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Multiple and unpredictable numbers of actions are often required to achieve a goal. In

order to organize behavior and allocate effort so that optimal behavioral policies can be

selected, it is necessary to continually monitor ongoing actions. Real-time processing

of information related to actions and outcomes is typically assigned to the prefrontal

cortex and basal ganglia, but also depends on midbrain regions, especially the ventral

tegmental area (VTA). We were interested in how individual VTA neurons, as well as

networks within the VTA, encode salient events when an unpredictable number of

serial actions are required to obtain a reward. We recorded from ensembles of putative

dopamine and non-dopamine neurons in the VTA as animals performed multiple cued

trials in a recording session where, in each trial, serial actions were randomly rewarded.

While averaging population activity did not reveal a response pattern, we observed that

different neurons were selectively tuned to low, medium, or high numbered actions in a

trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to

different subsets of actions in a trial allowed information about binned action number

to be decoded from the ensemble activity. At the network level, tuning curve similarity

was positively associated with action-evoked noise correlations, suggesting that action

number selectivity reflects functional connectivity within these networks. Analysis of

phasic responses to cue and reward revealed that the requirement to execute multiple

and uncertain numbers of actions weakens both cue-evoked responses and cue-reward

response correlation. The functional connectivity and ensemble coding scheme that we

observe here may allow VTA neurons to cooperatively provide a real-time account of

ongoing behavior. These computations may be critical to cognitive and motivational

functions that have long been associated with VTA dopamine neurons.
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INTRODUCTION

Organization of goal-directed behavior requires real-time
monitoring of ongoing actions. This function is typically assigned
to the prefrontal cortex and striatum, but several lines of evidence
demonstrate that organization of a series of behaviors also
depends on VTA dopamine input to these regions (Goldman-
Rakic, 1988; Robbins and Arnsten, 2009; Salamone et al.,
2009). For instance, lesions of VTA dopamine projections to
the striatum, or antagonists of dopamine receptors, impair the
capacity to perform large numbers of actions without impacting
the ability to complete one (or a few) action(s) (Aberman
and Salamone, 1999; Ishiwari et al., 2004; Mingote et al.,
2005). Additionally, VTA neurons are implicated in several
cognitive constructs necessary for organizing an ongoing series
of behaviors, such as working memory, attention, effort, and
cognitive flexibility (Salamone and Correa, 2002; Seamans and
Yang, 2004; Robbins and Arnsten, 2009; Fujisawa and Buzsaki,
2011). Thus, VTA neurons are critical for organizing, sustaining,
and adapting an ongoing sequence of behaviors.

Additional evidence that VTA neurons participate in
structuring and organizing a behavioral series is provided by
studies showing that dopamine release in nucleus accumbens
precedes a series of two lever presses (Wassum et al., 2012), and
dopamine neurons encode the first and last actions in a fixed
response eight (FR8) reinforcement schedule (Jin and Costa,
2010). These response patterns, however, do not reveal how
VTA neurons encode information during a series of actions.
The expansive literature on dopamine signaling has mostly
used tasks that require subjects to execute a single instrumental
action, or Pavlovian tasks with no explicit action requirement.
These experiments have generally focused on neuronal responses
before behavior is initiated or after outcomes are delivered
(Ljungberg et al., 1992; Schultz et al., 1993, 1997; Montague et al.,
1996; Schultz, 1998; Bayer and Glimcher, 2005; Morris et al.,
2006; Roesch et al., 2007; Salamone et al., 2007; Dayan and Niv,
2008; Glimcher, 2011). Thus, little is known about how VTA
neurons encode information that could be used to organize and
sustain a series of actions.

To begin to understand how VTA neurons monitor a series of
actions in real-time, we recorded from VTA ensembles during a
task where rats executed an unpredictable number of self-paced
actions to earn reward. We found that individual dopamine and
non-dopamine neurons fired selectively during different actions
in a trial. Whereas, population-averaging concealed this mosaic
of activity patterns, it was possible to decode low, medium, and
high numbered actions within a trial from the collective activity
of all neurons. These data provide novel evidence of ensemble
encoding by VTA neurons and provide critical insight into how
VTA neurons may contribute to complex behaviors by encoding
real-time information about ongoing actions.

MATERIALS AND METHODS

Subjects and Apparatus
All procedures were conducted in accordance with the National
Institutes of Health’s Guide to the Care and Use of Laboratory

Animals, and approved by the University of Pittsburgh’s
Institutional Animal Care and Use Committee. Behavioral and
neuronal data were collected from 10 adult, experimentally
naïve, male Sprague-Dawley rats (Harlan, Frederick, MD) singly
housed on a 12-h light cycle (lights on at 7 p.m.). These
sample sizes were chosen because they are sufficient to detect
behavioral and VTA neuronal effects in a variety of rat operant
procedures in our lab (Kim et al., 2010, 2012, 2016). At the
time of surgery, rats weighed ∼350 g (∼12 weeks of age). Under
isoflurane anesthesia, 8 or 16 channel, 50 µm stainless steel,
Teflon insulated, microelectrode arrays were implanted in left
VTA (relative to Bregma: −5.30 mm posterior, 0.8 mm lateral,
and 8.3 mm ventral). All experiments were conducted in a
standard operant chamber (Coulbourn Instruments, Allentown,
PA). The operant chamber had a food trough on one wall and a
single nose poke port on the opposite wall. Both the food trough
and nose poke port could be illuminated and were equipped with
an infrared beam, which detected the animal’s entry. The operant
chamber system controller was configured to send the time of
behavioral and environmental events to the recording interface
via standard TTL pulses and a digital interface.

Behavior
Each rat was given 7 days to recover from surgery and food
restricted to 90% of their free feeding body weights. Rats were
habituated to handling for 5 min per day for 3 consecutive days,
before being habituated to being handled and connected to a
headstage cable in the procedure room for 2 additional days.
Following habituation, rats were given a single 30 min magazine
training session in the operant chamber, in which sugar pellets
were delivered on a variable time 75 s reinforcement schedule.
When each pellet was delivered, the pellet trough was illuminated
for 4 s. The animal’s behavior had no programmed consequences
in the magazine training session.

Following the magazine training session, each animal began
instrumental conditioning. During all instrumental conditioning
sessions, each trial began with illumination of the nose poke
port (cue light onset). This served as a discriminative stimulus
that reinforcing outcomes (sugar pellets) were available (termed
the “response period”), contingent upon the animal executing
actions (nose pokes into the lit port). In each trial, actions were
reinforced randomly, according to a predetermined probability.
When an action was executed, the behavioral system controller
randomly drew an outcome state (either reinforcement or
no programmed consequence) with replacement, according to
the probability of reinforcement. Each action was reinforced
randomly and independently of the animal’s action history within
that trial or session. When an action was reinforced, the cue light
was immediately extinguished (cue light offset) and nose pokes
had no additional programmed consequences. A 0.500 s delay
between the final action and outcome delivery was instituted
to temporally separate these events, as done in previous work
(Schultz et al., 1993). Following this delay, the outcome was
delivered to the animal and the food trough was illuminated.
Outcomes were delivered into the food trough from a standard
pellet magazine, via the operation of a smaller stepper motor and
dispenser. The food trough remained illuminated and the task
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did not progress until the animal retrieved the outcome. Once the
animal retrieved the outcome, a variable length intertrial interval
(ITI) of 10–12 s was initiated. In each session, 180 trials were
administered.

