the boundary of a target
sequence. SSEP-Domain [16] identifies potential boundaries based
on secondary structure element alignment and profile–profile
alignments (PPA) [17].

ThreaDom [18], developed recently, adopts a threading-based
algorithm to improve remote homologous templates detection
[19 5]. It first uses eight LOMETS [20] programs to thread a target
sequence through PDB [7] to find homologous templates and then
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constructs a multiple sequence alignment based on the target
sequence. According to these multiple sequence alignments, a
domain conservation score (DCS) is calculated to measure the con-
servation level of each residue and further used to judge boundary
regions.

Domain architecture of a protein is defined as the arrangement
of its constituent domains [21]. Research on multi-domain proteins
shows that some domain combinations are highly recurrent, while
some combinations never appear. Such information can be used to
enhance domain identification. Based on domain co-occurrence,
CODD [22], dPUC [23] and DAMA [24], used different algorithms
to predict domain architecture. Recently, dPUC2 [25] took into
account order in which domains preferentially co-occur to improve
domain architecture prediction, since it is observed that domains
not only have combination preferences but also have order prefer-
ences in protein sequences.
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2.1.2. Ab initio methods
Homology alignment-based methods can achieve high predic-

tion accuracy when close templates can be identified. However,
the prediction accuracy decreases sharply for targets lacking
homologous templates. Ab initio methods can overcome this limi-
tation to some extent.

Some ab initio methods use statistical approaches to predict
boundary regions. For example, Domain Guess by Size [26] detects
domain boundaries based on the distributions of chains and
domain lengths. Domain boundary prediction can be seen as a bin-
ary classification problem for each residue in a target sequence.
Each residue is labeled as being either a domain boundary residue
or not. In view of the advantages of machine learning methods in
the classification problem, many tools have been developed to
detect domain boundaries using different machine learning
algorithms.

In the early stage, ab initiomethods usually use simple architec-
tures of artificial neural networks and similar features, such as resi-
due composition, predicted secondary structure, and solvent
accessibility. These features focus on features that are associated
with specific residues and short-range information. For example,
CHOPnet [27] is a three-layer feed-forward artificial neural net-
work that uses amino acid composition and predicts secondary
structure and solvent accessibility to encode the residues. PPRODO
[28] adopts a feed-forward back-propagation network with a sin-
gle hidden layer and used a PSSM generated by PSI-BLAST [29] as
an input. KemaDom [30] combines three SVM classifiers and each
of them uses a subset of these features, including simple physio-
chemical information, amino acid entropy, secondary structure,
the structures of five-residue segments, and solvent accessibility.
DOMpro [31] uses recursive neural networks as an architecture
and features like predicted secondary structure and solvent acces-
sibility. These methods use a sliding window to choose a segment
of a sequence as an input, predicting whether the residue located
at the center of the side window is a domain boundary. In this
stage, many methods ignore long-range information, and the over-
all accuracy of these methods is only approximately 25–40%.

To improve the accuracy of domain boundary prediction, some
methods have tried to incorporate more features, such as an inter-
domain linker index, physicochemical properties, and long-range
interactions. These features can capture more long-range informa-
tion about a domain. However, including all these features may
cause the curse of dimensionality. And learning in a high-
dimensional space will consume more computing resources and
time and increase the risk of overfitting. For example, IGRN [32]
uses enhanced general regression networks (EGRN) and PSSMs,
secondary structure, solvent accessibility, and an inter-domain lin-
ker index as the input feature. To avoid the curse of dimensionality,
it filters noise and less discriminative features using an auto-
associative network. This auto-associative network includes an
encoding unit, a bottleneck unit, and a decoding unit. Then the out-
put of this auto-associative network is used as an input for a gen-
eral regression neural network to predict whether a residue is in
the domain boundary.

