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1 | INTRODUCTION

| Rein Drenkhan? | Sten Anslan! | Carmen Morales-Rodriguez® |

Abstract

High-throughput identification technologies provide efficient tools for understanding
the ecology and functioning of microorganisms. Yet, these methods have been only
rarely used for monitoring and testing ecological hypotheses in plant pathogens and
pests in spite of their immense importance in agriculture, forestry and plant commu-
nity dynamics. The main objectives of this manuscript are the following: (a) to pro-
vide a comprehensive overview about the state-of-the-art high-throughput
quantification and molecular identification methods used to address population
dynamics, community ecology and host associations of microorganisms, with a
specific focus on antagonists such as pathogens, viruses and pests; (b) to compile
available information and provide recommendations about specific protocols and
workable primers for bacteria, fungi, oomycetes and insect pests; and (c) to provide
examples of novel methods used in other microbiological disciplines that are of
great potential use for testing specific biological hypotheses related to pathology.
Finally, we evaluate the overall perspectives of the state-of-the-art and still evolving
methods for diagnostics and population- and community-level ecological research of
pathogens and pests.
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ancient civilizations (Santini, Liebhold, Migliorini, & Woodward,

2018). In addition, climate change facilitates the probability of estab-

Globalization and international trade of plants have greatly acceler-
ated the frequency and magnitude of pest and pathogen invasions
to agroforestry systems leading to novel encounters with plant hosts
(Lenzen et al., 2012; Liebhold, Brockerhoff, Nuiiez, Wardle, & Wing-
field, 2017). In some rare cases, these invasive antagonists have
caused large-scale transformations of native ecosystems and chan-
ged the ecological dynamics through local and regional extinction of
native host species (Prospero & Cleary, 2017) and collapses of

lishment of introduced pests and pathogens and promotes range
expansion of existing populations (Seidl et al., 2017). Botanical gar-
dens and early warning sentinel systems represent means to identify
new and emerging risks to natural plant communities and to improve
surveillance globally (Barham, 2016; Vettraino et al., 2015).

Besides economic damage and disease in plants and animals
including humans (Seyedmousavi et al., 2018), pathogens and pests

play a key role in maintaining diversity and primary productivity in
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natural ecosystems (Bagchi et al., 2014; Maron, Marler, Klironomos,
& Cleveland, 2011). This Janzen-Connell phenomenon occurs mainly
through herbivory or root decay by hexapods or microbial pathogens
that are specialized on the dominant plant species and selectively
increase their mortality at the seedling stage (Liang et al., 2016).

Traditionally, microbial organisms including pathogens have been
identified based on symptoms of disease or culture morphology,
whereas detection of pests usually relies on morphological charac-
ters of representative individuals. Many obligate intracellular patho-
gens do not grow in pure culture and never form reproductive
structures, which render their detection and identification difficult.
Furthermore, both microbial pathogens and animal pests may exhibit
high intraspecific variability or comprise cryptic species that may
strongly differ in niche and aggressiveness (Ashfaq & Hebert, 2016;
Tuda, Kagoshima, Toquenaga, & Arnqgvist, 2014). Within biological
species, genotypes or races may also differ in their pathogenicity
(Barnes et al., 2016; Brasier & Kirk, 2010), sometimes depending on
the presence of accessory pathogenicity loci and chromosomes (Mél-
ler & Stukenbrock, 2017). These inter- and intraspecific differences
emphasize the importance of precise detection of the organisms at
the level of species and pathotypes or strains therein.

Rapid and accurate identification of pathogenic microorganisms
and pests is essential for detection and employment of appropriate
mitigation measures (Comtet, Sandionigi, Viard, & Casiraghi, 2015).
Since the early 1990s, molecular methods brought a revolution into
our understanding about the identity and autecology of microbial spe-
cies and shed light into the population structure and community com-
position of microbiome, including pathogens (Abdelfattah, Malacrino,
Wisniewski, Cacciola, & Schena, 2018; Griinwald, McDonald, & Mil-
groom, 2016; Hyde et al., 2013; Pace, 1997). Several reviews provide
an overview about use of the early molecular techniques for the iden-
tification of pests, biocontrol agents and microbial pathogens (Gher-
bawy & Voigt, 2010; Kashyap, Rai, Kumar, Chakdar, & Srivastava,
2017b; Levesque, 2001; McCartney, Foster, Fraaije, & Ward, 2003;
Sankaran, Mishra, Ehsani, & Davis, 2010; Schaad, Jones, & Chun,
2001). Information about more recent high-throughput methods and
analysis protocols is highly scattered, with emphasis on the overall
concept (Bik et al., 2012), genetic markers (Mendes, Garbeva, & Raaij-
makers, 2013), specific methods (Oulas et al., 2015) or particular
organism groups such as plants and animals (Deiner et al., 2017,
Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012), insects
(Wachi, Matsubayashi, & Maeto, 2018), fungi (Dickie & St. John, 2016;
Nilsson et al., 2018; Tedersoo & Nilsson, 2016), bacteria (Lagos et al.,
2015; Pollock, Glendinning, Wisedchanwet, & Watson, 2018) and
viruses (Adams & Fox, 2016; Mokili, Rohwer, & Dutilh, 2012). Apart
from viruses, only Mendes et al. (2013), Geisen (2016) and Abdelfattah
et al. (2018) focused on high-throughput identification of prokaryotes,
protists and fungi including examples from pathogens.

This article aims to provide an overview about cutting-edge
molecular methods available for identification of plant pathogens
and pests, focusing on high-throughput identification at the species
level, but also visiting genotype- and population-level methods
whenever appropriate for diagnosis. Based on research pitfalls and

our experience, we offer practical recommendations for the analysis
work flow from sampling design through molecular analysis, bioinfor-
matics analysis, taxonomic and functional assignment and statistics
(Figure 1). We illustrate the analysis steps and major achievements
with examples from pathogens and pests. Finally, we provide a syn-
thesis about the perspectives of population- and species-level analy-

ses for monitoring and efficient diagnostics of pests and pathogens.

2 | THE EMERGING METHODS

In the last 15 years, researchers have taken advantage of the rapid
development of high-throughput molecular identification methods to
characterize the enormous diversity of microbial life aboveground
and belowground. These methods enable identification of thousands
of taxa per sample from hundreds of samples simultaneously and
facilitate concurrent focus on any groups of organisms and viruses
(Bork et al., 2015; Knief, 2014; Mendes et al., 2013; Uroz, Buee,
Deveau, Mieszkin, & Martin, 2016). Based on their technical aspects,
high-throughput identification methods can be divided into PCR-
based quantification methods, hybridization-based methods (e.g.,
microarrays), second-generation fingerprinting methods (e.g., RAD-
seq) and sequence-based methods, for example, metabarcoding,
(meta)genomics and (meta)transcriptomics. The first and most influ-
ential examples of these methods and their applications in pathogens
and pests are concluded in Table 1.

2.1 | Quantification methods

Taxon-specific primers and quantitative PCR (gPCR) methods have
been used for two decades to determine the relative and/or absolute
abundance of pathogenic organisms (Sanzani, Nicosia, & M.G.,
Faedda, R., Cacciola, S.O., & Schena, L., 2014; Schena, Nigro, Ippo-
lito, & Gallitelli, 2004). Recent technical advances enable running
thousands of sample and template combinations in parallel. For
example, Muurinen et al. (2017) performed simultaneous replicated
screening for hundreds of antibiotics resistance genes.

Droplet digital PCR (ddPCR) is based on microfluidics technology,
which separates the amplification reaction into >20,000 individual
droplets and allows absolute quantification of DNA from up to four
target organisms or genes simultaneously, with a detection limit of
10~° relative abundance (Hindson et al., 2011). Dreo et al. (2014)
showed much greater precision of ddPCR for quantification of two
bacterial plant pathogens with optimal and suboptimal primers com-
pared with ordinary gPCR. Currently, ddPCR can be run in 96-well
and 384-well plates, but it is technically possible to increase the
throughput of samples. It may be also possible to increase the num-
ber of fluorescent dyes to be able to multiplex >4 reactions. Over-
view of the methodology and use in pathology is reviewed in
Gutierrez-Aguirre, Racki, Dreo, and Ravnikar (2015).