In the first instrumental conditioning session, actions were
reinforced with a probability of 1 (each action was reinforced)
equivalent to a fixed ratio 1 (FR01) reinforcement schedule. In
the second session, the probability that an action was reinforced
was decreased across three blocks of trials. In the first block of
60 trials, actions were reinforced with a probability of 1 (FR01).
In the second block of 60 trials, each action had a 1 in 3 chance
of being reinforced (random ration 3, RR03). In the third block
of 60 trials, the probability was further decreased to 0.2 (random
ratio 5, RR05). In sessions 3 and 4, actions were reinforced with a
0.2 probability for all trials (RR05). In sessions 5–7, actions were
reinforced with a probability of 0.1 for all trials (random ratio
10, RR10). In all trials but the FR01 trials, animals were required
to execute an unpredictable, varying, and randomly determined
number of actions per trial. Random reinforcement was utilized
to limit the ability of the animal to correctly anticipate reward
delivery. Actions differed from each othermainly in terms of their
location within the action series in each trial (the action number
within a trial, e.g., 1st action, 2nd action, 3rd action, etc.). In
each trial, each animal’s action rate was calculated as the number
of actions divided by the duration of the response period. This
served as a measure of behavioral conditioning and performance.
Changes in behavior across sessions were assessed with repeated
measure analysis of variance (ANOVA), and repeated measures
contrasts were applied as appropriate (Kass et al., 2014). The time
interval between each action (inter-action interval) wasmeasured
for bins of low, medium, and high numbered actions (actions 1–
7, 8–14, and 15–21). Statistical differences between binned inter-
action intervals were assessed with repeated measures ANOVA.
This measured the animal’s behavioral sensitivity to increasing
action numbers throughout a trial. To examine the effects of the
number of actions performed in a trial on fatigue, motivation,
or attention, the number of actions performed in each trial was
correlated with the latency to retrieve the reward, or initiate the
next trial.

Histology
Following the completion of experiments, animals were perfused
with saline and brains were extracted. Each brain was stored
in a mixture of sucrose and formalin. The brains were then
frozen and sliced in 60 µm coronal sections on a cryostat, before
being stained with cresyl-violet. The location of each implant
was histologically verified under light microscope according to
Swanson’s brain atlas (Swanson, 2004). Animals were excluded if
electrode location could not be confirmed in VTA.

Electrophysiology
During experiments, animals were attached to a flexible
headstage cable and motorized commutator that allowed the
animal to move freely about the operant chamber, with minimal
disruption of behavior (Plexon, Dallas, TX). Neural data were
recorded via the PlexControl software package, operating a
64-channel OmniPlex recording system (Plexon, Dallas, TX).

Neural data were buffered by a unity gain headstage and then
a preamplifier. The digitized broadband signal was then band-
pass filtered (100 Hz–7 KHz). High-pass filtering can affect spike
waveform shapes and neuronal identification, but with freely
moving animals it is necessary to apply these filters to remove
artifacts from the neuronal signal (Ungless and Grace, 2012). The
filter pass bands that were utilized in the current manuscript are
consistent with those that have previously been used to record
from dopamine containing brain regions (Schultz et al., 1993;
Fiorillo et al., 2003; Tobler et al., 2005). Data were digitized at 40
KHz and continuously recorded to hard disk. Voltage thresholds
were applied to the digitized spike data offline (Offline Sorter,
Plexon, Dallas, TX). Single units were sorted using standard
techniques, and were utilized only if they had a signal to noise
ratio in excess of 2/1, and were clearly separated from noise
clusters and other single unit clusters. Examples of recordings
and sorting are show in Supplemental Material (Figure S1).

A VTA neuron was classified as dopaminergic if it had broad
action potentials,>1.4 ms in duration, and a mean baseline firing
rate <10 Hz. These criteria are similar to those used in previous
studies (Hyland et al., 2002; Fiorillo et al., 2003; Anstrom and
Woodward, 2005; Pan et al., 2005; Tobler et al., 2005; Anstrom
et al., 2007; Totah et al., 2013). All remaining neurons were
classified as non-dopaminergic. All analyses were conducted on
the entire population of neurons that were recorded to provide a
classification-free examination of the data. Our approach to VTA
cell classification is consistent with classical techniques. It should
be pointed out, however, that indirect identification (using
electrophysiological features as opposed genotypic features) can
lead to classification errors (Margolis et al., 2006; Lammel
et al., 2008; Cohen et al., 2012). In general, qualitatively similar
responses were observed in both groups of neurons. Units
recorded in different sessions were considered separate units, as
methods to estimate neuronal identity between sessions are not
widely used with VTA recordings. In total, the following numbers
of neurons were recorded in each of 7 sessions: dopamine (reward
responsive): 11(7), 19(10), 21(12), 29(19), 27(13), 21(9), 27(16);
non-dopamine (reward responsive): 31(17), 35(14), 39(27),
34(13), 25(12), 29(11), 27(9).

Neuronal Data Analysis
Each single unit’s spike times were binned into spike counts
(0.025 s bins) within a trial. Binned spike counts were aligned
to all events (e.g., cue light onset, actions, time period between
cue light offset and outcome delivery, and outcome delivery).
A stable, four s portion of the ITI (5 s to 1 s prior to cue
light onset) served as the neuronal activity baseline. Single unit
firing rates were Z-score normalized relative to baseline and
zero-centered before activity was averaged together. Each unit’s
normalized activity was examined in 0.250 s windows around
events (cue onset: +0.050 to 0.300 s, relative to cue onset;
−0.125 to +0.125 s, relative to the time of action execution;
time period between cue offset and outcome delivery: +0.150 to
0.400 s, relative to execution of the last action; outcome delivery:
+0.050 to 0.300 s, relative to delivery). To assess between-
session changes in population-level evoked activity, windowed
activity was compared with a between groups two way ANOVA,
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with session number and neuron type (dopamine or non-
dopamine) as grouping variables. In all cases, protected Fisher’s
least significant difference tests were applied as appropriate.

A unit was classified as being activated or suppressed by an
event if it met two criteria: (1) a significant paired samples t-
test comparing raw (non-normalized) baseline firing rates with
raw evoked firing rates, and (2) three or more consecutive bins
of mean activity within the event-window, that were in excess
of a 95% confidence interval around the baseline mean. With
respect to a given task event, the proportions of units classified
as being activated or suppressed were calculated. Differences
in the proportions of activated units between sessions were
compared with a Chi-squared test of independence. As expected,
insufficient numbers of suppressed neurons (in some sessions
zero) were obtained to permit reliable statistical analyses of this
class of responses. Suppressed neurons are plotted for clarity, but
not analyzed in detail.

