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Huntington’s disease (HD) is a neurodegenerative disease triggered by expansion of
polyglutamine repeats in the protein huntingtin. Mutant huntingtin (mHtt) aggregates and
elicits toxicity by multiple mechanisms which range from dysregulated transcription to
disturbances in several metabolic pathways in both the brain and peripheral tissues.
Hallmarks of HD include elevated oxidative stress and imbalanced redox signaling.
Disruption of antioxidant defense mechanisms, involving antioxidant molecules and
enzymes involved in scavenging or reversing oxidative damage, have been linked to
the pathophysiology of HD. In addition, mitochondrial function is compromised in HD
leading to impaired bioenergetics and elevated production of free radicals in cells.
However, the exact mechanisms linking redox imbalance to neurodegeneration are
still elusive. This review will focus on the current understanding of aberrant redox
homeostasis in HD and potential therapeutic interventions.
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INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by
expansion of CAG repeats in the gene huntingtin, htt, present on chromosome 4 (MacDonald et al.,
1993). About 1 in 7500 individuals are affected by HD worldwide, and no satisfactory cure exists so
far (Fisher and Hayden, 2014). HD primarily affects the corpus striatum of the brain and manifests
as abnormal involuntary movements, motor and cognitive deficits (Bates et al., 2015; McColgan
and Tabrizi, 2018). Once symptoms appear, median survival is about 18 years (Ross et al., 2014).
The number of CAG repeats in mutant htt (mHtt) inversely correlates with the age of onset of
disease (Illarioshkin et al., 1994; Brandt et al., 1996). Translation of the CAG repeats results in
an abnormally long polyglutamine repeat at the N-terminal end of Htt. mHtt is proteolytically
cleaved and the N-terminal fragments aggregate to form inclusion bodies, a characteristic feature
of the disease, although its role in disease progression is debated (Arrasate and Finkbeiner, 2012).
Immunostaining with antibodies against mHtt led to the discovery of intranuclear inclusions in
mouse models and patient samples, a hallmark of the disease (Davies et al., 1997; DiFiglia et al.,
1997). mHtt impacts multiple cellular processes ranging from transcriptional and translational
regulation, mitochondrial function, DNA replication and repair to nucleocytoplasmic transport
which leads to neurotoxicity (Gu et al., 1996; Luthi-Carter et al., 2002; Lu X.H. et al., 2014;
Banez-Coronel et al., 2015; Grima et al., 2017; Maiuri et al., 2017).
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A prominent feature of HD is elevated oxidative stress.
Oxidative stress is usually defined as a balance of prooxidant-
antioxidant tendencies favoring the former. However, with
advances in the field, oxidative stress is more appropriately
defined as a disruption of redox signaling (Jones, 2006).
Physiological levels of oxidative stress may be important for
cellular processes (eustress) but excess, uncontrolled oxidative
stress may be deleterious (distress) (Sies et al., 2017). The brain
is particularly vulnerable to damage induced by oxidative stress.
The brain is amongst the most metabolically active organ in
the body and accounts for about 20% of the oxygen consumed
(Gadoth and Goebel, 2011). The lipid-rich composition of
the brain with its suboptimal antioxidant defense mechanisms
as compared to peripheral tissues makes it a target for free
radical-induced damage (Floyd and Carney, 1992). Reactive
oxygen, nitrogen and sulfur species (ROS, RNS, and RSS)
can induce protein oxidation, lipid peroxidation and DNA
damage (Sbodio et al., 2018b). As in HD, oxidative stress has
been observed in other neurodegenerative disorders including
Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic
lateral sclerosis (ALS) and Ataxias and is linked to pathogenesis
(Sbodio et al., 2018b).

REDOX IMBALANCE AND HD

Several studies have reported oxidative damage in cells and
tissues from HD models and patient samples. Elevated markers of
damage such as protein oxidation, lipid peroxidation, and DNA
damage have been linked to HD. The damage could stem from a
variety of abnormalities arising due to the toxic effects of mHtt
(summarized in Figure 1).

Deposition of Metal Ions
Metal ions such as iron (Fe), copper (Cu), manganese (Mn),
and Zinc (Zn) serve as cofactors for a variety of enzymes
and participate in processes such as electron transport, redox
regulation, and oxygen transport among others. These metals
are beneficial in trace amounts, but excess accumulation leads
to several pathological conditions. Iron is redox active, existing
in the ferrous (Fe2+) and ferric (Fe3+) states. The Fe2+ form
participates in the Fenton reaction reacting with hydrogen
peroxide (H2O2) to generate the highly reactive hydroxyl radical
(.OH) and HO2, which can cause oxidative damage to cellular
components. Elevated iron content has been observed in the
basal ganglia in symptomatic and late stage HD (Bartzokis
et al., 1999, 2007; Bartzokis and Tishler, 2000). Iron accumulates
in both neurons and glia, and treatment with deferoxamine,
an iron chelator, affords neuroprotection in the R6/2 mouse
model of HD (Simmons et al., 2007; Chen et al., 2013).
Conversely, iron supplementation in the diet of neonatal R6/2
mice promotes neurodegeneration in the R6/2 mice (Berggren
et al., 2015). Neonatal iron supplementation resulted in iron
accumulation in mitochondria due to the increased expression
of the mitochondrial iron transporter mitoferrin 2 (Agrawal
et al., 2018). In addition to iron, excess copper deposition
also mediates neurodegeneration in HD (Dexter et al., 1992;

Fox et al., 2007). Copper binds the N-terminal region of mHtt,
promotes its aggregation and delays its clearance (Fox et al.,
2011). Accordingly, therapies preventing the accumulation of
these redox active metals may prove beneficial.