Quantification of marker or functional genes is possible by spik-
ing approach combined with HTS identification methods. For spiking,
known quantity of control DNA or individuals is added to the sample
prior to DNA/RNA extraction and the quantity of target organisms
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FIGURE 1 Schematic overview of a HTS-based study from sampling through molecular analysis, bioinformatics, publishing and databasing.
The most relevant and widely used platforms and methods are indicated [Colour figure can be viewed at wileyonlinelibrary.com]
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(Continued)

TABLE 1

Target DNA
marker
ITS2

Sampling area,
country

Reference

Main results

Primers

Targeted taxa

Sampled host species and substrate

NGS technology
454: MetB

Hiiesalu,

Plant pathogen richness

ITS3NGSmix + ITS4ngs

Eukaryotes

Pinus sylvestris forest soil

Estonia

Bahram, and
Tedersoo
(2017)

increase at higher soil

moisture

MOLECULAR ECOLOGY

RESOURCES
- g
6 o
© 3]
o —
—_ —_ ©
gl\ [o0) 4+
53 3 B
TS 8§
[ >

Longer amplicons: higher

Multiple

18S, ITS, 28S

Eukaryotes (esp.

Forest and nursery soil

Papua New

PacBio: MetB

resolution, less artefactual
taxa; full ITS-based

fungi, oomycetes)

Guinea + Estonia

identification of oomycetes

Pests constitute >50% of prey Aizpurua et al.

ArtFlc + ArtR2c;

COl, mt16S

Animals

Bat Miniopterus schreibersii: faeces

S Europe

Illumina: MetB

Coleop16Sc + Coleop16Sd

ITS1F? + ITS4

Pathogen abundance declines

ITS (ITS1

Soil in successional habitats Fungi

SA, Australia

lllumina: MetB

with ecosystem naturality

analysed)

TEDERSOO T AL

MetB, metabarcoding; MetG, metagenomics; metT, metatranscriptomics; ON, Oxford Nanopore; WGS, whole-genome sequencing.

2Poorly performing primer(s).

or genes is detected based on the relative amount of obtained
sequences (Pochon, Bott, Smith, & Wood, 2013; Tkacz, Hortala, &
Poole, 2018). In theory, spiking allows absolute quantification of the
DNA marker content of any pathogenic organism or gene, but this
method has been little tested thus far. Differences in sequence
length, G + C/A + T content, DNA secondary structure, etc. (see
Technical biases below), may all affect accuracy of the spiking

approach.

2.2 | Microarrays

Microarray technology is based on accommodation of multiple tar-
get-template hybridization reactions onto small chips using robotics
technologies to generate arrays and perform multiple hybridization
reactions simultaneously. Microarrays have been widely used for
species diagnosis, detection of functional genes and gene expression
(Sessitsch et al., 2006). Diagnostic microarrays were the earliest
high-throughput identification methods that enabled targeting speci-
fic pre-selected taxa of viruses, bacterial and fungal pathogens and
pests at species level (Lee et al., 2013; Szemes et al., 2005; Wilson
et al, 2002). The first diagnostic (macro)arrays for selected plant
pathogenic fungi and oomycetes included just >10 species and
enabled quantification of pathogens present at low abundance
(<0.1% in mixed DNA samples; Lievens et al., 2005; Szemes et al.,
2005). By combining classical antagonism tests and high-density
microarrays comprising >106 probes, Mendes et al. (2011) identified
rhizosphere microbial taxa and particular genes that are antagonistic
to a fungal pathogen Rhizoctonia solani. PhyloChip-based analyses
revealed that plant infection by pathogenic oomycete Hyaloper-
onospora arabidopsidis enhanced growth of rhizosphere microbes,
which triggered systemic resistance and reduced damage in the
plants’ offspring (Berendsen et al., 2018).

While early microarrays used PCR-amplified templates, fine tun-
ing of sensitivity enabled to detect taxa from genomic DNA
(DeAngelis et al., 2011). Microarrays also enable to detect single
nucleotide polymorphisms (SNPs), which allow genotyping of plant
pathogens and detection of aggressive strains (Lievens, Claes,
Vanachter, Cammue, & Thomma, 2006). Although reusable microar-
rays are cheap to run, provide highly sensitive results rapidly and
suffice for monitoring the presence and abundance of specific patho-
genic taxa and pathogenicity-related genes from complex samples,
their major disadvantage is missing the large proportion of species
and functions present in the targeted environment and non-optimal
stringency in various probes (Sessitsch et al., 2006). Therefore,
microarrays have been replaced by high-throughput sequencing
(HTS) methods in the last decade.

2.3 | HTS methods for identification of species

High-throughput sequencing represents several new and emerging
technologies that fundamentally differ in their ways of recording
nucleotides. Furthermore, these methods exhibit substantial differ-
ences in throughput, read length, accuracy and technical biases
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TABLE 2 Cons and pros of sequencing platforms
Read length (average: Error rate (%, per bp): Throughput Cost (run: library Optimal
Platform max; kb) main issues (10° reads) prep.; EUR) (suboptimal) use
454: GS-FLX 0.7-1:1 0.1: homopolymer indels, end 1.2 (run) 5,000:200 MetB (MetG,
(discontinued) WHG)
lon Torrent: PGM 0.4:0.45 0.5-1.5: homopolymer indels, start, 5 (chip 318) 1,000:150 MetB (MetG,
end WHG)
lon Torrent: Gene 0.5-0.6:0.6 0.5-1.5: homopolymer indels, start, 12 (chip 530) n.d.: n.d. MetB (MetT,
Studio S5° end MetG, WHG)
lllumina: MiSeq 2 x 0.3 (paired-end: 0.58) 0.01-0.1: substitutions, end 20 (lane) 1,500:50-100 MetB (MetG,
MetT, WHG)
lllumina: HiSeq 2 x 0.25 (paired-end: 0.48 0.01-0.1: substitutions, end 300 (lane) 4,500:50-100 MetG, MetT,
WHG (MetB)
BGISEQ-5002 2 x 0.15 (paired-end 0.28),  0.08-0.5: long switch 600 (lane) n.d.: n.d. MetG, MetT,
single-end: 0.4 WHG
PacBio: Sequel 30:100 13 (raw); <0.1 (10x consensus): 0.4 (SMRT cell)  1,500:300 MetB, WHG
homopolymer indels
Oxford Nanopore: 10-100:800 15 (raw); 3-5 (bidirectional): 0.1-0.35 (flow 500:50 WHG (MetB)
MinlON various cell =run)
Oxford Nanopore: n.d.: n.d. 15 (raw); 3-5 (bidirectional): 100 (run) n.d.: n.d. WHG (MetB,
PromethlON? various MetG, MetT)

Service not available as of October 2018; hence, the values are approximate ®Service offered through collaborative contract as of October 2018; prices

and terms negotiable

(Knief, 2014; Reuter, Spacek, & Snyder, 2015). During the first five
years in the market, HTS platforms usually evolve rapidly in terms of
throughput, data quality and reduction in analytical costs, but techni-
cal constraints become limiting soon thereafter. Fundamentally new
HTS methods are announced almost every year, but a fraction of
these gain public attention and approximately half of those appear in
the market (Heather & Chain, 2016). Table 2 provides an overview
of widely used HTS platforms.