Due to the limitation of the amount of protein structure data
available, only a few proteins have accurate structure-based
domain annotations that can be used as a training data set.
Small-sample data is a challenge for machine learning methods,
which are data-driven. If a sample set is too small, machine learn-
ing methods may can’t learn meaningful information from the
data. SVM is widely used at this stage because of its classification
ability for high-dimensional small sample data. SVM maps the
input data into a high-dimensional feature space and then finds a
hyperplane that can separate two different classes in this space.
Coupled with improved input features, SVM achieves better classi-
fication performance and strong generalization ability.
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These methods include DomainDiscovery [33], which predicts
domain boundaries by using SVM with PSSM, secondary structure,
solvent accessibility, and an inter-domain linker index. DoBo [34]
introduces evolutionary domain information that is included in
homologous proteins into a protein domain boundary prediction.
The domain architecture of homologous proteins can be used to
reveal the potential domain boundary sites of a target protein
sequence.

The following methods have been tried to consider the physic-
ochemical properties of residues. DomSVR [35] uses a support vec-
tor regression to predict domain boundaries. Protein sequences are
encoded by the physicochemical and biological properties, which
are derived from the AAindex database [36]. Then, a principal com-
ponent analysis (PCA) is used to choose the most important indices
to encode protein sequences. DROP [37] encodes residues into a
3000-dimensional vector, where each element represents a differ-
ent property, including PSSMs and over 2000 physicochemical
properties. A random forest algorithm is used to select optimal fea-
tures. Finally, an SVM is trained to predict domain boundaries.

In addition to improving feature extraction, there have been
other attempts to improve the accuracy of domain boundary pre-
diction by adopting innovative methods. PDP-CON [38] combines
the results from six single domain boundary prediction classifiers
by implementing an n-star quality consensus approach to yield a
better prediction result. DomHR [39] is an indirect method that
predicts domain boundaries based on a creative hinge region strat-
egy. It defines a hinge region as an area centered on the boundary
between domain regions and boundaries regions. The key step of
DomHR [39] is in domain-hinge-boundary (DHB) feature
generation.

With the development of deep learning technology and the
increase in the number of protein data sets, artificial neural net-
works with multiple hidden layers can now be used to predict
domain boundaries. Deep learning methods can generate data rep-
resentations automatically from big datasets and generally achieve
better prediction accuracy. For example, ConDo [40], which was
developed by Hong et al., utilizes neural networks that were
trained on long-range, coevolutionary features, in addition to con-
ventional local window features, to detect domains. Some residues
in domains are far away from others in a sequence but are actually
close in a 3D structure and form hydrogen bonds or disulfide
bonds. These long-range interactions are important for structural
stability. RNN (including LSTM) is highly valued because of its abil-
ity to learn long-range information. DeepDom [41] and DNN-dom
[42] are two methods developed recently that use RNNs to predict
domain boundaries.

DeepDom [41] uses a stacked bidirectional Long Short Term
Memory (LSTM). LSTM uses a cell state to remember information
from the input data that has been processed so it can learn global
information from protein sequences. DeepDom uses a sliding win-
dow to encode an input sequence into equal-length fragments, and
each residue is encoded by a six-dimensional vector. The first five
dimensions represent five physical–chemical properties, and the
sixth encoding dimension is a padding indicator. The LSTM would
predict the probability of the residue located at the center of the
sliding window being a boundary, not being a boundary, or pad-
ding residue.

DNN-Dom [42] combines a convolutional neural network and
bidirectional gate recurrent units (BGRUs) models to predict the
domain boundary of a protein. Convolutional neural networks are
utilized to extract multi-scale local contexts, and the outputs of
CNNs are fed into BGRUs, which are used to learn the long-range
interactions. The imbalance of positive samples with negative sam-
ples is a challenge for deep learning methods. To deal with the
imbalance of samples, that is, as there are more non-boundary
samples than boundary samples, DNN-Dom uses a balanced Ran-



Table 2
Structure-based protein domain identification methods.

Category Method Description Year URL Reference

Structure-based DomainParser Use flow network represent protein structure, and identify domain based
on maximum-flow/minimum-cut theorem.

2000 http://compbio.ornl.gov/
structure/domainparser/

[49]

PDP Identify the dividing site that makes the contact density of the two parts
lower than a threshold as the domain boundary.

2003 http://123d.ncifcrf.gov/ [50]

DIAL Identify the domain by clustering substructures on the basis of their spatial
distances.