Altered Levels of Antioxidant Molecules
and Enzymes
Cells harbor an array of metabolites and molecules that
counteract oxidative damage. These may be endogenously
synthesized or obtained from the diet. Diminished levels of the
antioxidants cysteine, glutathione (GSH), coenzyme Q10 (CoQ10)
and ascorbate have been observed in HD and could potentiate
disease progression (Andrich et al., 2004; Paul et al., 2014).

Vitamin C/Ascorbate
Vitamin C/ascorbate is a water soluble molecule and cofactor
for several enzymatic processes, which regulates metabolism and
protects neurons against oxidative stress (Padh, 1990; Castro
et al., 2009). During neuronal activity, glutamate is taken up
and ascorbate released by astrocytes, which is accumulated by
neurons via a specific transporter, SVCT2 (Wilson et al., 2000;
Castro et al., 2001). Neuronal ascorbate promotes utilization of
lactate over glucose during synaptic activity and also modulates
redox balance. The uptake of ascorbate was compromised in
cell culture and R6/2 mouse models of HD due to impaired
translocation of SVCT2 to the plasma membrane and these
changes preceded mitochondrial dysfunction (Acuna et al., 2013).
Supplementation of ascorbate reversed the deficits.

Cysteine
Cysteine is a semi-essential amino acid which is synthesized
endogenously as well as obtained from the diet. The availability of
cysteine is the rate limiting step for glutathione biosynthesis. We
have shown previously that cysteine metabolism is compromised
in HD (Paul et al., 2014, 2018). Expression of the biosynthetic
enzyme for cysteine, cystathionine γ-lyase (CSE) is drastically
decreased in HD due to the sequestration of its transcription
factor, specificity protein1 (SP1) by mHtt. SP1 regulates
transcription of CSE during basal conditions. During stress,
expression of CSE is controlled by the stress-responsive activating
transcription factor 4 (ATF4). In HD cells, induction of ATF4
is also suboptimal leading to decreased CSE expression and
cysteine biosynthesis during stress (Sbodio et al., 2016). Both
the biosynthesis and uptake of cysteine and its oxidized
form are impaired in HD. Activity of the neuronal cysteine
transporter, EAAT3/EAAC1 is decreased in HD due to inhibition
of its trafficking to the plasma membrane (Li et al., 2010).
Cysteine exists as its oxidized form, cystine, in extracellular
fluids and is taken up by the cystine transport system, x−c
system, composed of the light-chain (xCT, encoded by the
SLC7A11 gene and the heavy-chain subunit 4F2hc, encoded by
the SLC3A2 gene) into cells, where the reducing atmosphere
converts it to its monomeric, reduced form, cysteine. The
activity of xCT is decreased in HD leading to suboptimal cystine
metabolism (Frederick et al., 2014). This is not surprising,
considering that ATF4 is one of the transcription factors for the
transporter’s expression. Supplementing cysteine and its stable
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FIGURE 1 | Sources of oxidative stress in HD. Decreased levels of antioxidants, cysteine and ascorbate is observed in HD. The cysteine transporter, excitatory
amino acid transporter 3 (EAAT3/EAAC1) is dysregulated in HD leading to decreased intake of cysteine. The uptake of the oxidized form of cysteine, cystine,
mediated by the x−c system, composed of the light chain xCT, and the heavy chain 4F2hc, is also reduced, contributing to low cysteine levels. Ascorbate influx via
the SVCT2 transporter is also limited in HD, which leads to reduced antioxidant defense in neurons. Deposition of transition metals such as iron (Fe) has been
observed both in the cytoplasm and mitochondria, leading to elevated levels of free radicals which can damage cellular components. Mutant huntingtin (mHtt)
aggregates both in the nucleus and cytoplasm affecting multiple cellular processes, which include mitochondrial function, autophagy and proteostasis, which leads
to elevated oxidative stress. In the nucleus, mHtt sequesters or affects transcription factors, several of which are involved in regulation of antioxidant defense
mechanisms, further contributing to redox imbalance in cells. mHtt also affects DNA repair processes, which results in error prone repair and damage.