The first commercially available HTS method, 454 pyrosequenc-
ing (Roche Diagnostics, Basel, Switzerland), was developed in early
2000s. The 454 technology was >100-fold cheaper (1072 EUR/read)
than Sanger sequencing, and the analysis chemistry was rapidly opti-
mized to provide high-quality reads from 50 to 700-1,000 bases at
1.2 million read throughput (Reuter et al., 2015). The 454 technology
was rapidly adopted by microbial ecologists who performed ground-
breaking discoveries about the ultra-high diversity of prokaryotes
(Leininger et al., 2006; Sogin et al., 2006). Anecdotally, much of the
diversity turned out to be analytical artefacts, indicating the need for
careful quality control and optimization of both sample preparation
and analytical steps (Huse, Huber, Morrison, Sogin, & Mark Welch,
2007). Separation of artefacts from rare taxa is still the greatest
issue of all HTS technologies. Soon after these pioneering prokary-
ote studies, 454 pyrosequencing was implemented to identify
eukaryotes and to separate potentially pathogenic taxa from other
guilds based on taxonomic information from indoor environment,
animal samples, soil and foliage (Buee et al., 2009; Jumpponen &
Jones, 2009; Luna et al, 2007; McKenna et al, 2008; Wegley,
Edwards, Rodriguez-Brito, Liu, & Rohwer, 2007). Several years after
implementation, the 454 method was used to identify macroorgan-
isms such as plants from mammal and hexapod diet (Valentini et al.,

2009) and animals including parasitic nematodes and other pests
(Creer et al., 2010; Porazinska et al., 2009; Table 1).

The lllumina (www.illumina.com) and lon Torrent (www.iontorre
nt.com) technologies replaced 454 in the early 2010s because of
greater throughput at lower costs. Nonetheless, the lon Torrent is
continuously haunted by short read length (up to 450 bp) and fluctu-
ating sequence quality, which has limited its use in analysis of soil
and plant samples (see Kemler et al., 2013). Compared with the 454
platform, the lllumina technology provides up to 3,000-fold greater
throughput, several times greater accuracy and possibility to
sequence reads of up to 550 bp (2 x 300 paired-end option) at rela-
tively low cost, 107°-10"*-EUR/read. Generation of self-chimeric
sequences and long artefactual inserts or deletions represents the
main shortfall of lllumina sequencing compared to other platforms
(Tedersoo, Anslan, et al., 2015). At present, lllumina sequencing is by
far the best option for short DNA/RNA barcodes and metagenomics,
considering sequence quality and analytical costs of library prepara-
tion and sequencing (Knief, 2014). It will undoubtedly remain the
most widely used HTS method by the end of this decade in spite of
only negligible technological improvements since 2015. The ultra-
high throughput of Illumina sequencing allows analysis of >1,000
samples in a single run at sufficient sequencing depth (Zinger et al.,
2017). lllumina sequencing revealed that growing rotations of
legume crops greatly increase the pathogen load in soils, with sev-
eral-year legacy effects (Bainard et al., 2017). Cline et al. (2017)
showed that relative abundance of soil pathogens increases with
plant biomass in grasslands. In 2015, a paired-end ultra-HTS platform
BGISEQ (www.seq500.com/en/), which is similar to the lllumina plat-
form, was released. So far, it has been used for metagenomic detec-
tion of human pathogens (Cheng et al., 2018). Given its shorter read
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length (2 x 150 paired-end or 400 bases single end), it is currently
suboptimal for amplicon-based detection and identification of organ-
isms.

As a major technical advance, much longer DNA fragments span-
ning tens of kilobases can be sequenced using the Pacific Bio-
sciences (PacBio, www.pacificbiosciences.com) and Oxford Nanopore
(www.nanoporetech.com) technologies, which became commercially
available in 2011 and 2015, respectively. However, both of these
platforms have very high initial error rates (10%-15% per base) that
have improved only marginally in the last years. In the PacBio plat-
form, circularized DNA molecules are sequenced multiple times,
reducing the error rate to a minimum (0.1%) at 9- to 11-fold consen-
sus (Tedersoo, Tooming-Klunderud, & Anslan, 2017). Given the aver-
age raw read length of 30 kb, PacBio allows sequencing of up to
5 kb DNA fragments at satisfactory quality (Heeger et al., 2018).
Sequencing of long fragments of a single molecule has become
attractive in DNA barcoding; for example, Hebert et al. (2017)
reported on sequencing the DNA barcode in around 10,000 arthro-
pod specimens simultaneously. In a pioneer study, PacBio was suc-
cessfully applied to identify potential mycoparasites of the coffee
rust, Hemileia vastatrix. In general, long fragments greatly improve
identification via greater taxonomic resolution of unconserved
regions and phylogenetic analysis based on relatively more con-
served regions (Schlaeppi et al., 2016; Tedersoo et al., 2017; Wagner
et al., 2016). However, both library preparation and sequencing steps
of PacBio are relatively expensive (ca. 300 EUR/library, 1072 EUR/
read) compared with Illlumina sequencing. Thus, PacBio is the
method of choice for metabarcodes >550 bp given sufficient
funding.

Application of the nanopore technology in pathology and ecology
in general suffers greatly from low sequence quality, although
sequencing of both strands (1D? flow cell) and Intramolecular-ligated
Nanopore Consensus Sequencing (INC-Seq) technique (Li et al.,
2016) have been developed. These advances reduce the error rate
to 2%-5%, which is still insufficient for distinguishing among closely
related species. The first applications in ecology also stress the need
for longer identifier tags and avoiding clustering methods (Benitez-
Paez & Sanz, 2017; Kerkhof, Dillon, Haggblom, & McGuinness,
2017; Krehenwinkel et al., 2018). The Oxford Nanopore MinlON
platform is therefore mostly used as a cheap option to close gaps,
resolve long repeats and merge scaffolds in genome sequencing, or
perform whole-genome resequencing. For example, Rhodes et al.
(2018) sequenced multiple strains of an opportunistic human patho-
gen Candida auris and suggested (unsubstantiated though) Indian ori-
gin for the pathogenic strains. Nanopore consensus sequences have
been used to acquire long DNA barcodes from multiple arthropod
specimens simultaneously (Krehenwinkel et al., 2018). However, rou-
tine metabarcode-based identification of fungi and oomycetes with
the MiInlON device suffers from very low proportion of meaningful
sequences, extremely common tag-switching events and highly
unequal sequencing depth across samples (K. Loit, K. Adamson, R.
Drenkhan, M. Bahram, R. Puusepp and L. Tedersoo, unpublished
manuscript). In spite of high error rate, the nanopore technology

holds a great promise in disease diagnostics due to the low cost of
equipment and analysis time of 1-2 days (Quick et al., 2016). The
unique direct RNA sequencing option (without cDNA reverse tran-
scription step) is of particular interest, but it requires testing for

environmental samples and analytical biases.

2.4 | Metagenomics and metatranscriptomics

PacBio and Oxford Nanopore are sometimes termed as third-genera-
tion sequencing technologies because of long reads and possibility
of excluding the PCR Step. Also, the Sanger method (Green Tringe
et al., 2005) and multiple HTS methods (Frey et al., 2014) have been
used for generating amplification-free shotgun metagenomic and
metatranscriptomic sequence data sets from DNA and RNA (through
reverse transcription) molecules, respectively, to address taxonomic
diversity of animal pathogens. Except for viruses (see below), shot-
gun metagenomic and metatranscriptomic studies specifically target-
ing plant pathogens are rare, although several projects
unintentionally cover pathogens in addition to free-living microbes
and their functions (Fierer et al., 2013; Geisen et al., 2015; Hudson
et al, 2015; Tedersoo, Anslan, et al., 2015; Tedersoo, Bahram, et al.,
2015). More specifically, Doonan, Denman, McDonald, and Golyshin
(2017) sequenced the metagenomes of soft rot spots of Solanum
tuberosum to identify the relative abundance of multiple microbial
organisms and their functional potential. The metatranscriptomic
approach revealed that root colonization by the pathogenic Rhizocto-
nia solani altered rhizobacterial communities and induced expression
of stress-related genes (Chapelle, Mendes, Bakker, & Raaijmakers,
2016). A nanopore technology-based metagenomic study revealed
that the invasive Rattus norvegicus consume mostly plants and
insects in New Zealand (Pearman et al., 2018).