The terminology “action-evoked” neuronal responses refers to
activity around the time of action execution, without assuming
that the action is solely responsible for evoking this neuronal
response. Each unit’s activity was examined as a function of action
number (a unit’s mean response to each nth numbered action
within a trial, across all trials). These analyses were restricted
to the RR10 sessions (sessions 5–7). RR10 sessions required
larger numbers of actions per trial, on average, and would
ensure that there were a sufficient number of higher numbered
actions (e.g., actions 18, 19, 20, 21, etc.) for analysis. All action
number analyses utilized actions 1 through 21.While even higher
numbered actions occurred in some trials, these actions occurred
less frequently and were excluded from action number analyses,
as there was insufficient sample size for reliable statistical
analysis. To remove any effects of impending reward delivery
on the action evoked neuronal responses, only unrewarded
actions were used in this analysis. Preliminary analyses suggested
that including rewarded actions had little effect on the results.
Action evoked neuronal responses were binned into 3 bins
of 7 consecutive actions representing low, medium, and high
numbered actions (actions 1–7, 8–14, and 15–21, respectively).

We measured correlations in spike count between pairs
of dopamine neurons (n = 172), pairs of non-dopaminergic
neurons (n = 276), and mixed pairs (a dopamine and a non-
dopamine neuron, n = 387) in RR10 sessions. Correlations were
only calculated for pairs of simultaneously recorded neurons.
Pairwise neuronal correlations were assessed in the same 0.250 s
windows used to quantify firing rates, using the standard
Pearson’s correlation,

r =
1

P − 1

P∑

i= 1

(xi − x̄)
(
yi − ȳ

)

sxsy

where the correlation coefficient, r, is the summed product of
the ith point’s residual from the sample mean, x̄ or ȳ, normalized
by the sample standard deviation, s. Noise correlations represent
the degree to which the joint activity of simultaneously recorded
pairs of neurons fluctuates from trial to trial. Noise correlations
were calculated on the trial-by-trial spike counts observed in
each window. For actions, these evoked responses also examined

according to action number within a trial, or binned action
(actions 1–7, 8–14, or 15–21). Signal correlations refer to the
correlation between pairs of tuning curves in simultaneously
recoded neurons. We corrected for chance levels of correlation,
which were estimated as the mean correlation of 1,000 pairs of
randomly shuffled data. Fisher’s Z transformation

1

2
∗ ln(

1+ r

1− r
)

was used to transform correlation coefficients for statistical
comparisons. The geometric mean spike count was calculated to
measure the average joint activity of each pair of neurons.

Individual neurons preferred different subsets of action
numbers. To determine the extent to which elapsed time since
trial start or action number could account for action evoked
neuronal activity, we performed a Poisson regression of spike
count onto these variables. The percentages of neurons with
significant coefficients are reported. To visualize the various
tunings of VTA neurons to action number, each neuron’s mean
activity as a function of action number is displayed. Because
evoked firing rates could span a large range of values, each tuning
curve was scaled so that the maximum evoked activity was equal
to 1 and the minimum evoked activity was equal to 0. Scaled
tuning curves were used only for visualization. To compute
the number of maxima, each tuning curve was fit with a cubic
smoothing spline (smoothing parameter 0.001) andmaximawere
detected as points in the estimated curve with derivatives equal
to 0.

Population Average Decoder
A decoder classified binned action number according to the trial-
averaged spike count, also averaged across neurons, on an action-
by-action basis. This is called the “population average decoder.”
Binned action number, A, is defined as 3 bins of 7 consecutive
actions (1–7, 8–14, or 15–21). The classifier maximizes

p
(
A|R̄

)
∝ p

(
R̄|A

)
× p (A) .

Here p
(
R̄|A

)
represents the probability of the population

averaged response occurring, given a particular action bin. The
probability of an action belonging to an action bin is denoted
by p(A), and is uniform across action bins in the current work.
That is, the prior probability for each bin, p(A), is 1

3 . For these

analyses, p
(
R̄|A

)
is calculated from the sample distributions of

mean action evoked population responses as follows. First, the
population average of all neurons’ trial-averaged responses is
calculated for all actions in all bins. Next, one action is selected
as a test observation. Then, p

(
R̄|A

)
is assumed to be the best

fit Gaussian of unknown mean and variance, fit from all trials
in the bin A (excluding the test observation, if it lies in A). The
result is 3 smooth distributions of mean activity, corresponding
to the 3 bins of action numbers. The average activity of the
test observations is calculated, and classified as the most likely
action bin to have evoked this response, based on the relationship
between population averaged activity and action bins in the

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 August 2017 | Volume 11 | Article 140

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Wood et al. VTA Ensembles Encode Serial Actions

training dataset (the actions not tested). The classifier selects the
action bin most likely to have evoked the population response via

Â∗ = argmax
A

p(A | R∗) = argmax
A

p(R∗ | A)× p(A).

Here, R∗ is the population average of the held out action number.
Â∗ is the resulting estimated action bin. Testing is repeated for
each action number.

Ensemble Decoder
Assuming R̄ is not a sufficient characterization of {Ri}

N
i=1, which

we will call ER, p
(
R̄|A

)
does not thoroughly represent the

information in p(ER|A). Therefore, we instead assume relevant
information is captured by a higher-dimensional representation:(
WER|A

)
∼ N(µA,6). The projection,W, estimated by principal

components analysis, is necessary to ensure the covariance, 6,
can be estimated by the usual pooled sample covariance, 6̂. This
maximizes the dimensionality of the space into which we project
ER, for a given sample size. We then maximize p(A|WER). This
maintains the varying firing rates in each unit, elicited by actions
within different bins. Note that the population average decoder
is the special case of this approach wherein W is a row vector
of ones. The projection and classifier can be learned with each
neuron’s set of evoked trial-averaged spike counts as a feature.
Each action’s set of observed trial-averaged spike counts, the new

test observations,
−→
R∗, are then projected via the weights estimated

from the training data and classified sequentially (that is, we

estimate the set of
{
µ̂A

}3
A=1

on all the remaining action numbers,
which is equivalent to training, and maximize the analogous
posterior).

Statistical Testing of the Decoders
To test whether the two decoders produce equal or different
classification accuracy, we fit a binomial generalized linear
model and controlled for action number, session, and unit type
(dopaminergic vs. non-dopaminergic). For each trial of action
bin A, tested on decoder d, the log odds of the probability of
correct classification was assumed to be linear in its covariates
as given by the logistic regression function

logit
(
E

[
IA

(
Â
)
| (Id, IA, IS, IDA)

])
= β0 + βd · Id + βA · IA

+βS · IS + βDA · IDA,

where IA

(
Â
)

is an indicator signifying correct or incorrect

classification, and Id, IA, IS, IDA are indicators (or a set of
indicators) for the decoder, action bin, session, and dopaminergic
unit, respectively. Likelihood ratio tests were used to test the
effect of each group of factors, corresponding to each feature.
Additionally, statistical significance of decoder performance (vs.
chance levels of correct classification) at each action number
was determined via permutation test. Approximations to the
exact p-values can be determined by assigning classes to each
action according to a uniform prior distribution, and calculating
the proportion of sets of resulting classifications that perform
better than the classification rates observed using the previously
discussed methods.