precursor, N-acetyl cysteine (NAC) in the diet of R6/2 mice
alleviated some of the symptoms and delayed disease progression.
Cysteine is also the substrate for the generation of hydrogen
sulfide (H2S), a gaseous signaling molecule that participates
in a myriad of physiological processes. Three enzymes, CSE,
cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfur
transferase (3-MST), utilize cysteine to generate H2S. H2S
signals by sulfhydration also called persulfidation, wherein the
reactive –SH group of a cysteine residue is converted to a
persulfide or –SSH group (Mustafa et al., 2009). Sulfhydration
regulates the activity of several proteins and thus modulates
several signal transduction cascades (Paul and Snyder, 2012,
2015a,b, 2018). As cysteine metabolism and CSE expression
are altered in HD, levels of H2S are diminished in HD. We
demonstrated that upregulating the transsulfuration pathway
to induce CSE expression and H2S production has therapeutic
benefits (Sbodio et al., 2018a,c). Cysteine is utilized by cells to
generate several sulfur containing molecules such as cystamine,
taurine, lanthionine, homolanthionine, and coenzyme A. The
metabolism of these molecules in HD remain to be investigated.

Glutathione
Glutathione, a tripeptide composed of glutamate, cysteine and
glycine, is a major antioxidant involved in maintenance of
redox homeostasis in cells (Meister and Anderson, 1983). GSH
metabolism is dysregulated in HD, which could contribute to
the redox imbalance observed in HD. Plasma GSH levels are
inversely correlated to caudate atrophy in HD patients (Pena-
Sanchez et al., 2015). Decrease in GSH in the postmortem
cortex of HD patients has also been observed (Beal et al., 1992).
However, other studies have detected increased intracellular
glutathione levels in cell culture HD models and increased GSH
in cortical and striatal mitochondria of the R6/2 mouse model
of HD, although this increase was not sufficient to alleviate the
oxidative stress associated with the disease (Choo et al., 2005;
Ribeiro et al., 2012), which could reflect differences in the systems
utilized or compensatory mechanisms.

Antioxidant Proteins and Pathways
In addition to small molecule antioxidants, cells are equipped
with an array of proteins and enzymes which scavenge or
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neutralize reactive oxygen and nitrogen species. These include
superoxide dismutases (SOD1), glutathione peroxidases (GPx),
peroxiredoxins (PRDXs), and catalase (Sbodio et al., 2018b). The
activities of GPx and SOD1, which act on lipid hydroperoxides
and superoxide, were decreased in erythtocytes of HD patients
(Chen et al., 2007). Cytosolic SOD1 activity was also decreased
in the HD parietal cortex and putamen (Browne et al.,
1997). Increasing the activity of GPx1, either by genetic or
pharmacologic means in cell culture, yeast and Drosophila
models of HD mitigated toxicity (Mason et al., 2013). In addition
to effects on antioxidant enzymes, mHtt affects the activity of
several transcription factors which regulate antioxidant defense
and redox signaling pathways. For instance, as explained earlier,
mHtt alters SP1 and ATF4 function, thereby affecting expression
of CSE and cysteine metabolism (Paul and Snyder, 2014; Paul
et al., 2014; Sbodio et al., 2016). Elevated oxidative stress
perturbs the compensatory cytoprotective responses in HD. Our
studies using a cell culture model of HD revealed that excessive
oxidative stress perturbs signaling mediated by ATF4, a master
regulator of amino acid homeostasis. Reduction of oxidative
stress improves the response of ATF4 to stress stimuli (Sbodio
et al., 2016). Nuclear factor erythroid 2-related factor (Nrf2),
which orchestrates gene expression pathways which involved in
redox balance and proteostasis (Kensler et al., 2007; Tsvetkov
et al., 2013; Dinkova-Kostova et al., 2018) is another transcription
factor influenced in HD. Blunted Nrf2 signaling was observed in
cell culture models of HD (Jin et al., 2013; Rotblat et al., 2014).
Thus, stimulation of Nrf2 signaling pathway may be beneficial in
HD (Bresciani et al., 2017).

Mitochondrial Dysfunction
In addition to compromised antioxidant defense as described in
the previous section, mitochondrial dysfunction plays a central
role in redox imbalance. Mitochondria are the predominant
source of ROS and free radicals. Mitochondria are also sites
of oxidative phosphorylation (OXPHOS) which is carried out
by five multisubunit electron transport complexes (ETCs),
designated complexes I–V. Electrons are transported from
NADH to NADH coenzyme Q reductase (complex I) to
coenzyme Q, which also receives electrons from succinate
dehydrogenase (SDH/complex II). Coenzyme Q then relays the
electrons to cytochrome C oxidase (complex IV) via complex
III (cytochrome bc1). Complex IV reduces molecular oxygen to
water using these electrons. Mitochondrial malfunction can lead
to oxidative and nitrosative stress through several pathways.