2005 http://www.ncbs.res.in/
~faculty/mini/DIAL/home.
html

[48]

CATHEDRAL Identifiy the domain by comparing target structure with structure
templates in CATH.

2007 http://cathwww.biochem.
ucl.ac.uk/cgi-bin/cath/
CathedralServer.pl

[46]

DDOMAIN Identify the dividing site that makes the distance between the two parts
exceed the threshold as the domain boundary.

2007 http://sparks.informatics.
iupui.edu

[51]

DHcL Identify the domain by calculating the van der Waals model of protein. 2008 http://sitron.bccs.uib.no/
dhcl/

[52]

Sword Assign structural domains through the hierarchical merging of protein
units. SWORD provides different domain assignments using different merge
schemes.

2017 www.dsimb.inserm.fr/
sword/

[53]

Predcitedstructure-
based

SnapDRAGON DRAGON generates 100 models, and then structure-based domain
assignment is used to parse the models into domains. Finally, a result is
derived from the consistency of the predicted boundaries.

2002 [55]

RosettaDOM RosettaDOM is a hybrid method that uses homology-based methods to
predict domain boundaries when homologous templates can be found.
When lacking templates, Rosetta is used to generate models, and final
domain boundary predictions are derived from the models.

2005 [54]

OPUS-Dom Generate a large ensemble of folded structure decoys by VECFOLD, and
predicted domain boundaries are derived from the consistency of the
domain boundary in the set of 3D models.

2009 [56]
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dom Forest where each tree in the RF is trained with balanced sam-
ples to predict the probability that the input sample is the bound-
ary of a domain. It uses four kinds of input features representing
each residue, including amino acid composition information, a pro-
tein position specific matrix, solvent accessibility, and protein sec-
ondary structure. These features contain local information, global
information, and high-level latent information that can improve
prediction performance. DNN-Dom has achieved great perfor-
mance with the CASP datasets (from CASP 9 to CASP 12) and other
independent protein domain datasets.

Most of the above sequence-based methods do not consider dis-
continuous domain predictions, while about 18% of proteins in the
current PDB library have at least one discontinuous domain. Threa-
DomEX [43] and FUpred [44] are two methods that pay special
attention to discontinuous domain detection. ThraeDomEX can
detect a discontinuous domain mainly by incorporating DomEx
[45], which can assemble non-consecutive segments following
multiple threading template alignments. FUpred detects domain
boundaries based on contact map prediction, which is predicted
by deep residual neural networks. When predicting a domain
boundary, FUpred will generate an FUscore that maximizes the
number of intra-domain contacts while minimizing the number
of inter-domain contacts. Thus, it can identify discontinuous
domains.

2.2. Structure-based methods

Structure-based methods are quite different from sequence-
based methods, and structure-based methods need experimental
or predicted protein structures for domain identification. For
example, CATHEDRAL [46] compares target protein structure
against a structure template library derived from the CATH [47]
database to detect domains. DIAL [48] identifies domains by clus-
tering substructures with similar structures. Table 2 lists most of
the structure-based protein domain identification methods with
a brief description and URL when available.

Since the above methods need templates with known domain
information, some other methods that are template independent
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have been developed based on the structural characteristics of
domains. DomainParser [49] is an efficient domain decomposition
algorithm based on graph-theoretic. Residues were represented as
nodes and residue-residue contacts were represented as edge.
Capacity values were calculated for each edge depending on the
strength of interaction. DomainParser divided the protein into
two domains by finding the boundary that minimizes the edge
capacity between the two sub-graph. PDP [50] and DDOMAIN
[51] split proteins into domains depending on the assumption that
there are more intra-domain residue contacts than inter-domain
contacts. PDP splits proteins into two candidate domains. Then,
contacts between candidate domains are normalized by domain
sizes. Two segments are confirmed as domains if the contacts
between these segments are less than half of the average contact
density for the whole domain. Finally, contacts between all
domains are checked, and two domains are combined into one if
their normalized contacts are greater than a manually selected
threshold. The final step allows PDP to find discontinuous domains.
DDOMAIN uses normalized contacts similar to PDP. Unlike PDP,
which only considers the number of contacts, DDOMAIN defines
contact energy dependent on the number and distance of contacts.
Moreover, DDOMAIN uses a threshold that is learned from a train-
ing data set to determine whether a protein is divided into two
domains. Different from compactness-based approaches, DHcL
[52] decomposes protein domains by calculating a van der Waals
model of a protein.