RESULTS

Animals Learn to Execute Serial Actions
for Reward
VTA activity was recorded while rats learned to execute
multiple actions for random reinforcement with one sugar pellet
(Figures 1A,B). In the first session, each action was rewarded
(FR01). In session 2, the reward probability was decreased from
1 to 0.2 across 3 blocks of trials. In sessions 3 and 4, actions
were reinforced at a probability of 0.2 (RR05). In sessions 5–7,
actions were reinforced at a probability of 0.1 (RR10). In all
randomly reinforced trials, unpredictable and varying numbers
of actions were required, but each action was equally likely to be
reinforced.

Action response rates increased as reinforcement probability
decreased (Figures 1C,D), and the response rate in the final
RR10 sessions was significantly higher than all other sessions
[Figure 1D; F(6, 24) = 4.726, p = 0.003]. To investigate a
potential relationship between behavioral performance and
action number, we divided the RR10 data into three bins:
actions 1–7 (low), actions 8–14 (medium), and actions 15–21
(high). We analyzed serial actions in trials reinforced with a
probability of 0.1 (RR10 sessions, sessions 5–7), because this
reinforcement schedule produced the greatest average number of
actions performed per trial (Figure 1C). Within a trial, the inter-
action interval significantly increased with increasing action
number bins [Figure 1E; F(2, 44) = 11.020, p < 0.001]. This
indicated that behavior was sensitive to action number. The
latency to retrieve the reward [r(3,468) = −0.017, p = 0.309] or
initiate responding in the next trial, however, was not correlated
with binned action number [r(3,445) = 0.015, p = 0.389].
These data suggest that the number of actions performed
in a trial did not affect behavioral responses to reward or
cues.

Neurophysiological Recordings
A total of 375 units (in 7 sessions and from 10 rats) were recorded
from electrodes histologically localized to VTA (Figure 2). All
neurons were included in these analyses because we were
interested in understanding the full diversity of activity patterns
in the VTA. Neurons were classified (Figure 3) as putative
“dopamine” (n = 155) or “non-dopamine” neurons (n =
220) based on electrophysiological criteria. This classification
approach permits comparison with previous work, despite
potential inaccuracies (Margolis et al., 2006) and with the caveat
that some dopamine neurons co-release other neurotransmitters
(Tritsch et al., 2012). We did not observe strong clustering in
the electrophysiological profiles of these neurons. It is important
to underscore that neurons were collected with no attempt
to select for particular electrophysiological characteristics.
When VTA neurons are recorded in an unbiased manner, as
done here, weak clustering may be expected (Kiyatkin and
Rebec, 1998). In addition to the above classification, analyses
were performed on reward-responsive dopamine neurons,
as this subgroup may be a more conservative estimate of
dopamine neuron identity (Lak et al., 2014; Eshel et al.,
2016).
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FIGURE 1 | Animals learn to perform serial actions. (A) Actions (nose pokes into a lit port) were reinforced probabilistically with sucrose pellets (rewards). In session 1,

each action was reinforced (fixed ratio 1, FR01). In session 2, reinforcement probability decreased to 0.2 in 3 trial blocks (transition, TRANS). In sessions 3–4, the

probability of reinforcement was 0.2 (random ratio 5, RR05). In sessions 5–7, the probability of reinforcement was 0.1 (random ratio 10, RR10). At trial start, a cue light

was illuminated until the outcome was earned (blue arrow). When an action was reinforced, the cue light was extinguished immediately and the outcome was

delivered 0.5 s later. (B) Random reinforcement led to different numbers of serial actions performed per trial. (C) Mean ± SEM number of actions required per trial.

Shaded area depicts RR10 sessions. Serial action data were drawn from these sessions because these sessions required the greatest average number of actions per

trial, and thus, had the greatest statistical power. (D) Mean ± SEM action rate in each session. (E) Mean ± SEM inter-action intervals in low, medium and high bins

(actions 1–7, 8–14, and 15–21) during RR10 sessions.

FIGURE 2 | Locations of recording electrodes within VTA. Each dot represents

the location of a recording array. Insets show midsagittal diagram of rodent

brain with vertical lines representing the approximate location of the most

anterior and posterior coronal sections shown.

VTA Neurons Are Diversely Tuned to Serial
Actions
In order to understand how VTA neurons encode information
during serial actions, we examined how activity was modulated
by actions in RR10 sessions. Action evoked responses initiated

FIGURE 3 | Electrophysiological characterization of recorded VTA neurons.

Each point represents a single neuron; data from all sessions are depicted.

Neurons with wide spike widths (>1.4 ms) and low firing rates (<10 Hz) were

considered putative dopamine neurons. Crosses depict reward-responsive

dopamine neurons. The remaining neurons were considered putative

non-dopamine neurons. The main figure depicts the data with the horizontal

axis limited to 30, for better visualization of the majority of the data. Inset

shows the same data, with the horizontal axis extended to encompass the full

range of baseline firing rates.

−0.173 ± 0.013 s prior to actions and had an average duration
of 0.313 ± 0.012 s (Figure 4A). Thus, the majority of neurons
had response durations several 100 ms faster than the majority of
inter-action intervals, and therefore, action-evoked responding
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FIGURE 4 | RR10 action evoked VTA responses. (A) Scatter plot depicts response start and duration of action evoked responses in RR10 sessions. Each point

represents the data from a single unit. (B) Data from a typical dopaminergic neuron that preferred low action numbers. The raster shows spikes aligned to the time of

action execution (time = 0). Each row of the raster represents one action evoked response and rows are arranged by action number. Each arrow on the right

represents an action number. For each action number, the earlier occurrences of an Nth numbered action are arranged toward the top. Thus, the first row of the raster

represents the first occurrence of an action number 1 (i.e., trial 1), and the second row represents the second occurrence (i.e., trial 2), etc. (C) Depicts the

action-evoked responses of the neuron depicted in (B) conditioned on action numbers 1–20. Note that the neuron most strongly prefers actions 1 and 2. (D–F)

Neuronal responses aligned to actions for 3 simultaneously recorded neurons. (D) A non-dopaminergic neuron that fires preferentially during lower numbered actions

within a trial. Data depicted as the average response evoked by actions 1–20. Data are aligned to the time of action execution (0.025 s bins). Only unrewarded actions

are depicted. (E,F) A pair of dopaminergic neurons that fire preferentially during upper-middle, and higher numbered actions, respectively. Note that both

dopaminergic and non-dopaminergic VTA neurons fire preferentially around distinct subsets of actions. (G) Action number tuning curves during RR10 (0.25 s window,

centered on action). Each dopamine (left) and non-dopamine (right) neuron’s average, action evoked, normalized, firing rate during execution of actions is plotted by

color. Tuning curves are scaled to each curve’s peak (hot colors = tuning curve peak). Neurons are sorted by the location of the peak of the tuning function. Note the

diversity of tuning curves to serial actions (H) Proportion of neurons with 1 or 2 tuning curve maxima. (I) Mean ± SEM tuning curve depth. (J) Mean ± SEM neuronal

responses as a function of action number in RR10 sessions for dopamine and non-dopamine neurons.