Suboptimal Functioning of the Electron Transport
Chain (ETC)
Mitochondrial malfunction in HD was first implied by nuclear
magnetic resonance spectroscopy, which revealed increased
lactate levels in the striatum and cortex of HD patients (Jenkins
et al., 1993). Activities of complex II, III and IV are decreased
in HD brains (Gu et al., 1996; Browne et al., 1997). During
the process of respiration, the highly reactive O•−2 is generated,
especially by complexes I and III (Raha and Robinson, 2000;
Murphy, 2009). Electron transport through the complexes is
coupled to proton translocation via the mitochondrial inter

membrane space, forming an electrochemical proton gradient
(electromotive force) and a mitochondrial transmembrane
potential (1ψm), necessary for generation of ATP. In HD, the
transmembrane potential is perturbed, impacting mitochondrial
bioenergetics (Carmo et al., 2018). The close proximity of the
ETC to the mitochondrial genome makes it highly susceptible
to oxidative and nitrosative damage. Oxidative DNA damage, as
measured by levels of 8-hydroxy-2-deoxyguanosine (OH8dG),
to mitochondrial DNA (mtDNA) occurs predominantly in the
parietal region of the human HD brain, as opposed to the
cerebellum or the frontal cortex with the medium spiny neurons
(MSNs) accumulating the greatest damage (Polidori et al., 1999).
Consistent with these findings, inhibition of complex II by 3-NPA
induced HD-like symptoms and neurotoxicity (Beal et al., 1993).
mHtt can affect multiple aspects of mitochondrial function which
contribute to elevated oxidative stress (Figure 2).

Abnormal Ca2+ Homeostasis
Mitochondrial Ca2+ is perturbed in HD, which impacts
diverse mitochondrial dynamics (Kolobkova et al., 2017). mHtt
interacts with the outer mitochondrial membrane and affects the
mitochondrial permeability transition pore (mPTP), decreasing
the Ca2+ threshold to trigger mPTP opening, and lowering
ATP levels within the organelle (Choo et al., 2004). mHtt has
also been shown to interact with Ca2+-binding proteins such as
calmodulin; disruption of this interaction has proved beneficial
(Bao et al., 1996; Dudek et al., 2010). Interaction of mHtt
with type 1 inositol (1,4,5)-triphosphate receptor (InsP3R1), an
intracellular Ca2+ release channel, has also been reported (Tang
et al., 2003). Although Ca2+ has no direct effect on redox
reactions, mitochondrial Ca2+ overload induces elevations in
ROS levels which in turn cause mtDNA damage (Peng and Jou,
2010; Wang et al., 2013).

Impaired Function of Transcription Factors and
Proteins Involved in Mitochondrial Function
Mutant huntingtin interacts with and affects the function of
a number of transcription factors involved in maintenance of
mitochondrial function. For instance, mHtt binds to PPARγ

coactivator 1α (PGC-1α), a regulator of several metabolic
processes including mitochondrial respiration and biogenesis
(Cui et al., 2006). PGC-1α also regulates a battery of proteins
involved in antioxidant defense and suppresses the formation of
ROS in cells (St-Pierre et al., 2006). In addition, mHtt associates
with the PGC-1α promoter and interferes with the transcriptional
activation functions of promoter-bound transcription factors,
CREB and TAF4 leading to diminished PGC-1α expression,
mitochondrial abnormalities, and elevated oxidative stress.
Besides these processes, mHtt affects mitochondrial trafficking,
fission and fusion, resulting in low ATP levels and impaired
bioenergetics (Reddy and Shirendeb, 2012; Carmo et al., 2018).
The mitochondrial network in cells is dynamic, undergoing
fission and fusion to maintain morphology and function. mHtt
interferes with the balance of fission and fusion. mHtt binds
to dynamin-related protein 1 (Drp1), whose expression is
increased in HD, and enhances its GTPase activity to increase
mitochondrial fragmentation and distribution (Costa et al., 2010;
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FIGURE 2 | Mitochondrial dysfunction in HD. Mutant huntingtin (mHtt) elicits mitochondrial dysfunction through several mechanisms. mHtt interacts with the outer
mitochondrial membrane and could be responsible for several of the observed deficits. mHtt impacts the electron transport chain (ETC), leading to decreased
generation of ATP and increased production of ROS such as superoxide (O−•2 ). Increased levels of oxidants damage mitochondrial DNA and nuclear DNA which
further compromise mitochondrial function to generate more ROS in a vicious cycle. mHtt also induces defects in Ca2+ homeostasis, increasing Ca2+ influx via the
N-methyl-D-aspartate (NMDA) receptors and excitotoxicity. Increased Fe deposition is observed in HD, which can participate in the Fenton reaction to produce the
highly reactive OH•, which causes DNA damage. OH• react with nitric oxide (NO) to generate peroxynitrite (ONOO−), which causes nitrosative damage to cellular
components. mHtt impairs the transcriptional activity of several transcription factors involved in mitochondrial maintenance and function. The expression of the
peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1-α) transcriptional coactivator, a regulator of mitochondrial biogenesis is diminished in HD
by mHtt. mHtt affects the activity of the transcription factor cAMP response element binding protein (CREB) and other proteins such as TATA-box binding protein
(TBP) and TBP-associated factor 4 (TAF4), comprising the transcription initiation complex to decrease PGC1-α expression. As PGC1-α has roles in redox
homeostasis, its depletion results in oxidative distress. In addition to these effects, mHtt causes mitochondrial fragmentation, binding to the GTPase dynamin related
protein 1 (Drp1, whose expression, along with Fis1 is increased in HD) and stimulating its activity to increase fission. Mitochondrial fusion is also impaired in HD due
to decreased levels of the proteins involved in fusion, optic atrophy 1 (Opa1) and Mitofusins (Mfn1 and 2).