Although protein domain is an important concept and has been
used in many fields in the biological sciences for many years, there
is still no authoritative definition of what a domain is. The variety
of definitions of a domain reflects different perspectives and the
different problems being tackled. As a result, many methods have
been developed to detect domains, while some of them annotate
the same protein in different ways. Therefore, some proteins will
be decomposed into different domains using different tools. Con-
sidering that a protein may be divided into different but equally
valid domain, SWORD [53] was developed to generate multiple
alternative domain architectures for a target protein. It defines pro-
tein units (PUs), a structural descriptor between secondary struc-

http://compbio.ornl.gov/structure/domainparser/
http://compbio.ornl.gov/structure/domainparser/
http://123d.ncifcrf.gov/
http://www.ncbs.res.in/%7efaculty/mini/DIAL/home.html
http://www.ncbs.res.in/%7efaculty/mini/DIAL/home.html
http://www.ncbs.res.in/%7efaculty/mini/DIAL/home.html
http://cathwww.biochem.ucl.ac.uk/cgi-bin/cath/CathedralServer.pl
http://cathwww.biochem.ucl.ac.uk/cgi-bin/cath/CathedralServer.pl
http://cathwww.biochem.ucl.ac.uk/cgi-bin/cath/CathedralServer.pl
http://sparks.informatics.iupui.edu
http://sparks.informatics.iupui.edu
http://sitron.bccs.uib.no/dhcl/
http://sitron.bccs.uib.no/dhcl/
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tures and domains. PUs will gradually merge into large fragments,
and different merge schemes will enable SWORD to provide sev-
eral different domain assignments.

Furthermore, there are some methods used predicted protein
models to detect domains, such as RosettaDom [54], SnapDRAGON
[55], and OPUS-Dom [56]. In general, these methods predict a large
number of model structures of target sequences using ab initio
methods such as Rosetta, DRAGON [57–59], and VECFOLD. Then,
a structure-based domain assignment tool such as Taylor [60] is
used to detect domain boundaries for each model generated by
ab initio methods. Finally, the predicted domain boundaries of a
target sequence are obtained by counting the domain boundaries
of these 3D models. These methods often give reliable results but
usually need significant computational resources.

3. Protein domain libraries

The rapid increase in protein sequence and structure data has
generated a pressing need to classify them systematically. Proteins
are generally classified into different groups based on their
sequence or structural similarities. Then the functional properties
of a newly identified protein can be inferred from a well-
characterized protein in the same group to which it is predicted
to belong. Here, we focus on the classification of protein domains.
Consistent with the methods to identify domains, there are also
two kinds of domain databases, namely sequence-based and
structure-based.

3.1. Sequence-based domain databases

Despite great progress having been made in the field of ab initio
methods of protein domain boundary prediction, most of them are
not suitable for large-scale sequence analysis. Therefore, most
automatic domain clustering methods are homology-based, fol-
lowed by varying levels of expert-driven validation. A general flow
chart of the construction of sequence-based domain family data-
bases is shown in Fig. 2. It usually starts with a representative
set of sequences belonging to a family that are selected as a ‘seed’.
Fig. 2. Diagram of homology alignment-based methods to construct a domain
database.
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Then a multiple sequence alignment of these seeds produces con-
servative patterns, and profiles are generated based on it. The pro-
files produced from the previous step are used to search against a
protein sequence database (e.g., UniProt) to find all sequences
belonging to this family and then generate profiles based on all
family members. Three widely used sequence-based domain data-
bases are introduced below.

Pfam [8] is one of the most comprehensive domain family data-
bases. It is manually curated using a seed alignment first, and then
a profile HMM is built based on the seed alignment. A profile HMM
is queried against a sequence database called pfamseq, which is
derived from the UniProt Knowledgebase (UniProtKB) [61] Refer-
ence Proteomes to find other members in the same domain family.
Pfam consists of two types of subsets: high-quality Pfam-A families
that are generated by manually checking seed alignments and
HMMs, and less reliable Pfam-B families, which are produced auto-
matically by applying the ADDA algorithm [62].