was well-separated between successive actions in a trial. When
RR10 actions were examined according to their number within
a trial (e.g., 1st, 2nd, 3rd action in a trial), we observed
that individual neurons fired selectively for subsets of actions
(Figures 4B,C). We observed preferential responding to low,
medium, or high numbered actions within the population of
simultaneously recorded neurons (Figures 4D–F). To determine
how VTA neurons responded to serial actions, we calculated
each neuron’s tuning curve as a function of action number
within a trial (Figure 4G). Action tuning curves mostly had a
single peak [local maxima, χ2

(1)
= 9.921, p = 0.002; neuron

type, χ2
(1)

= 1.267, p = 0.260], and different neurons preferred

different subsets of actions (Figures 4G,H). Tuning curve depth

(maximum–minimum) did not differ significantly between
putative dopamine and non-dopamine neurons [Figure 4I;
t(154) = 3.224, p = 0.084]. Averaging activity across neurons, a
traditional approach to analyzing VTA neuronal data, concealed
this heterogeneity in both groups of neurons (Figure 4J).

The diversity of the tuning curves of VTA neurons

suggested that network properties may be critical to information

processing during serial actions. To gain insight into VTA

network-based information processing, we calculated the trial-

by-trial correlations in spike counts (noise correlations), and

correlations between tuning curves (signal correlations) for all

simultaneously recorded pairs of neurons. Noise correlations

reflect functional connectivity between neurons while signal
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FIGURE 5 | Correlation structure of RR10 action-evoked responses. (A) Mean ± SEM action evoked noise correlations between simultaneously recorded pairs of VTA

neurons in RR10 sessions during actions. Noise correlations measure trial-by-trial fluctuations in pairwise activity. Data depicted as mean ± SEM noise correlation in

each bin of actions. Data are plotted separately for all pairings of VTA neurons. (B) Mean ± SEM signal correlation (correlation between tuning curves) and noise

correlations during RR10 actions. For simplicity, noise correlations are collapsed across action number bin.

correlations reflect similarity in tuning curves (Cohen and Kohn,
2011). Correlations were examined between all possible pairings
of VTA neurons (dopamine–dopamine, non-dopamine–non-
dopamine, and dopamine–non-dopamine).

We found that noise correlations during actions were
significantly lower in pairs of non-dopamine neurons than
pairs containing a dopamine neuron [Figure 5A; F(2, 858) =
4.052, p = 0.018]. The magnitude of these correlations was
decreased during low numbered actions compared to medium
or high numbered actions [F(2, 1,716) = 14.625, p < 0.001].
It is unlikely that these differences were due to differences in
spike count because the pairwise geometric mean spike count
was not associated with noise correlation magnitude in any
bin (low: r = 0.008, p = 0.805; med: r = −0.015, p = 0.650;
high: r = −0.048, p = 0.158). In contrast, signal correlation
strength did not differ between different pairings of VTA neurons
[Figure 5B; F(2, 858) = 0.289, p = 0.749]. There was a strong
association between signal correlations and noise correlations
(Figure 5B, Table 1), suggesting that there is a high degree
of functional connectivity between pools of similarly tuned
neurons. This result raises the possibility that different patterns
of functional connectivity contribute to the diversity of tunings
to actions.

Actions in a Trial Are Accurately
Discriminated from VTA Neuronal
Ensemble Activity
The combination of tuning curve heterogeneity, lack of
population average signal for serial actions, and the association
between action-evoked signal and noise correlations suggested
that information about ongoing sequences of actions may
be encoded by VTA ensembles. To quantify the accuracy
of this encoding mechanism, we differentiated low, medium,
and high action number bins from either population-averaged
activity (Figure 6A) or the collective activity of VTA ensembles
(Figure 6B). The same cross-validated linear discriminant
analysis decoding algorithms were used for both the ensemble
and population-average data (see Methods). Ensemble activity

TABLE 1 | Table depicts the correlation between action number signal

correlations and action evoked noise correlations.

Rho p-value

DA–DA Pair 0.571 <0.001

DA–NDA Pair 0.569 <0.001

NDA–NDA Pair 0.528 <0.001

Data are taken from RR10 sessions. Data depicted separately for each pair type (DA-DA,

dopamine pair; DA-NDA, dopamine and non-dopamine pair; NDA-NDA, non-dopamine

pair).

was discriminated more accurately than shuffled control data
(Figure 6C; 85% accuracy vs. chance levels of correct decoding
[33% accuracy], permutation test, p < 0.001). In contrast,
population averaged activity was decoded at chance levels
(Figure 6C; permutation test, p = 0.240). Binned action
number was discriminated from ensemble activity significantly
more accurately than population-averaged activity [Figure 6C;
χ2
(1)

= 21.435, p < 0.001]. Discrimination was stable across

sessions [χ2
(2)

= 1.097, p = 0.578], and between low, medium,

and high action number bins [χ2
(2)

= 3.614, p= 0.164]. There was

no difference in accuracy between dopamine and non-dopamine
neurons [χ2

(1)
= 1.133, p = 0.287]. When reward responsiveness

was also included in the model, dopamine and non-dopamine
neurons were decoded at similar accuracy [χ2

(1)
= 1.300,

p = 0.254]. These data suggest that real-time information about
ongoing behavior is encoded by the collective activity of VTA
neurons, but not the averaged activity of VTA dopamine or
non-dopamine neurons. Thus, VTA ensemble activity accurately
predicted the current action bin, and could be used to organize,
pace, and sustain effortful behaviors.

To determine if serial actions or the passage of time
preferentially modulated neuronal activity, we examined the
relationship between action evoked spike counts and action
number, or the corresponding time within a trial. Action number
predicted spike counts of a significantly larger proportion of
neurons than time elapsed in a trial [χ2

(1)
= 20.643, p < 0.001;
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FIGURE 6 | Decoding binned action number from VTA neuronal activity. Linear discriminant analysis (LDA) utilized action-evoked activity averaged across (A) all

neurons (population-average), or (B) the collective activity of each neuron (ensemble). (C) The proportion of correctly classified actions for each decoder. Dashed lines

represent decoding of shuffled control data. Inset to the right depicts performance of ensemble and population-average decoders across consecutive sessions in

dopamine and non-dopamine neurons. Note that ensemble activity was decoded significantly more accurately than population averaged activity and shuffled control.

Inset data are collapsed across high, medium, and low action numbers and depicted separately for each session.

29 vs. 7% of neurons, respectively]. Actions did not preferentially
modulate the activity of either dopamine or non-dopamine
neurons [χ2

(1)
= 0.179, p = 0.673]. These data suggest action-

evoked activity reflected ongoing behavior and do not support
a role for encoding the passage of time in this task.