No universal primers exist for viruses, rendering metagenomics
and metatranscriptomics the only suitable methods for detecting
previously unrecognized viruses (Mokili et al., 2012; Zhang, Breitbart,
Lee, Run, & Wei, 2005). Metagenomic- and metatranscriptomic-
based identification of viruses has been recently reviewed in Mas-
sart, Olmos, Jijakli, and Candresse (2014) and Roossinck, Martin, and
Roumagnac (2015) and Adams and Fox (2016). Roossinck et al.
(2015) in particular provide information about alternative analysis
work flows for single- and double-stranded DNA and RNA viruses.
For dsRNA viruses, metatranscriptomics of the 21-24 base frag-
ments of silencing RNA (siRNA) has become a popular identification
tool of various viruses due to ease of analysis and high detection
capacity of small RNA analysis (Kreuze et al., 2009; Roossinck et al.,
2015).

Because of various biases introduced by primer choice and the
PCR amplification process, PCR-free technologies offer great promise
to molecular identification of organisms, particularly viruses and bac-
teria. In spite of generating huge amounts of sequence data, shotgun
sequencing of full metagenomes or metatranscriptomes is an ineffi-
cient approach to taxonomic identification of eukaryotes (Alberdi,
Aizpurua, Gilbert, & Bohmann, 2018; Tedersoo, Anslan, et al., 2015;
but see Geisen et al., 2015), because only a tiny fraction of the
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sequences is likely to originate from relevant marker genes. Further-
more, metagenome and metatranscriptome analyses suffer from sev-
eral technical problems. Because organisms differ substantially in
their AT:CG ratio, genomic fragments with extreme ratios may be
disfavoured in the sequence analyses, depending on analysis plat-
form (Shakya et al., 2013). The metagenomic fragments cover ran-
dom stretches of the marker genes among other genomic regions,
rendering it impossible to address species-level taxonomic richness
in natural communities (Tedersoo, Anslan, et al.,, 2015). The marker-
based reference databases such as UNITE (Abarenkov et al., 2010)
and SILVA (Quast et al., 2013) contain abundant data for relatively
short rRNA gene markers, but much less taxa have full-length refer-
ence sequences for comparison. The genomic reference databases
are underpopulated and may result in misidentifications up to the
level of kingdom (Korsakovsky Pond et al., 2009; Pearman et al.,
2018; Tedersoo, Anslan, et al., 2015). Nonetheless, metagenomics
and metatranscriptomics offer an option for identifying the taxa and
characterizing their functional potential simultaneously (Bork et al.,
2015; Fierer et al., 2013).

Mitochondrial metagenomics has become a high-quality alternative
in biodiversity studies of soil arthropods due to the high abundance
and rapid evolution of mitochondria and the lack of PCR bias. Genomic
DNA samples can be effectively enriched for mitochondrial products
that are typically fragmented and sequenced on lllumina platform
(Zhou et al., 2013). Gomez-Rodriguez, Timmermans, Crampton-Platt,
and Vogler (2017) found that mitochondrial metagenomics is more
sensitive to taxon recovery compared with COl metabarcoding and it
allows addressing intraspecific variation and construction of more
robust phylogenies. This method revealed greater species richness and
phylogenetic diversity of beetles in subsoil compared with topsoil
(Andujar et al., 2015). In principle, mitochondrial metagenomics could
be applied to any group of eukaryotic organisms that possess these
organelles. The main drawbacks include a large variation in the number
of mitochondria across organisms and their different life stages as well

as poor representation in reference databases (except animals).

3 | HTS METHODS FOR IDENTIFICATION
OF INDIVIDUALS

HTS methods can be used to distinguish between individuals when
targeting SNPs in rapidly evolving loci, partial genomes or whole gen-
omes (Fuentes-Pardo & Ruzzante, 2017). These comparative genomics
methods shed light into the origin, migration pathways, speciation,
host shifts, co-evolution, hybridization and horizontal gene transfer of
antagonists and enable to detect virulent genotypes along with their
underlying genetic mechanisms (Griinwald et al., 2016; O'Hanlon et al.,
2018). Population genomics methods can also be used to detect geno-
mic introgression from other species and evolution of new species by
polyploidization and hybridization, which is a common mechanism in
the rise of novel pathogenic fungi and oomycetes (Restrepo, Tabima,
Mideros, Grinwald, & Matute, 2014). Common metabarcoding tech-
niques may be unable to distinguish recent hybrids from parent taxa,
because the hybrids usually carry the nuclear marker gene (haploid
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organisms) or mitochondrial marker gene (nearly all eukaryotes) from
one of the parents or different nuclear alleles from both parents in
case of diploid (incl. dikaryotic) and polyploid organisms.

The early HTS population genomics methods focused on the dis-
tribution of SNPs in certain variable regions. For example, Isola et al.
(2005) used targeted 454 pyrosequencing to detect mutations
underlying resistance to a drug in the human pathogen Mycobac-
terium tuberculosis. Subsequent population-level studies targeted
multiple genomic fragments flanking restriction sites across the
entire fragmented genome, which is termed as restriction site-associ-
ated DNA sequencing (RAD-seq; reviewed in Davey et al, 2011).
Several examples of using RAD-seq in plant pathogens are given in
Griinwald et al. (2016). This method revealed high genetic variability
and recombination in a crop pathogen Fusarium graminearum, sug-
gesting that these features facilitate rapid adaptation to resistant cul-
tivars and biocides (Talas & McDonald, 2015). RAD-seq also revealed
several coexisting groups of a mutualistic fungus Rhizophagus irregu-
lare, most of which were globally distributed (Savary et al., 2018).

With plummeting of HTS costs, partial and whole genomes of
pathogenic organisms can be readily determined from pure cultures,
host tissues and soil environment. The main advantage of whole-
genome sequencing (WGS) is the generation of several orders of
magnitude more information about polymorphic sites and a better
understanding of their linkage and occurrence in exons and introns
(Griinwald et al., 2016). Low-coverage genomes and organisms’ mar-
ker genes and functional genes can be determined from minute
DNA concentrations from old herbarium specimens and roots (Ted-
ersoo, Bahram, et al., 2016; Tedersoo, Liiv, et al., 2016; Yoshida,
Burbano, Krause, Thines, & Weigel, 2014). Thus, sequencing of gen-
omes from multiple isolates of the same species has become a com-
mon practice in microbiology (Liti et al., 2010) and more recently in
plant pathology (Menardo et al., 2016; Table 1). Due to much
greater genome size and organization of genetic material into multi-
ple chromosomes, eukaryote genomes are more difficult and costly
to sequence and assemble compared with these of prokaryotes.
Using a shotgun metagenomic approach, Duan et al. (2009)
sequenced the genome of an uncultured plant pathogenic bacterium
Candidatus Liberibacter asiaticus from its psyllid vector. In a popula-
tion genomics study, Cooke et al. (2012) detected recent evolution
of a highly virulent genotype group within Phytophthora infestans
and its genetic mechanisms of overcoming hosts’ resistance. WGS of
the malaria parasite Plasmodium viviparum revealed substantial popu-
lation divergence and endemicity on a global scale (Manske et al.,
2012). WGS analyses using the pocket sequencer Oxford Nanopore
MinlON are becoming a routine for “real-time” identification of
strains and cryptic species in pathogenic complexes, which has been
demonstrated for Escherichia coli and the Ebola virus (Loman, Quick,
& Simpson, 2015; Quick et al., 2016).

Optimization of sample preparation and HTS protocols has
enabled WGS of single cells (Lasken & McLean, 2014). McLean et al.
(2013) sequenced the genome of an opportunistic human pathogen
Porphyromonas gingivalis from several individual cells in parallel. Due
to the small genome size, single-cell sequencing may perform well
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for bacteria and archaea, but it is more problematic in eukaryotes.
Single-cell WGS revealed that human neurons differ in partial gen-
ome copy number and some cells have multiple mutations in specific
regions (McConnell et al., 2013). Using microfluidics-based single-cell
preparation and sequencing, Gawad, Koh, and Quake (2014) deter-
mined SNPs from leukaemia cells and shed light into the mechanisms
of cancer development. Nair et al. (2014) demonstrated the potential
of single-cell sequencing in protists with small genomes, showing the
complexity of infection by Plasmodium spp. in human patients and
efficiency of this method in distinguishing highly virulent strains. Sin-
gle-cell WGS is yet to be applied to plant pathogens, but it has
greatest perspective in understanding the function of unculturable
unicellular pathogens such as members of the early diverging fungal

lineages and alveolates (Ahrendt et al., 2018).