Song et al., 2011). Furthermore, nitrosylation of Drp1, which
increases its activity, has been reported in HD (Nakamura
et al., 2010). In addition, expression of the adaptor protein
mitochondrial fission 1 (Fis1) is elevated in HD. Mitochondrial
fusion mediated by the proteins mitofusin 1 and 2 (Mfn 1 and
2) and the optic atrophy 1 (OPA1) is also affected, as revealed
by decreased levels of these proteins in the striatum and cortex
of HD patients (Shirendeb et al., 2011). Accordingly, specifically
targeting mitochondrial fission and fusion processes may be
beneficial (Yin et al., 2016).

Autophagy
As discussed above, damaged mitochondria can further
exacerbate oxidative stress hence their removal by autophagy
can prevent further damage (Murphy, 2009). Autophagy
is a conserved lysosomal degradation pathway which acts
by clearance of damaged molecules and organelles and
mobilizes cellular nutrients in response to several forms of
stress (Klionsky and Emr, 2000; Kroemer et al., 2010; Bento
et al., 2016; Leidal et al., 2018). Autophagy and oxidative

stress have been linked in several studies. There are numerous
reports on dysregulated autophagy in HD (Harding and Tong,
2018). Autophagy plays a vital role in maintaining healthy
mitochondria in cells by mitochondrial-specific recycling
termed mitophagy. Mitochondrial quality control in neurons
is highly dependent on autophagy and plays a central role in
neuronal bioenergetics (Batlevi and La Spada, 2011; Redmann
et al., 2017). As mitochondrial metabolism generates free
radicals, autophagic clearance of damaged mitochondria
would limit the levels of oxidative and nitrosative damage
(Giordano et al., 2014).

Endoplasmic Reticulum Stress (ER
Stress)
Another pathway whose dysregulation leads to elevated oxidative
stress is the ER stress signaling cascade. The ER is essential
for several cellular functions including but not limited to
protein synthesis, folding, maturation, quality control, calcium
homeostasis, and glucose metabolism (Almanza et al., 2019).
Accumulation of misfolded proteins in the ER triggers a stress
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response termed the ER stress response, which is a characteristic
feature of several neurodegenerative diseases involving protein
misfolding and aggregation, such as HD (Hetz and Saxena,
2017). The ER also generates ROS during its normal functions.
Expression of N-terminal huntingtin proteins with expanded
polyglutamine repeats has been reported to induce cell death in
neuronal PC6.3 cell lines that involves endoplasmic reticulum
(ER) stress and inhibition of ER stress improved viability
and decreased protein aggregation caused by mHtt (Reijonen
et al., 2008). One of the proteins involved in the ER stress
response is the transcription factor, nuclear factor-κB (NF-
κB), which mediates anti-oxidant and anti-apoptotic signaling
(Pahl and Baeuerle, 1995; Deng et al., 2004; Sen et al., 2012;
Han and Kaufman, 2017). Overexpression of mutant huntingtin
proteins in the PC6.3 cell lines results in diminished NF-κB
expression and concomitant increase in oxidative stress, decrease
in antioxidant levels and enhanced cell death (Reijonen et al.,
2010). Accordingly drugs that target the NF-κB pathway may
be beneficial in HD. For instance, PRE084, an agonist of the
Sigma-1 receptor, Sig-1R, an ER resident chaperone protein,
increases NF-κB expression and improves cell viability and
mitigates the toxicity mediated by mutant huntingtin proteins
in neuronal PC6.3 cells (Hyrskyluoto et al., 2013). Dysregulated
NF-κB has also been reported in other studies using RNA-
seq and network analysis, where activation has been reported
(Miller et al., 2016; Al-Ramahi et al., 2018). Thus, it appears
that stage-specific analysis with additional cell types would be
necessary to obtain a comprehensive picture of the immune
signaling axis in HD.

Defective DNA Repair
Besides, the processes outlined above, defective DNA repair is
linked to elevated oxidative stress and contributes to disease
progression. Oxidative DNA damage as assessed by formation of
8-OHdG has been observed in both nuclear and mtDNA (Browne
et al., 1997). The expanded CAG repeats in mHtt display both
germline and somatic instability; the extent of oxidative damage
positively correlates with the degree of expansion (Mangiarini
et al., 1997; Kovtun et al., 2007). Expansion of the triplet repeats
occurs during repair of DNA damage, especially the oxidized
guanosine bases, a process relying on the DNA glycosylase OGG1.
This base excision repair, BER, is error prone and leads to
expansion of the polyglutamine repeats in a process involving
single strand breaks and strand slippage. Expansion of the
polyglutamine tract further induces oxidative damage and error-
prone repair of the lesions, forming a vicious oxidative cycle
(Kovtun et al., 2007). Another DNA repair pathway affected in
HD involves the ataxia-telangectasia mutated (ATM) protein (Lu
X.H. et al., 2014). ATM initiates repair and is activated during
oxidative stress and upon DNA damage (Shiloh and Ziv, 2013).
Excessive activation of ATM has been reported in HD; inhibiting
its activity delays disease progression in mouse models of HD
(Lu X.H. et al., 2014). The N terminal end of normal Htt acts
as a sensor of ROS and has been shown to detach from the
ER, get phosphorylated and translocate to the nucleus when a
methionine residue (M8) is oxidized (DiGiovanni et al., 2016).
Htt acts as a scaffolding protein for ATM at sites of DNA