Neuronal responsesmay have represented reward anticipation
(Bromberg-Martin et al., 2010; Totah et al., 2013) in a
manner which changed throughout a series of actions. If this
were the case, the number of actions performed in a trial
would be correlated with neuronal activity in a consistent
direction. Thus, we examined the correlation between neuronal
responses and the number of actions in each trial. Only a
small proportion of dopamine and non-dopamine neurons had
significant correlations between the response evoked by the first
action in a trial and the number of actions in the previous trial
(Table 2). Similar proportions of these neurons were positively
or negatively correlated, indicating that this relationship was
inconsistent between neurons (Table 2). Likewise, very few
neurons had responses to the last action in each trial that
were significantly correlated with the number of actions in that
trial; there was no significant difference in the proportion of
dopamine and non-dopamine neurons with positive or negative
correlations (Table 2).

We further investigated if reward anticipation modulated
neuronal responses by examining the relationship between
responses evoked by the cue light turning off, reward delivery, or
reward retrieval, and the number of actions performed in each
trial. We found no significant differences in the proportion of
dopamine or non-dopamine neurons with positive or negative
correlations between responses evoked by cue onset and the
number of actions in the previous trial or between cue light
offset, reward delivery, or reward retrieval responses and the
number of actions in the current trial (Table 2). Taken together,
these results indicate that performance of serial actions did not
influence encoding of reward anticipation, supporting the notion
that VTA neurons encoded information about ongoing behaviors
as opposed to information about time or reward anticipation in
the current task.

TABLE 2 | Table depicts the percentage of neurons with significantly correlated

responses between task events and the number of actions in each trial.

DA

positive

corr. (%)

DA

negative

corr. (%)

Non-DA

positive

corr. (%)

Non-DA

negative

corr. (%)

Fisher’s

exact

test

Response to first

action and previous

trial’s action number

4 1.33 3.70 1.23 P = 0.71

Response to last

action and current

trial’s action number

2.67 1.33 4.94 4.94 P = 0.77

Response to cue on

and previous trial’s

action number

0.00 2.67 2.47 1.23 P = 0.25

Response to cue off

and current trial’s

action number

6.67 2.67 11.11 4.94 P = 0.81

Response to delivery

and current trial’s

action number

5.33 5.33 3.70 2.47 P = 0.80

Response to retrieval

and current trial’s

action number

1.33 1.33 1.23 1.23 P = 0.67

Data are taken from RR10 sessions. Pearson’s correlations were calculated on spike

counts taken from 0.25 s windows around events. The far right column depicts the p-value

corresponding to a Fisher’s exact test of these proportions

Reward Delivery Evoked Responses
Reward delivery evoked greater activity in dopamine neurons
than in non-dopamine neurons [Figures 7A,B; F(1, 361) = 9.159,
p = 0.003]. This pattern did not change across sessions
[Figure 7C; F(6, 361) = 1.352, p = 0.233]. The proportion
of dopamine neurons responding to reward delivery did
not vary significantly across sessions [Figure 7D; all neurons,
χ2
(6)

= 9.289, p= 0.158; non dopamine, χ2
(6)

= 13.234, p= 0.039].

After the final action in a trial, the cue light was
immediately extinguished and reward was delivered 0.5 s later.
We hypothesized that cue light offset would evoke VTA
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FIGURE 7 | VTA responses to rewards and reward predictive cues. Normalized mean (A) dopamine and (B) non-dopamine responses aligned to outcome delivery

(time = 0). The final action in each trial (left arrow) occurred 0.5 s prior to outcome delivery (right arrow). Cue light offset was simultaneous with execution of the final

action, which signaled trial completion and impending outcome delivery. Data are depicted for FR01, final RR05 session, and the final RR10 session. (C) Mean ± SEM

responses evoked by reward delivery (+0.05 to +0.3 s, relative to reward delivery) in both groups of neurons and all sessions. Dopamine responses were greater than

non-dopamine neuronal responses. Inset depicts data from all VTA neurons plotted without respect to neuronal classification. (D) The proportion of neurons classified

as either significantly activated (solid lines) or suppressed (dashed lines) by outcome delivery. Data are depicted across all sessions for putative dopamine and

non-dopamine neurons. Inset depicts data from all VTA neurons plotted without respect to neuronal classification. (E) Mean ± SEM responses following cue offset,

during the pre-reward delivery period (+0.150 to +0.400 s, relative to cue offset). Data are depicted similarly to (C). In each group, the evoked response increased

across sessions. (F) The proportion of neurons activated (solid lines) or suppressed (dashed lines) by cue offset signaling future reward delivery. Data depicted similarly

to (D).

responses, similar to a reward prediction error, because this event
signaled new information about unpredictable outcome delivery
(Montague et al., 1996; Schultz, 1998). As training progressed,
cue offset evoked great activity levels [Figure 7E; F(6, 361) =
4.776, p < 0.001], and activated a greater proportion of neurons
[Figure 7F; all neurons, χ2

(6)
= 45.949, p < 0.001; dopamine

neurons, χ2
(6)

= 22.093, p = 0.001; non dopamine neurons,

χ2
(6)

= 29.744, p< 0.001]. This finding confirms that we observed

responses to cues and rewards that are commonly attributed to
dopamine neurons (Montague et al., 1996; Schultz, 1998), but

also occur in non-dopaminergic cells in the VTA (Kim et al.,
2010, 2012; Cohen et al., 2012).

Cue Evoked Responses
When animals were required to perform a single action
to earn rewards (FR01), the majority of dopamine neurons
encoded cue onset (Figure 8A), which is consistent with
previous observations (Schultz, 1998; Roesch et al., 2007).
Non-dopamine neurons followed a similar pattern (Figure 8B).
During random ratio sessions, the population response to the
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FIGURE 8 | VTA responses to cue onset. Normalized mean (A) dopamine and (B) non-dopamine responses to cue onset (time = 0). Data are depicted for the FR01

session, the final RR05 session, and the final RR10 session. (C) Mean ± SEM responses evoked by cue onset (+0.05 to +0.3 s) in all groups of neurons and

sessions. Data are depicted separately for all putative dopamine and non-dopamine neurons. Responses were greatest in session 1 and significantly less in

subsequent sessions, with no difference by neuron type. Inset depicts data from all VTA neurons plotted without respect to neuronal classification. (D) Proportion of

neurons activated (solid lines) or suppressed (dashed lines) by cue onset. Data are depicted across all sessions for putative dopamine and non-dopamine neurons.

The proportion of activated dopamine neurons, but not non-dopamine neurons, decreased in later sessions. Inset depicts data from all VTA neurons plotted without

respect to neuronal classification.

cue decreased significantly as response requirement increased
[Figure 8C; session, F(6, 361) = 2.667, p = 0.015]. This pattern
of responding did not differ between dopamine and non-
dopamine neurons [Figure 8C; F(1, 361) = 1.543, p = 0.215]. We
found the same effects when analysis was restricted to neurons
that were significantly activated by reward delivery [session,
F(6, 175) = 4.961, p < 0.001; neuron type, F(1, 175) = 3.912,
p = 0.050]. The data among neurons not responsive to reward
delivery were inconclusive, but followed the same trend [session,
F(6, 172) = 2.096, p = 0.056; neuron type, F(1, 172) = 0.824,
p= 0.365]. Likewise, significantly fewer neurons were modulated
by cue light onset in random ratio sessions [Figure 8D; all VTA,
χ2
(6)

= 23.844, p = 0.001; dopamine, χ2
(6)

= 20.109, p = 0.003;

non-dopamine, χ2
(6)

= 10.636, p= 0.100].