4 | TARGETING ACTIVE ORGANISMS

DNA molecules are typically long-lived and remain detectable for
several weeks to months post mortem, depending on fragment length
and habitat properties. Short (<200 bp) DNA fragments may be pre-
served for millennia in anoxic sediments and permafrost (Allentoft
et al., 2012). Conversely, rRNA (including the ITS region) and mRNA
of functional genes provide insights into the genes transcribed in a
time frame of a few hours to a few days, effectively excluding
organisms that are dormant (eggs, spores, sclerotia, cysts, etc.; Rajala,
Peltoniemi, Hantula, Makipa3, & Pennanen, 2011). However, sam-
pling for RNA requires extra care and rapid pre-treatment such as
freezing in liquid nitrogen or storing in RNA preservation buffers,
which is costly and sometimes inefficient (Rissanen, Kurhela, Aho,
Oittinen, & Tiirola, 2010). Targeting RNA is, nonetheless, unavoid-
able in pathological studies of RNA viruses.

Alternative to RNA, microbial ecologists have used *°C (Radajew-
ski, Ineson, Parekh, & Murrell, 2000) and the nucleotide analogue 3-
bromo-deoxyuridine (Hanson, Allison, Bradford, Wallenstein, & Trese-
der, 2008) incorporation into substrate and assimilation into DNA of
organisms that metabolize these enriched substrates. The *C-based
stable isotope probing (SIP) is difficult to perform in natural conditions
because of multiple carbon sources diluting the isotopic signal. This is
especially relevant for eukaryotic pathogens that grow and accumulate
13C or nucleotide analogues into their DNA slowly and may use much
of the labelled carbon for respiration. Nonetheless, 3C incorporated
into DNA and fatty acids revealed flow of plant-derived carbon
through the soil food web and decline in pathogen-to-mycorrhiza ratio
during secondary succession (Hannula et al., 2017). This method could
be useful when addressing the pests and pathogens that use recent
photosynthesis products amongst other organisms or detecting poten-
tial biocontrol agents.

5 | TECHNOLOGICAL BIASES OF HTS
METHODS

All molecular identification methods suffer from specific analytical

biases. Marker bias may select for organisms that exhibit high copy

numbers. Primer bias discriminates against targets that exhibit pri-
mer-template mismatches, particularly in the 3 end of the primer,
which reduces their relative amplification efficiency by 1-2 orders of
magnitude (lhrmark et al., 2012; Tedersoo, Bahram, et al., 2015). Pri-
mer bias in the ITS region is important in several animal and plant
pathogenic fungal groups (Tedersoo & Lindahl, 2016), nematodes
and alveolates. PCR bias represents unequal amplification of target
species due to differences in AT:CG ratio, DNA secondary structure
and marker length (Ihrmark et al., 2012). Some arthropod and fungal
groups exhibit introns in rRNA genes or long ITS1 or ITS2 regions,
which may render corresponding taxa entirely unrepresented (Teder-
soo, Bahram, et al., 2015). The best example concerns the ash die-
back disease agent Hymenoscyphus fraxineus that exhibits a long 3’
terminal 18S intron, which renders the species undetectable using
the ITS1F/ITSOF forward primers (see Cross et al., 2017). Most
Oomycota possess a long ITS2 region, which may be discriminated
against in studies targeting all eukaryotes (Riit et al., 2016). Method-
specific biases may occur in cloning and molecular identifier tag liga-
tion procedures, where variants with highly skewed AT:CG ratios
and specific terminal nucleotides may be favoured or discriminated
against (Lindahl et al., 2013). Biases may differ among models and
analysis chemistry in the same sequencing platform (Tedersoo et al.,
2017).

Tag-switches and chimeric molecules are common technical arte-
facts in HTS analyses. Chimeric molecules usually develop during PCR,
when extension is incomplete (due to low processivity, short extension
time or depletion of nucleotides) and these short fragments prime the
templates during subsequent cycles. Chimeric molecules develop more
commonly between two closely related organisms becoming more
abundant with increasing number of PCR cycles and community com-
plexity (Aas, Davey, & Kauserud, 2017; Haas et al., 2011). In essence,
tag-switch artefacts are also chimeric molecules that develop between
multiplexed samples during the post-PCR library preparation step (Sch-
nell, Bohmann, & Gilbert, 2015).

6 | PRACTICAL RECOMMENDATIONS FOR
HTS-BASED RESEARCH

6.1 | Design of HTS studies

Study design depends on the objectives of research. Purely descrip-
tive studies with haphazard sample collection and insufficient repli-
cation are difficult to publish and not worth the effort, except
sequencing genomes or transcriptomes, or validating novel methods.
Testing ecological hypotheses requires a proper well-replicated sam-
pling design. Many researchers seem to forget that technical repli-
cates, multiple spatially autocorrelated subsamples and thousands of
recovered OTUs do not serve as independent biological replicates
(Prosser, 2010). This is particularly relevant in the geographically
structured sampling with inherent hierarchical design and multilevel
spatial autocorrelation.

One of the main questions in pathological and microbiological

research is whether or not to pool subsamples. Pooling may strongly
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reduce analytical costs, but it also reduces small-scale resolution. The
answer depends on the research objectives, spatiotemporal scale and
nature of the samples of the particular study. If individual samples
(e.g., leaf, soil core) are small and expected to represent the commu-
nity poorly, pooling multiple samples is a viable option. In case of
hierarchical design (i.e., structured by block, plot or site), it is useful
to pool multiple subsamples when the internal variation is not of
interest. However, in most other cases, analysis of multiple indepen-
dent samples is preferable due to the ability to estimate sampling
error and address the importance of spatiotemporal variability. HTS
analyses can easily recover slight shifts in taxonomic and gene com-
position; therefore, multivariate techniques require just 3-4 repli-
cates to detect biologically important shifts in community
composition (Balint et al., 2016). An extra replicate should be consid-
ered, because it is common to obtain low-quality DNA or a limited
number of sequences from some (typically 1%-10%) samples. Analy-
sis of richness and diversity measures and pathogen load requires

more samples, because univariate tests have lower statistical power.

6.2 | Sample preparation for HTS analysis

HTS techniques are sensitive to spoiling, external contamination and
cross-contamination, hence requiring careful collection, handling and
pre-treatment to prevent contamination and overgrowth by fast-
growing moulds or DNA/RNA degradation (Lindahl et al., 2013). For
pre-treatment and storage, rapid air-drying, freeze-drying, deep-
freezing and fixing in preservation buffers work equally fine for
DNA. Deep-freezing and storage at —80°C works well for potential
analysis of RNA, proteins and fatty acids for further analyses (Rissa-
nen et al., 2010). Dried and frozen samples and frozen DNA solution
can be usually preserved for decades with minor losses in quality.

To avoid contamination during various steps of analysis, it is rec-
ommended to divide the laboratory space into wet laboratory, DNA
extraction and PCR laboratory, post-PCR laboratory and HTS prepa-
ration laboratory. The PCR products from previous projects may rep-
resent the main source of contamination in HTS studies, because a
single floating DNA molecule may be progressively amplified and
sequenced. This can be controlled by efficient cleaning of laborato-
ries using UV-light and DNase-containing solutions. Negative con-
trols in all stages of analyses enable to detect and track
contamination (Lindahl et al., 2013).