damage; the CAG repeats may affect the DNA repair process
(Maiuri et al., 2017).

EXPLORING THERAPEUTIC OPTIONS
IN HD

A central feature of complex neurodegenerative diseases such
as HD is elevated redox stress, which is intimately linked
to disease progression. The current understanding of redox
signaling and the intricate interplay between the various
pathways involved in protection against oxidative and nitrosative
stress is not complete. Whether elevated levels of ROS/RNS
are the cause or consequence of disease is still not clear,
however increased redox stress exacerbates neurodegeneration
and blunts cytoprotective responses. Aberrant redox signaling
has been observed in other complex disease states such as
cancer. While cancer is associated with uncontrolled cell
proliferation, neurodegeneration is characterized by premature
cell death. Tumorigenesis and neurodegeneration appear to be
at two ends of a homeostatic regulatory breakdown. Antioxidant
defense mechanisms such as cysteine and glutathione synthesis
are bolstered in cancers leading to reduced sensitivity to
radio and chemotherapy, whereas the converse appears to
operate in most neurodegenerative diseases (Benfeitas et al.,
2017; Vucetic et al., 2017; Sbodio et al., 2018b). Thus,
targeting cancer cells by increasing ROS levels have proved
beneficial in several cancers (Trachootham et al., 2009;
Wondrak, 2009; Ishimoto et al., 2011). In neurodegeneration
associated with compromised redox homeostasis, diminishing
ROS levels may afford therapeutic benefit. Although antioxidant
supplementation has been beneficial in mouse models of
HD (Table 1), human clinical trials using antioxidants have
been largely unsuccessful in HD and other neurodegenerative
diseases (Kim et al., 2015). Several factors may underlie the
inefficacy of these antioxidants. Most antioxidants used cannot
completely intercept or neutralize oxidant species, leading to
a slow buildup of oxidative damage. The antioxidants used
target only certain species of free radicals and oxidants; a
single antioxidant cannot target all oxidant species. Antioxidant
therapy can damage normal cellular processes such as autophagy
(Underwood et al., 2010). Accordingly, antioxidants that do not
negatively interact with normal cellular processes or have off-
target effects may be desirable. Reversing or preventing oxidative
damage as well as targeting cytoprotective pathways as a whole,
as opposed to simple scavenging of oxidants, may afford greater
protection against neurodegeneration. Development of non-
cytotoxic drugs that possess multitarget, combinatorial selectivity
may be more effective (Varshavsky, 1998). Another aspect which
has been largely unexplored in HD is the complex interaction
between soluble and cellular immune system components in
neurodegeneration. In HD, analysis of redox signaling pathways
as a function of disease progression is crucial, as end-stage
analysis of tissues likely lack the cells of interest which may
have already died. Moreover, population studies by themselves
may not be sufficient, as individual variations and heterogeneity
in redox pathways and genes that control them may affect the
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TABLE 1 | Molecules with antioxidant and neuroprotective effects in HD.

Antioxidant Systems tested Effects Reference

α-Lipoic acid R6/2 and N171-82Q mice
3-NP model (rat)

Improved survival.
Normalized mitochondrial lipid composition, improved mitochondrial structure
and mitigated cognitive impairment in 3-NP-treated animals.

Andreassen et al., 2001
Mehrotra et al., 2015

α-Tocopherol
(vitamin E)

HD patients
3-Nitropropropionic acid
(3-NP) model of HD (rat)

Therapeutic effect on neurologic symptoms for early stage patients.
Elevation of creatine kinase (CK) elicited by 3-NP in cytosol was prevented by a
combination therapy of vitamin E and Coenzyme Q10 (CoQ10).

Peyser et al., 1995
Kasparova et al., 2006

L-Ascorbic acid
(vitamin C)

STHdhQ111 cells, R6/2
mice
R6/2 mice
STHdhQ111 cells

Modulates glucose uptake via GLUT3, which is compromised in HD.

Attenuated the neurological motor signs and behavioral aspects of HD.
Improves behavior related ascorbate release.
Restored dysregulated amino acid homeostasis modulated by ATF4.