Cue and Reward Evoked Responses Are
Decoupled When Performing Serial Actions
We assessed the correlation between each neuron’s responses
to cue onset and reward delivery in order to understand the
relationship between encoding of these events. During FR01
sessions, responses evoked by these events were significantly
correlated in both dopamine and non-dopamine neurons
(Table 3). This correlation decreased in RR05 sessions (Table 3),
and was no longer significant by RR10 sessions (Table 3).
A similar pattern was observed in dopamine neurons that
were activated by reward delivery (Table 3). This suggests that,

TABLE 3 | Table depicts the correlation between cue onset and reward delivery

evoked responses.

FR01 RR05 RR10

Dopamine r = 0.653 r = 0.321 r = 0.096

p = 0.029 p = 0.023 p = 0.411

Reward responsive dopamine r = 0.496 r = 0.280 r = 0.231

p = 0.014 p = 0.018 p = 0.054

Non-dopamine r = 0.517 r = 0.584 r = 0.002

p = 0.003 p < 0.001 p = 0.981

Data depicted separately for dopamine neurons, reward responsive dopamine neurons,

and non-dopamine neurons, in FR01, RR05, and RR10 sessions. Note that the correlation

between cue and reward delivery evoked response magnitudes decreases from FR01 to

RR10 sessions.

although cue and reward responses are positively correlated in
Pavlovian conditioning tasks (Eshel et al., 2016), cue-evoked
responses become decoupled from reward responses during an
instrumental random reinforcement schedule. Figure 9 depicts
two example neurons in the FR01 session (Figure 9A) and
the final RR10 session (Figure 9B). Note that this example
neuron has similar responses to cue onset and reward delivery
in the FR01 session (Figure 9A), while the example neuron
(same animal) recorded during the RR10 session does not
respond to cue onset, but is activated by reward delivery
(Figure 9B).
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FIGURE 9 | Example VTA responses to cue onset and reward delivery in first session (FR01) and final RR10 session. (A) Top left panel depicts representative example

raster of cue evoked response (cue onset at time = 0; trials arranged in chronological order starting at top). Each dash represents one spike. Smoothed mean

response is depicted below raster. The same neuron’s response to reward delivery is depicted in the upper right panel. Note the phasic response to both cue onset

and reward delivery in the FR01 session (top row). (B) Representative example neuronal responses recorded in final RR10 session [data recorded from same animal in

(A,B)]. Data depicted similarly to (A) with different Y axis on bottom panels. Note that this neuron responds to reward delivery, but not cue onset.

Modulation of Noise Correlations by Cue
Onset and Reward Delivery in Serial Action
Trials
We calculated the signal and noise correlation between pairs
of VTA neurons during cues and reward delivery in RR10
sessions. We found a significant interaction between pair type
(dopamine pairs, non-dopamine pairs, and mixed pairs) and
event [Figure 10; F(4, 2,496) = 9.482, p < 0.001]. There was no
difference in baseline noise correlations between any pairing of
VTA neurons [Figure 10; F(2, 832) = 0.855, p = 0.426]. Noise
correlations evoked by cue onset were significantly greater in
pairs containing a dopamine neuron than pairs of non-dopamine
neurons [Figure 10; F(2, 832) = 5.881, p = 0.003]. There was no
association between cue evoked noise correlations and pairwise
cue evoked geometric mean spike counts (r = 0.008, p = 0.817),
suggesting that mean activity level did not account for this
difference. Noise correlations were strongest during reward

delivery overall. Noise correlations during reward delivery did
not differ significantly between pairings of neurons [Figure 10;
F(2, 832) = 2.794, p= 0.062]. These data confirm previous findings
that correlated activity in VTA circuits emerges when rewarding
outcomes can be earned (Joshua et al., 2009; Kim et al., 2012;
Eshel et al., 2016).

DISCUSSION

We investigated how VTA neurons encode information when

animals execute an uncertain numbers of actions to earn

a reward. Dopamine and non-dopamine VTA neurons were

preferentially tuned to different subsets of binned action number

in a manner that allowed serial actions to be accurately

discriminated from the collective activity of VTA ensembles.
In addition, pairs of neurons with similar action tuning curves

had higher action-evoked noise correlations suggesting that VTA
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FIGURE 10 | Correlation structure of cue and reward evoked responses.

Mean ± SEM noise correlation between simultaneously recorded pairs of VTA

neurons in RR10 sessions, during baseline, cue onset, and reward delivery.

Data depicted separately for all pairings of neurons. Note that reward delivery

evoked the largest magnitude noise correlations in all pairings.

network properties may be critical to information processing
during serial actions. Our analyses further showed that this
pattern of tuning is distinct from reward prediction related
activity or the passage of time. We also demonstrated that cues
preceding a series of actions, unlike a single rewarded action, do
not evoke neuronal responses and are decoupled from reward,
suggesting that cue-related information is utilized differently
when a single vs. an unpredictable series of actions are required
to obtain reward.

Encoding Information during an Action
Series
Previous reports indicate that dopamine neurons encode errors
in the predicted value of rewards as well as action values
(Montague et al., 1996; Schultz, 1998; Morris et al., 2006; Roesch
et al., 2007). Further, dopamine neurons phasically fire during
the first and last action in a sequence, which may be critical
to initiating and terminating behavior (Jin and Costa, 2010).
Our data indicate that the collective activity of ensembles of
VTA neurons also has the capacity to encode information about
ongoing behavior in real-time.

The ensemble code revealed here may be used to organize and
sustain actions, which is a fundamental feature of dopamine’s role
in cognition (Aberman and Salamone, 1999; Ishiwari et al., 2004;
Salamone et al., 2009). In particular, this signal could be critical
for supporting the unique motivational and cognitive demands

when large numbers of actions are required (Goldman-Rakic,
1998; Aberman and Salamone, 1999; Salamone and Correa, 2002;
Seamans and Yang, 2004; Robbins and Roberts, 2007; Salamone
et al., 2007; Robbins and Arnsten, 2009). VTA dopamine neurons

project to several networks that may utilize this signal to organize
behavior. For instance, dopamine innervation of the ventral

striatum is selectively required for completing a lengthy series

of instrumental actions, but not for executing small numbers

of actions for reward (Aberman and Salamone, 1999; Ishiwari
et al., 2004; Mingote et al., 2005). Dopamine projections to

the prefrontal cortex are important for working memory and

related constructs that require real-time information about

ongoing behavior (Goldman-Rakic, 1998; Seamans and Yang,

2004; Robbins and Roberts, 2007; Robbins and Arnsten, 2009).
VTA neurons could contribute to these functions by continually

encoding information throughout execution of a lengthy series
of actions, allowing striatal and prefrontal networks to track
goal-directed effort expenditure and progress.