DNA or RNA extraction can be performed by using commercial
kits or classical protocols developed since 1990s. Because extraction
procedures may affect the recovered community composition (Lin-
dahl et al., 2013), optimal protocols should be selected considering
the mass, substrate and target organism (Brooks et al., 2015). Sam-
ples can be extracted at low overall mass (0.25 g), which recovers
nearly comparable taxonomic richness with high-quantity extraction
(10 g) for microorganisms (Song et al., 2015). For small extraction
quantities, it is relatively more important to thoroughly homogenize
the sample. For ultra-long amplicons and genomic analyses, bead
beating should be kept at minimum duration. For metagenomic- and
RNA-based analyses, it is of particular importance to minimize the
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concentration of co-extracted humic acids and saccharides that may
interfere with downstream processes. The extracted DNA from soil
and other organic-rich substrates may require an extra purification
step using filter columns or magnetic beads for optimal performance

in (meta)genomics analyses (Bahram et al., 2018).

6.3 | Marker and primer selection

For HTS-based diversity analyses, it is very important to thoroughly
consider the DNA/RNA marker based on desired taxonomic resolu-
tion. For routine community-level analysis, species-level resolution
should always be targeted to avoid bulking together pathogenic
organisms with closely related endophytes and saprotrophs (Critescu,
2014; Tedersoo & Nilsson, 2016). Nonetheless, strains of the same
antagonist species may differ strongly in pathogenicity, which ren-
ders barcoding marker-based detection of pathogens somewhat
ambiguous. Bacterial species are typically identified based on the
16S rRNA gene, although this marker effectively enables operation
at the subgenus and genus level (Yarza et al., 2014). The ITS region
including the tRNA gene between 16S and 23S rRNA genes provides
much greater taxonomic resolution, but its highly variable length and
AT:GC ratio may generate biased views on composition particularly
in HTS studies of prokaryotes (Benitez-Paez & Sanz, 2017; Garcia-
Martinez, Acinas, Antén, & Rodriguez-Valera, 1999; Ruegger, Clark,
Weger, Braun, & Borneman, 2014). Of eukaryotes, both fungi and
oomycetes are routinely studied based on the ITS region, which has
been established as a formal barcode for the latter group (Schoch
et al., 2012). For protist kingdoms and Metazoa (animals), 18S and
28S rRNA genes, ITS and mitochondrial cytochrome C oxidase | sub-
unit (COI) are all used, with preferences depending on particular
groups considering taxonomic resolution and available reference
material (Pawlowski, Audic, & Adl, 2012). The official animal barcode
COlI performs poorly in HTS analyses, because of the lack of con-
served regions for inclusive primers and loss of primer-template
specificity with multiple degenerations (Geller, Meyer, Parker, &
Hawk, 2013). The ITS region and 28S offer comparable species-level
resolution and allow use of strong primers in most animal groups
such as Nematoda, Acari, Collembola and Hexapoda (Anslan & Ted-
ersoo, 2015; Carneiro, Oliveira Lima, & Correia, 2017; Pacheco da
Silva, Bertin, Blin, Germain, & Bernardi, 2014; Yang, Cai, & Cheng,
2011). Particularly for the ITS region, however, databases are spar-
sely populated with species- and genus-level reference sequences
from most arthropod, nematode and protist groups, because these
have been excluded as classical barcodes at least partly due to diffi-
culties with Sanger sequencing of heterozygous alleles and poor phy-
logenetic inference.

Guided by choice of a marker gene, selection of primers is
important. Given the high sequencing depth, it is wise to focus on
organisms in a broad perspective to secure inclusion of nearly all
intended target taxa (Tedersoo & Lindahl, 2016). Because taxon-
specific primers are rarely all-inclusive, it is therefore recommended
to focus on all eukaryotes when addressing fungi, or Stramenopila
when targeting Oomycota. For targeting pathogens in the tissue of
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plants or any other specific organisms, researchers may consider pri-
mers that exclude the host DNA or including additional blocking pri-
mers, especially if targeted pathogens are expected to occur at very
low relative abundance. Supplied with 3’ terminal nucleotide modifi-
cations and in surplus concentration, blocking primers prevent
annealing and elongation of host DNA marker by specifically binding
to host DNA downstream of regular primers. This procedure is fre-
quently used for mitochondrial DNA analyses (Vestheim & Jarman,
2008), but it is probably impossible to effectively design for nuclear
rRNA genes. On the other hand, cotargeting host DNA enables to
determine the relative abundance of pathogen DNA marker relative
to host DNA marker that is comparable (i.e., without systematic bias)
across samples.

Revisiting the coverage of widely used primers designed in early
1990s (White, Bruns, Lee, & Taylor, 1990) has revealed suboptimal
performance and multiple unexpected mismatches to several taxa
within the targeted group (Klindworth et al., 2013; Tedersoo & Lin-
dahl, 2016; Tedersoo, Anslan, et al., 2015). While 1-2 non-terminal
mismatches are not important in sample preparation for Sanger
sequencing, a single mismatch may result in underestimation of the
taxon by 1-2 orders of magnitude (lhrmark et al., 2012; Tedersoo,
Bahram, et al., 2015). Accumulated sequence data have enabled
molecular ecologists to construct more efficient degenerate primers
or primer mixes for prokaryotes, fungi, oomycetes and animals
(Apprill, McNally, Parsons, & Weber, 2015; Geller et al., 2013; Nils-
son et al, 2018; Parada, Needham, & Fuhrman, 2016; Riit et al.,
2016; Tedersoo & Lindahl, 2016; Tedersoo, Bahram, et al., 2016;
Tedersoo, Liiv, et al., 2016; Toju, Tanabe, Yamamoto, & Sato, 2012).
Table 3 provides a selection of high-affinity primers recommended
for use in HTS studies.

In analysis of complex pathological systems, food webs and diet
of omnivores, organisms from multiple kingdoms can be targeted
simultaneously. Strategies for this include a universal marker such as
18S rRNA or ITS for all eukaryotes, or different markers for each king-
dom. Universal primers and primer mixes exist for the rRNA markers
(Table 3). Different markers of similar length can be analysed in multi-
plex or mixed after separate amplification into a common library (de
Barba, Boyer, Rioux, Coissac, & Taberlet, 2014). However, markers
may yield >2 orders of magnitude difference in average sequencing
depth (Tedersoo et al., 2017; Tedersoo, Anslan, et al., 2015), indicat-
ing that the relative discrimination factor should be considered
beforehand. Metagenomic approach has proven a viable alternative
for relative quantification of DNA of target organisms in soil (Bahram
et al., 2018) and gut contents (Pearman et al., 2018).

One or both primers used for HTS should be tagged with a
molecular identifier to enable multiplexing samples. These tags of
typically 6-12 bases should differ from each other by at least 4
bases/indels (e.g., the “error-correcting” Golay identifiers; Lundberg,
Yourstone, Mieczkowski, Jones, & Dangl, 2013) to prevent random
mutations in tags or impure synthesis to erroneously switch
sequences among samples. The tagged primers may also include a
platform-specific sequencing primer, but such long oligonucleotides
may perform poorly (Lindahl et al., 2013). For lllumina sequencing,

96 combinations of Nextera indexes can be ligated by PCR. Primers
tagged with identifiers only are cheaper and can be used for analysis
employing any sequencing platform, rendering these usable for many
years. To reduce the competition among tagged amplicons in the
ligation step, it is advisable to select all identifiers to start with the
same nucleotide and use a 2-base linker sequence with no match to
any of the templates. Identifier tags that have an AT:CG ratio less or
more than 0.25-4 tend to perform poorly (Tedersoo & Nilsson,
2016). It is strongly recommended to add identifier tags to both the
reverse and forward primers to minimize the tag-switching (Gohl
et al., 2016).

64 | PCR

Prior to PCR, it is recommended to quantify DNA and use equal
amounts of template for each sample to be able to use the same
number of PCR cycles across the study (Gohl et al., 2016). The PCR
mix should include a high-affinity and high-processivity polymerase
(e.g., Pfu, Phusion, Q5) to minimize incorporation of erroneous
nucleotides and generation of partial reads that can be converted to
chimeric sequences in subsequent extension cycles. These more
expensive polymerases strongly reduce the number of chimeric
sequences and artificial taxa comprised of error-infested sequences
(D'Amore et al., 2016; Gohl et al., 2016). For HTS analysis, the pri-
mer annealing temperature could be reduced by ca 5°C compared to
regular PCR to promote amplification of templates with one or two
mismatches to primers. The number of PCR cycles should be kept at
minimum—so that a relatively weak band or smear of suitable size is
seen on an agarose gel. Increasing extension time is also likely to
reduce incomplete amplification and hence chimera formation
(D'Amore et al., 2016; Lindahl et al., 2013). Low input DNA content
results in lower amount of inhibitors and less chimeric sequences
(D'Amore et al., 2016; Gohl et al., 2016). Due to stochastic variation,
it is recommended to use at least two PCR replicates that can be
pooled post-amplification (Alberdi et al., 2018; Lindahl et al., 2013;
Tedersoo et al., 2010).