Acuna et al., 2013
Covarrubias-Pinto et al., 2015
Rebec et al., 2003
Rebec et al., 2006
Sbodio et al., 2016

N-Acetyl
cysteine (NAC)

3-NP model (rat)

R6/2 mice

R6/1 mice
R6/1 mice

Prevented mitochondrial dysfunction, neurobehavioral deficits, decreased
oxidative stress.
In combination with cysteine supplemented diet, NAC improved motor function,
prevented striatal atrophy, and increased survival.
Improves mitochondrial function and ameliorates behavioral deficits.
Mediated an antidepressant effect. Restored glutamate homeostasis through
system x−c

Sandhir et al., 2012

Paul et al., 2014

Wright et al., 2015
Wright et al., 2016

Anthocyanin R6/1 mice Modest effects on CAG repeat instability in the ears and cortex. Mollersen et al., 2016

Coenzyme Q10
(CoQ10)

R6/2 mice

R6/2 mice, N171-82Q mice

R6/2 mice

3-Nitropropropionic acid
(3-NP) model of HD (rat),
R6/2 mice
HD patients

Increased survival, delayed motor deficits, weight loss, cerebral atrophy, and
neuronal intranuclear inclusions.
Combination therapy with the NMDA antagonist, remacemide decreased
ventricular enlargement, and increased survival.
Improved motor performance and grip strength, decreased weight loss, brain
atrophy, huntingtin inclusions, and oxidative DNA damage in treated R6/2 mice.
Combination therapy with creatine inhibited 3-NP-induced impairment of
glutathione homeostasis, decreased lipid peroxidation and oxidative DNA
damage. Improved motor function and survival in R6/2 mice.
CoQ10 alone is not effective in human trials.
Idebenone, an analog, did not significantly alter outcome.

Ferrante et al., 2002

Ferrante et al., 2002

Smith et al., 2006

Yang et al., 2009
McGarry et al., 2017

Brandt et al., 1996

Creatine Neural progenitor cells
HD patients

Increases neural progenitor cell survival in HD.
Slows down brain atrophy in premanifest HD.
However, was not effective in a randomized controlled trial (CREST-E).

Andres et al., 2016
Bender and Klopstock, 2016
Hersch et al., 2017

Curcumin 3-NP model

CAG140 KI

Drosophila model of HD

Prevented 3-NP-induced motor and cognitive impairment. Reduced oxidative
stress and prevented decrease in succinate dehydrogenase activity.
Decreases mutant Htt aggregates in the brain. Partial improvement of
transcriptional deficits and behavioral improvement.
Decreased photoreceptor neuron degeneration, reduced cell death, and
ameliorated motor dysfunction.

Kumar et al., 2007

Hickey et al., 2012

Chongtham and Agrawal, 2016

Cystamine R6/2 mice

R6/2 mice, 3-NP model
(mice)
YAC128 mice

3-NP model (mice,
astrocyte, and mixed
astrocyte-neuronal cell
culture
Drosophila model of HD
STHdhQ111 cells

Improved survival, reduced tremor, and abnormal movements and ameliorated
weight loss.
Increased forebrain cysteine and glutathione levels in R6/2 mice. Protected
against 3-NP-induced striatal injury in mice.
Prevented striatal neuronal loss, striatal volume loss and striatal neuronal
atrophy.
Induced Nrf2 and glutathione production.
Improved longevity when fed both during larval and adult stages but did not
prevent photoreceptor degeneration. When fed to adult flies expressing anti-htt
intracellular antibody (intrabody), photoreceptor degeneration was suppressed
but longevity effects were absent.
Increased mutant cells viability when stressed and prevented ROS formation
and increased antioxidant defense.

Karpuj et al., 2002

Fox et al., 2004

Van Raamsdonk et al., 2005

Calkins et al., 2010
Bortvedt et al., 2010

Ribeiro et al., 2013

Deferoxamine R6/2 mice Improved motor phenotype. Chen et al., 2013

Dimethylfumarate R6/2 mice
YAC128 mice

Preserved neuronal morphology. Decreases weight loss and clasping
phenotype. Induces the Nrf2 pathway, which maintains redox balance.

Ellrichmann et al., 2011

Isoquercetin Neurons from C. elegans
model (128Q) of HD
Mutant Htt mouse striatal
(109Q) cells

Suppressed the loss of touch response in 128Q worms.

Prevented cell death caused by serum deprivation in the 109Q striatal neurons.

Farina et al., 2017

Lycopene 3-NP model (rat) Improved mitochondrial function and decreased oxidative stress in 3-NP treated
animals.

Sandhir et al., 2010

(Continued)
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TABLE 1 | Continued

Antioxidant Systems tested Effects Reference

Melatonin 3-NP model (rat)

Htt ST14A cells

R6/2 mice

Prevents toxicity induced by 3-NP. Decreases lipid peroxidation levels and
protein carbonylation.
Preserved mitochondrial membrane potential and inhibited cell death pathways
in cells.
Delays disease onset and mortality in R6/2 mice. Decreased activated
caspase-9 and caspase-3 levels.

Tunez et al., 2004

Wang et al., 2011

Monensin STHdhQ111 cells Increased survival in response to cysteine deprivation and decreased oxidative
stress. Increased the production of the neuroprotective gasotransmitter,
hydrogen sulfide.