Similar to Pfam, SMART [63,64] (Simple Modula Architecture
Research Tool) uses HMMs to search and annotate protein
sequences that belong to the same family. It is synchronized with
UniProt [65], Ensembl [66], and STRING [67]. SMART holds manu-
ally curated HMMs, and structure information is encompassed to
select seed alignment. To improve its ability to find homologous
sequences, especially remote homologous sequences, SMART uses
three iterative homologue search methods—HMMer [10], MoST
[68], and WiseTools [69]. Sequences considered to be homologues
are added to a multiple alignment, which is used to construct pro-
files and HMMs. This tool also offers a ‘genomic’ mode that anno-
tates proteins from complete sequenced genomes.

PROSITE [70,71] provides protein information about domains,
families, and functional sites. It identifies protein families and pro-
tein domains using generalized profiles and uses patterns to iden-
tify short sequence motifs, which often have an important impact
on structure or function. Patterns are regular expressions that can
be used to identify highly conserved structures and motifs. These
areas typically include 10 to 20 amino acids and have important
functions such as active sites or binding sites. PROSITE includes a
collection of rules called ProRules [72] to define protein annota-
tions and the conditions under which they apply. It uses patterns
and profiles to search against UniProtKB [61] and annotate protein
databases via ProRule. Combining profiles and patterns with Pro-
Rule, PROSITE can annotate proteins more accurately.

3.2. Structure-based domain databases

Sequence-based protein domain database depend on sequence
alignments to identify domains that belong to the same family.
In the Twilight Zone [73] of sequence similarity (<30% sequence
identity), the reliability of sequence comparisons decreases
quickly. Structure-based protein domain identification can break
through this restriction, although the number of proteins with
known structures is much less than that of known sequences.
Structure-based domain databases usually classify proteins on
hierarchical levels. Some levels of hierarchy include Class, Archi-
tecture, Fold/topology, Superfamily, and Family. Two popular
structure-based protein domain databases are SCOP [74] and CATH
[47]. The basic principle of these two databases is finding con-
served substructures that are repeated in different proteins
through structure alignment.

SCOP [74] (Structural Classification of Proteins) mainly anno-
tates domains and constructs domain families by manual inspec-
tion. It organizes domains and discrete units into families and
superfamilies based on structural features and evolutionary rela-
tionships, and superfamilies are further organized into folds and
classes. Similar structures and sequences means that a protein
has an evolutionary relationship and similar functions. Comparing
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the structures of proteins and organizing them into different levels
can help researchers explore proteins with unknown function.

Like SCOP [74], CATH [47,75] classifies proteins in four main
levels: class (C), architecture (A), topology (T), and homologous
superfamily (H). CATH combines automatic procedures with man-
ual curation to identify protein domain structures and clusters
them. It uses a number of sensitive structure-comparison and
sequence comparison tools (including SSAP [76], HMMER3
hmmer.org, PRC [77]) to assist the manual curation of these remote
evolutionary relationships.

3.3. Integrated domain databases

Since a variety of domain family databases are available now,
and each source database has its own biological focus, it may be
difficult to choose which database to use or how to meaningfully
combine the results from different sources. InterPro [78] and Gen-
ome3D [79] were designed as comprehensive databases to com-
bine data from other databases.

InterPro [78] integrates 14 protein family classification data-
bases and maps these family resources to the primary sequences
of UniProt [9]; as of September 2020, it has annotated 79.1% of
the protein sequences of UniProt. It does not generate annotations
itself but rather integrates information from other member data-
bases. Member databases generate representative signatures for
each group of homologous proteins. Then, InterPro manually
inspects these signatures to ensure accuracy. The new signatures
passing quality control are added to InterPro to be used to identify
and annotate protein sequences.