Amplicon purification depends on further analyses and choice of
sequencing platform. It is recommended to normalize amplicon con-
centration across samples to reduce variation in sequencing depth
among samples several-fold (Lindahl et al., 2013). The equimolarly
mixed amplicons are subjected to platform-specific adapter ligation
in the library preparation step. It is recommended to order library
preparation from a sequencing service provider to secure their qual-
ity standards and leave the risk of failure to the service provider.
Researchers should check the quantity and quality requirements
from each service provider, because these may differ greatly. The
quantity appears to be negotiable, because service providers usually
request 5-10 times more material than they use. Due to high
demand, it takes typically 1-2 months to receive the sequences. It
does not pay off to order bioinformatics service, because companies
provide standard quality,.fasta- and.fastg-formatted files. These can
be handled using custom options in any bioinformatics platform,
whereas the service provider's analysis routine may be suboptimal
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TABLE 3 Recommended primers for HTS-based identification of pathogens and pests

Primer!
Prokaryotes
GM3F?
515fBP
806rB®
926r°

GM4R?

SSU1492Fngs®
189r¢

Eukaryotes (general)
TAReuk454FWD1¢
TAReukREV3
1389F¢

ITS9MUNNgs®
1510R%
1510Rngs?
ITS4ngsUn;efeht
TWlsefghi
TW14ngsefeh
Fungi
ITSOF-T'
ITS2ngs’
glTS7ngs®
LR5-Fung®

Tedersoo et al.
(2008)

Oomycetes

ITS100"

ITS300'
ITS500"

Marker: direction: position

16S: fwd: 8

16S: fwd: 515

16S: rev: 806

16S: rev: 926

16S: rev: 1492

ITS: fwd: 1492
ITS: rev: 189

SSU: fwd: 565
SSU: rev: 970
SSU (ITS): fwd: 1630

SSU (ITS): fwd: 1635

SSU: rev: 1780

SSU: rev: 1780

LSU (ITS): rev: 40

LSU: rev: 645

LSU: rev: 960

SSU (ITS): fwd: 90

5.85(ITS1): rev: 35

5.8S (ITS2): fwd: 70

LSU: rev: 880

18S (ITS): fwd: 1795

5.8S (ITS2): fwd: 150
18S (ITS): fwd: 1730

Sequence

AGAGTTTGATCMTGGC

GTGYCAGCMGCCGCGGTAA

GGACTACNVGGGTWTCTAAT

CCGYCAATTYMTTTRAGTTT

TACCTTGTTACGACTT

GTCGTMACAAGGTANCCG
TACTDAGATGTTTCASTTC

CCAGCASCYGCGGTAATTCC
ACTTTCGTTCTTGATYRA
TTGTACACACCGCCC

TACACACCGCCCGTCG

CCTTCYGCAGGTTCACCTAC

WCBGCDGGTTCACCWAC

CCTSCSCTTANTDATATGC

GGTCCGTGTTTCAAGACG

CTATCCTGRGRGAAAYTTC

ACTTGGTCATTTAGAGGAAGT

TTYRCKRCGTTCTTCATCG

GTGARTCATCRARTYTTTG

CGATCGATTTGCACGTCAGA

GGAAGGATCATTACCACAC?

AGTATGYYTGTATCAGTGTC?
CTYRYCRTTTAGAGGAAGGTG

Target

Bacteria

Prokaryotes

Prokaryotes

Prokaryotes

Bacteria

Prokaryotes

Bacteria

Eukaryote
Eukaryote

Eukaryote,
Prokaryote

Eukaryote

Eukaryote

Eukaryote

Eukaryote

Eukaryote

Eukaryote

Fungi

Fungi

Fungi

Fungi,
Metazoa,

Oomycetes

Oomycetes

Stramenopila

Comment

excl. minor phyla,
Archaea

Microbiome
projects

Microbiome
projects

Microbiome
projects

excl. minor phyla,
Archaea

excl. minor groups

excl. minor phyla,
Archaea

BioMarks primer

BioMarks primer

No prokaryotes

5' poor, excl.
Sordariomycetes,
some nematodes

No prokaryotes

No prokaryotes

Some prokaryotes;
excl. dictyostelids

excl. Microsporidea

excl.
Mucoromycota,
Saccharomycetes

excl. minor groups

excl. minor groups

Stramenopila

incl. some
Ochrophyta
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Reference

Muyzer, Teske,
Wirsen, and
Jannasch (1995)

Parada et al. (2016)

Apprill et al. (2015)

Parada et al. (2016)

Muyzer et al. (1995)

This paper
Hunt et al. (2006)

Stoeck et al. (2010)
Stoeck et al. (2010)

Amaral-Zettler,
McCliment,
Ducklow, and Huse
(2009)

Tedersoo and Lindahl
(2016)

Amaral-Zettler et al.
(2009)

This paper

Tedersoo and Lindahl
(2016)

T.J. White,
unpublished

Tedersoo and Lindahl
(2016)

Tedersoo et al.
(2008)

Tedersoo et al.
(2017)

Tedersoo and Lindahl
(2016)

Suited for living plant
samples

Riit et al., (2016)

Riit et al. (2016)
This paper

(Continues)
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TABLE 3 (Continued)

Primer! Marker: direction: position Sequence Target Comment Reference

ITS200" 5.8S (ITS1): rev: 40 GCAGCGKTCTTCATCGRTGT Oomycetes incl. Synurophyceae This paper

Animals

jgLCO1490! COl: fwd: 1490 TITCIACIAAYCAYAARGAYATTGG  Metazoa excl. several groups, Geller et al. (2013)
incl. Amoebozoa

ngCO219Bj COl: rev: 2198 TAIACYTCIGGRTGICCRAARAAYCA Metazoa excl. several groups, Geller et al. (2013)

incl. Amoebozoa

Notes. The newly reported primers have been designed to cover >99% targeted taxa and tested in silico and complex soil samples. Full set of primers
used for bacteria, fungi, oomycetes and eukaryotes in general can be found in Klindworth et al. (2013), Nilsson et al. (2018), Riit et al. (2016) and AdI,

Habura, and Eglit (2014), respectively.

1Superscript letters indicate matching forward and reverse primer pairs. 2Correct primer sequences compared to the trimmed ones in the original

publication.

(i.e., optimized for bacterial 16S rRNA gene, mouse or human sam-
ples) or untransparent.

6.5 | Controls and technical replication

To quantify contamination and technical artefacts such as sequenc-
ing errors, chimera formation and tag-switching, it is recommended
to run three types of control samples in parallel. Negative control
samples should be incorporated during various steps of sample pro-
cessing (DNA/RNA extraction, PCR; Lindahl et al., 2013). One or
more positive controls—preferably organisms not expected in stud-
ied communities—might be included to quantify tag-switching (Sch-
nell et al., 2015; Tedersoo et al., 2017). Mock community of known
composition may provide information about the rates of chimera for-
mation and efficiency of recovering ingredient taxa (Nguyen, Smith,
Peay, & Kennedy, 2015). It is possible to use artificial DNA mole-
cules for positive control and mock community samples, because
their length, AT:CG ratio and homopolymer content can be con-
trolled and their concentration can be precisely determined (Palmer,
Jusino, Banik, & Lindner, 2017).

Technical replication is unnecessary in most cases, because these
observations cannot be used as independent data points in the anal-
ysis. However, limited technical replication of a few samples may be
feasible to estimate the performance and reproducibility of the
method especially for newly developed protocols (Alberdi et al.,
2018; Brooks et al., 2015).