Our analyses suggest that VTA responses do not represent the
passage of time in the current task. Although dopamine responses
are sensitive to the timing of reward delivery and necessary for
perception of time and interval timing (Lake and Meck, 2013;
Bermudez and Schultz, 2014; Parker et al., 2015; Soares et al.,
2016), neuronal responses were not consistently modulated by
time elapsed in a trial. Instead, activity during a series of actions
was most strongly modulated by action execution. This is likely
because reward delivery was not contingent upon elapsed time,
and VTA neurons are sensitive to the contingency between action
execution and outcome delivery. Experimental designs with an
explicit contingency between elapsed time and reward delivery,
such as a fixed interval reward schedule, may reveal a more
complex relationship between action execution and within trial
timing in the responses of VTA neurons.

We also found that the number of actions required in RR10
trials did not modulate VTA responses to the rewarded action
or the first action in the next trial. This suggests that recent trial
history does not affect action evoked responses at the beginning
or end of a series of actions. Similarly, VTA responses to stimuli
associated with reward were not consistently correlated with
the number of actions that an animal performed, suggesting
that VTA correlates of reward anticipation did not increase or
decrease according to action number. This result was expected,
as each action was reinforced with equal probability.

VTA Ensemble Encoding
Neurons with similar action number tuning curves had higher
action-evoked noise correlations in spike count, which reflect
shared connectivity between neurons (Cohen and Kohn, 2011).
This suggests that different action number tunings may arise
from unique inputs or differing connection strengths between
inputs and VTA neurons with similar tunings may share
connection properties. VTA receives inputs from an expansive
set of afferent structures (Geisler and Zahm, 2005; Geisler et al.,
2007), and the diversity of inputs that converge in VTA may
contribute to preferential firing in different subsets of serial
actions.

The association between noise correlations and action
selectivity indicates that VTA network properties are critical to
understanding how information about serial behavior is encoded.
Networks can encode information redundantly or through
diverse activity patterns and heterogeneous tunings naturally lead
to the capacity to encode information as ensembles. Accordingly,
serial actions were accurately discriminated from ensemble
activity, but not from population-averaged activity. Though
previous studies suggest VTA activity is highly redundant (Joshua
et al., 2009; Schultz, 2010; Glimcher, 2011; Kim et al., 2012;
Eshel et al., 2016), this work was limited to tasks requiring very
few actions. The diversity of VTA tuning curves may increase
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to match the expanded behavioral state space of serial actions
compared with the limited state space of single action trials (Eshel
et al., 2016). Thus, ensemble encoding of information may occur
when the complexity of a task increases, such as during ongoing
serial actions.

Units classified as either putative dopamine or non-
dopamine neurons had comparable mixed tunings to serial
actions, suggesting that dopamine neurons can cooperate with
non-dopamine VTA neurons to encode information about
serial actions. These ensemble signals consisting of multiple
neurotransmitters could allow information to be decoded
through multiple signaling mechanisms, which may diversify the
spatiotemporal properties of this signal (Seamans and Yang, 2004;
Kim et al., 2010; Barker et al., 2016). The activity of different
types of VTAneuronsmust ultimately be coordinated and unified
to represent information, and the present work demonstrates
how different types of VTA neurons could collectively encode
information about an ongoing series of actions.

Cue and Reward Evoked Responses
In the first session, animals executed a single action to earn
rewards (FR01). Similar to previous studies (Ljungberg et al.,
1992; Schultz et al., 1993; Morris et al., 2006; Roesch et al., 2007),
cue light onset at the start of the trial evoked homogenous,
phasic population activation in VTA neurons. There was also a
significant correlation between cue and reward delivery evoked
responses. These observations are consistent with a convincing
body of literature suggesting that dopamine neurons encode
action value predicted by cues in the environment (Montague
et al., 1996; Dayan and Abbott, 2001). On the other hand, when
animals were required to execute multiple and random numbers
of actions (random reinforcement schedules) to earn rewards we
observed weakening of two critical neuronal responses by VTA
neurons: (1)-loss of cue-evoked responses and (2) decorrelation
of cue and reward evoked responses. This suggests that VTA
neuronal responses to reward predictive cues are modulated by
the contingency and/or contiguity between cues, action, and
outcomes. When cues or discriminative stimuli are presented
in FR01 trials, there is often a close temporal association
between cue and reward delivery, as animals tend to execute
actions within several seconds to earn rewards. As only one
action is required in this setting, there may be a more accurate
predictive relationship between cue onset and reward delivery.
Thus, the unpredictable nature of a random reinforcement
schedule may prevent the cue from evoking a reward prediction
error. This finding is important because while previous studies
have suggested that cue-evoke reward prediction errors can be
used to guide action selection in a wide variety of settings,
these data are drawn largely from Pavlovian and FR01-based
tasks.

Cue offset in the current task is similar to a traditional
Pavlovian conditioned stimulus, as offset was completely
predictive of subsequent reward delivery with high temporal
contiguity (0.5 s between offset and delivery). Consistent
with previous studies in which Pavlovian associations evoke
VTA responses after associations are formed (Schultz, 1998),
responses evoked by cue offset grew larger in successive

sessions of the task. Our experiment was not designed to
dissociate the effects of learning from the effects of different
reinforcement schedules on information processing, and future
experiments can directly address this topic. Taken together,
these data suggest VTA neurons encode real-time information
about ongoing actions in conjunction with information about
cues with strong contiguity and contingency with reward
delivery.

CONCLUSION

Our data reveal a novel form of information processing by VTA
neurons. The unique ensemble coding scheme that we observed
allows heterogeneous groups of VTA neurons to provide a real-
time account of ongoing behavior. This coding scheme may
subserve the well-established role of dopamine in goal-directed
actions, decision making, and the behavioral disorganization
and amotivation associated with illnesses such as ADHD and
schizophrenia.
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Figure S1 | Representative examples of neuronal spike sorting, raw data and

neuronal responses. (A) Spikes from unit A, a dopamine neuron, sorted according

to the first 2 principal components of all threshold crossing waveforms (left).

Purple points represent spikes that were assigned to unit A, and gray points

represent noise that was not sorted into single unit spikes. A raw voltage trace

(band pass filtered between 100 Hz and 7 KHz) corresponding to the same unit is

depicted in the middle column. Examples of spikes belonging to unit A are notated

in the trace. Unit A represents a typical cue-responsive unit. Raster plot depicts

the unit’s response aligned to cue onset (right). Each dash represents a single

spike, and each row represents a single trial (first trial in the top row). Note the

increased spike density just after cue onset (time 0) across all trials. (B)

Representative cue-offset responsive non-dopaminergic neuron. Data plotted with

the same conventions as (A). In this example recording, two units were

simultaneously recorded (left). Raster (right) depicts data during the time period

between cue offset and reward delivery (−0.5 to 0 s), with spikes aligned to the

time of reward delivery. Note the consistent increase in spike density after cue

offset and preceding outcome delivery. (C) Data from a representative

non-dopaminergic, outcome delivery responsive neuron is plotted with similar

conventions as (A). Raster (right) depicts neuronal activity aligned to the time of

outcome delivery. Note the consistent delivery evoked response.
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