Sbodio et al., 2018a

Nicotinamide 3-NP model (rat) Improved motor function and decreased oxidative stress markers
(malondialdehyde, nitrites) and increased antioxidant enzyme (glutathione)
levels. Decreased lactate dehydrogenase and prevented striatal neuronal death.

Sidhu et al., 2018

Pridopidine YAC128 mice

HD patients

Reversed aberrant gene expression, behavioral deficits, and activated
cytoprotective pathways.
Activated sigma 1 receptor to reduce oxidative stress and increased BDNF
levels. Possible slowing of clinical progression.

Garcia-Miralles et al., 2017;
Kusko et al., 2018
Reilmann et al., 2019

Quercetin 3-NP model (rat) Ameliorated mitochondrial dysfunction, oxidative stress, and neurobehavioral
deficits in rats.

Sandhir and Mehrotra, 2013;
Amanzadeh et al., 2019

Resveratrol Human HD lymphoblasts

YAC 128 mice

Increased mtDNA copies and mitochondrial-related transcription factors (TFAM
and nuclear PGC1α).
Increased expression of mitochondrial electron transport chain proteins.
Improved motor function.

Naia et al., 2017

Rutin 3-NP model (rat) Prevented motor and cognitive deficits induced by 3-NP. Prevented striatal
degeneration. Decreased oxidative stress.

Suganya and Sumathi, 2017

Selenium 3-NP model (rat)

N171-82Q mice

Bis selenide prevented weight loss and motor dysfunction. Decreased oxidative
stress.
Improved motor function, decreased loss of brain weight, decreased mutant
huntingtin aggregation and oxidized glutathione levels.

Bortolatto et al., 2013

Lu Z. et al., 2014

Sulforaphane Neuroprogenitor cell line,
HC2S2 harboring EGFP
tagged htt exon 1 (28Q,
74Q)
3-NP model (mice)

Quinolinic acid (QA) model
(rat)

Enhanced mHtt degradation and reduced mHtt cytotoxicity.

Stimulated the Keap1-Nrf2-ARE Pathway and Inhibited the MAPKs and NF-κB
Pathways to mitigate neurotoxicity.
Prevented mitochondrial dysfunction elicited by QA.

Liu et al., 2014

Jang and Cho, 2016

Luis-Garcia et al., 2017

Trehalose N2A cells harboring
tNhtt-60Q–EGFP,
tNhtt-150Q–EGFP; R6/2
mice
COS-7 and SK-N-SH cells
expressing (EGFP-HDQ74);
R6/2 mice
Human HD fibroblasts

Decreased polyglutamine aggregates in cerebrum and liver, improved motor
dysfunction and extended lifespan.

Induced autophagy and cleared aggregates.

Prevented increase in oxidative stress, ubiquitinated proteins, huntingtin and
activated caspase-3 induced by inhibition of proteasome.

Tanaka et al., 2004

Sarkar et al., 2007

Fernandez-Estevez et al., 2014

XJB-5-1-131 HdhQ (150/150) mice

R6/2 mice

Diminished oxidative damage to mitochondrial DNA, preserved mitochondrial
DNA copy number and function, suppressed motor decline and weight loss,
improved neuronal survival.
Also effective in animals with well-developed pathology. Promoted weight gain,
inhibited neuronal death, decreased neuronal oxidative damage, prevented
motor dysfunction or improved it, and reduced a graying phenotype in treated
HdhQ (150/150) animals.
Reduced weight loss, and improved the motor and temperature regulation
deficits, especially in male mice male R6/2 mice. No effect on the lifespan.
Slowed somatic expansion at 90 days, and reduced inclusion density.

Xun et al., 2012

Polyzos et al., 2016

Polyzos et al., 2018

The therapeutic outcome of antioxidant molecules or those mitigating oxidative stress, in cell culture, animal models, and human patients are listed.

treatment outcome. Comprehensive analyses coupling genomics,
transcriptomics, proteomics, metabolomics, and clinical data
may reveal central hubs for therapeutic intervention. Such
approaches are being pursued for cancer therapy and may

have applications in HD (Bidkhori et al., 2018). The timing
of intervention, the site of delivery and recycling of the
antioxidant should also be considered to arrive at effective
redox-active molecules. Development of therapies specific for the
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various reactive oxygen, nitrogen species and other free radicals,
would facilitate a greater understanding of disease progression.
Combination therapy involving antioxidant supplementation in
conjunction with strategies that strengthen cellular antioxidant
capacity may also be considered.

CONCLUDING REMARKS

It is becoming increasingly evident that our knowledge of redox
signaling and its bearing on the origin of these complex diseases
is not complete. Repurposing/repositioning/recycling/reprofiling
drugs, which have cytoprotective effects in the brain, may
offer viable options to arrive at safe and effective drugs
for these complex diseases. Such strategies are currently
actively investigated for cancers and neurodegeneration

(Duraes et al., 2018; Turanli et al., 2018). Studies
encompassing diverse genetic, epigenetic and environmental
factors may facilitate development of specific therapies
targeting redox diseases.
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