Genome3D [79] also integrates domain family annotations from
different databases like InterPro. It not only collects information
from SCOP [74] and CATH [47], but also uses five domain predic-
tion methods (Gene3D [80], SUPERFAMILY [81], FUGUE [82], Phyre
[83], and pDomTHREADER [84]) to identify domains. Gene3D and
SUPERFAMILY construct HMMs to describe the sequence features
of SCOP or CATH superfamilies and use these HMMs to identify
domains in new sequences. Other methods can detect more distant
homologues belonging to the SCOP (FUGUR, Phyre) or CATH
(FUGUE, pDomTHREADER) superfamilies. Since none of these
methods is guaranteed to provide a correct answer, Genome3D dis-
plays prediction results from all these methods so that users can
identify which result is more likely to be correct.

3.4. Basic statistics of what is in available domain databases

Based on the above sequence-based and structure-based
domain databases, we have counted how many domain families
Table 3
Statistics on the number of domain families annotated for the three kingdoms of life in d

Database Source

Eukaryota Bacteria

Pfam 8437 5857
SMART 1120 428
PROSITE 2185 1262
CATH 2972 3665
SCOP 3166 2626

Table 4
The domain average length of the three kingdoms in CATH and SCOP.

Database Mean length Std Eukaryota

Mean

CATH 150.4 90.9 147.9
SCOP 196.8 129.7 179.5
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have been annotated for the three kingdoms of life: eukaryote, bac-
teria and archaea, which is shown in Table 3. From Table 3, it is
easy to see that eukaryotes have the most domain families, fol-
lowed by bacteria and archaea nearly among all the counted data-
bases. The number and percentage shared by the three domains of
life have also been counted. Around 4.4%-16.2% domain families
have been shared by the three domains of life according to the dif-
ferent counted databases. Furthermore, we also counted the pro-
tein domain average length of the three kingdoms of life in CATH
and SCOP from which we can get the downloaded domain length.
Table 4 shows that the domain average length of all the three king-
doms in SCOP is longer than that of CATH, which is mainly attribu-
table to the different protocols used by the two databases.
Meanwhile, the average length of domains of bacterial seems
longer than that of eukaryota and archaea in both CATH and SCOP,
especially in the SCOP database.
4. Discussion and conclusion

The exact identification of protein domains and their bound-
aries is one of the most important problems in the study of protein
structure and function. Therefore, a number of domain prediction
methods and databases have been developed, which can be divided
into two categories: sequence-based and structure-based.

With known three-dimensional structures, accuracy is often not
the problem. The problem that needs be considered is the ambigu-
ity in a domain definition. To the best of our knowledge, Sword
[53], developed recently, is the only method which has tried to
address this problem by producing multiple alternative decompo-
sitions of a protein. Therefore, more innovative multipartitioning
algorithms are needed to tackle this problem.

The difficulty of obtaining protein experimental structure limits
the application scope of structure-based protein domain identifica-
tion methods. Sequence-based methods have been developed
based on the assumption that domain family members share some
common sequence features. When there are close templates, such
methods can achieve high prediction accuracy. However, this pre-
diction accuracy decreases sharply when homologous templates
are unavailable. Therefore, a number of approaches independent
of templates have been developed, and most of them are based
on machine learning. Despite extensive research, predicting
domain boundaries from sequence data alone is still a challenging
problem. The prediction accuracy of most of these methods is not
high enough to be applied in large-scale sequence annotation.
Another problem is that sequence-based methods generally do
not consider discontinuous domains prediction. With the develop-
ifferent domain databases.

Shared by the three kingdoms

Archaea

1735 890 (6.2%)
241 166 (11.4%)
641 500 (16.2%)
918 399 (5.9%)
749 264 (4.4%)

Bacteria Archaea

Std Mean Std Mean Std

90.8 154.8 91.8 137.2 81.0
128.9 215.4 129.5 189.5 115.1
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ment of machine learning algorithms and the improvement of con-
tact map prediction, there will be great progress in protein domain
prediction accuracy and discontinuous domain detection.

Coupled with the development of domain identification meth-
ods, a variety of protein domain databases have been constructed
to classify protein sequence and structure. A newly identified pro-
tein can be classified into a corresponding family through search-
ing the available protein domain family databases. InterPro [78],
which is an integrated domain family resource, has annotated
79.1% protein sequences in UniProt [9]. It is hoped that with the
improvement of the protein domain detection methods, the
domain annotation ratio of protein sequences will increase.
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