6.6 | Quality filtering of HTS data

Analysis and quality filtering of HTS data are by far more challenging
than viewing and editing Sanger sequencing reads because of large
amounts of data and no clearly readable chromatograms. There is a
myriad of available software for bioinformatics data analysis, most of
which, such as mothur (www.mothur.org) and QIIME (www.giime.org),
are run 'on command line. Both of these popular bioinformatics plat-
forms are optimized for alignment-based bacterial 16S rRNA gene
analysis. QIITA (https://qgiita.microbio.me) is a recently developed

web-based analysis platform for bioinformatics and analysis workflow

optimized for bacteria-targeted and metagenomic research. PipeCraft
is a user-friendly software with a graphical interface, multiple options
incorporated from other programs, capacity to analyse metabarcoding
data from all sequencing platforms and compatibility with Linux, Mac
and Windows, which all attract non-bioinformatician users (Anslan,
Bahram, Hiiesalu, & Tedersoo, 2017). For analysis of non-alignable
markers such as ITS, PipeCraft outperforms other bioinformat'ics
pipelines in terms of input data formats, available analysis options and
output quality (Anslan et al., 2018). Comprehensive overview about
available analysis platforms for amplicon and metabarcoding data is
given in Oulas et al. (2015). Bioinformatics analysis of fungal data is
reviewed in Nilsson et al. (2018).

Although the output of HTS platforms is converted to the same
format, these data differ in the distribution of errors and require dif-
ferent options for analysis (Anslan et al., 2017; Knief, 2014; Laehne-
mann, Borkhardt, & McHardy, 2015; Reuter et al.,, 2015). Quality-
trimming is the first step of bioinformatics analysis and it is usually
based on removing the 3’ end of sequences (or entire sequences) if
it falls below specific quality threshold, the optima of which differ by
sequencing platform. In a simultaneous sample demultiplexing pro-
cess, sequences are re-assigned to biological samples based on the
molecular identifiers. For demultiplexing sequence data with Golay
barcodes, we recommend allowing 1-2 mismatches to tags and 1-2
mismatches to primers to account for random errors and natural pri-
mer-template mismatches. Demultiplexing from a single end typically
enables to recover 40%-70% of all reads, but approximately a quar-
ter of these are lost when accounting for the other tagged primer as
well (Tedersoo et al, 2017). However, dual-tag demultiplexing
enables to remove tag-switching artefacts and incomplete sequences
(Kozich, Westcott, Baxter, Highlander, & Schloss, 2013).

To reduce computation time, quality-filtered sequences are usu-
ally pre-clustered using 100% or 99% identity and subjected to chi-
mera checking. Chimera detection performs best when combining de
novo and reference-based methods as implemented in UCHIME (Aas
et al, 2017; Edgar, Haas, Clemente, Quince, & Knight, 2011) that
can be run in all bioinformatics platforms.

Extraction of variable region(s) may precede or follow chimera

check. Extraction of ITS and other variable regions in rRNA genes
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enables simultaneous removal of non-target organisms and focus on
a shorter but more variable barcode that has improved taxonomic
resolution (Bengtsson-Palme et al., 2013; Hartmann, Howes, Abaren-
kov, Mohn, & Nilsson, 2010).

6.7 | Sequence clustering and Operational
Taxonomic Units

Quality-filtered and trimmed sequences are subjected to clustering
into OTUs, for which multiple algorithms exist (Kopylova et al.,
2016). The best results are obtained when using open-source de
novo clustering with single-linkage algorithms (Frgslev et al., 2017;
Lindahl et al., 2013). Except for lllumina data, it is recommended to
collapse homopolymers to trimers for clustering (Lindahl et al., 2013)
or lowering the gap extension penalty, because other platforms are
sensitive to indels in homopolymers. Although many protocols rec-
ommend removing sequences containing homopolymers of >8 or
>10 bases, we do not encourage this practice for the non-coding
regions, because many organisms do have naturally long homopoly-
mers in these markers (Potter et al., 2017; Tedersoo et al., 2017).

In spite of different taxonomic resolution, the bacterial 16S and
eukaryote 18S, 28S, ITS and COIl sequences are typically clustered
at 97% sequence identity, which is regarded as a compromise
between natural intraspecific and interspecific sequence variation
and random sequencing errors. The 97% sequence similarity thresh-
old for all of these marker genes (except COI in some groups) is too
conservative for species-level identification of most taxa. For exam-
ple, some biological species of Fusarium display no variation at all in
the relatively unconserved ITS region (Park et al., 2011). Therefore,
HTS analysis of the ITS + 28S rRNA gene (Walder et al., 2017) and
transcription elongation factor 1 subunit o (TEF; Karlsson et al,
2016) have been used to specifically distinguish Fusarium spp. With
low-resolution markers, analysis of exact sequence variants can be
performed using 100% similarity threshold or the DADA2 clustering
program (Callahan et al., 2016).

All clustering methods generate more OTUs than expected at
any barcoding threshold with increasing sequencing depth, indicating
accumulation of PCR and sequencing errors into rare “satellite” taxa
(Frgslev et al., 2017). This can be ameliorated by performing two or
more consecutive clustering steps (Nguyen et al., 2015), post-cluster-
ing removal of taxa based on co-occurrence or phylogenetic algo-
rithms (Freslev et al., 2017; Potter et al., 2017) or focus on longer
DNA fragments, where random errors are evened out (Tedersoo
et al,, 2017). It is further recommended to remove global singletons
and perhaps OTUs with <5 or <10 sequences, depending on
sequencing depth, as potentially artefactual (Frgslev et al., 2017; Lin-
dahl et al., 2013; Nguyen et al., 2015; Tedersoo et al., 2010).

6.8 | Sequence-based taxonomic identification and
taxon communication

Selection of one or more reference databases is essential for
sequence-based identification (reviewed in Kashyap, Rai, et al,
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2017b). Since up to 20% of the material in INSDc is of poor quality
or misidentified, initiatives such as UNITE (https://unite.ut.ee/),
SILVA (www.arb-silva.de) and UniEuk (https://unieuk.org/) have gen-
erated databases and reference data sets populated with filtered and
third-party annotated sequences. SILVA is focused on nuclear SSU
and LSU sequences of prokaryotes and eukaryotes, but both oomy-
cetes and fungi are poorly represented and have problems with tax-
onomic assignment (Tedersoo Tooming-Klunderud et al., 2017,
Tedersoo, Anslan, et al., 2015; Yarza, Yilmaz, Panzer, Glockner, &
Reich, 2017). The UniEuk initiative is focused both on taxonomy and
on curation of high-quality 185 rDNA sequences of eukaryotes (Ber-
ney et al, 2017). The current version of UNITE includes SSU, ITS
and LSU sequence data for all eukaryotes, although only fungal and
oomycete ITS sequences have been intensively annotated for taxon-
omy, sequence quality and ecological metadata. Some pathogenic
fungal groups, in particular, have been thoroughly checked, anno-
tated and assigned for type status in uniTe (Nilsson et al., 2014). In
the BoLp database (Ratnasingham & Hebert, 2007), curated COI
sequence data for animals, Oomycota and other specific groups of
protists are maintained. Thus, these databases provide best-suited
species-level reference data for general molecular identification of
pathogenic organisms. However, researchers focused on more nar-
row groups such as Fusarium or Phytophthora could use Fusarium-ID
(Park et al., 2011) and the Phytophthora Database (www.phytophtho
radb.org) in addition. Animal and human pathogens have annotated
sequence data in the ISHAM-ITS database (lrinyi et al., 2015).
Metagenomic and metatranscriptomic analyses require inclusion of
functional gene and genomics databases for combined taxonomic
and functional analysis (Huson, Mitra, Ruscheweyh, Weber, & Schus-
ter, 2011). Detection of viruses amongst genomic, metagenomic and
metatranscriptomic reads requires some specific data mining effort.
Pipelines such as VirusFinder (Wang, Jia, & Zhao, 2013) and particu-
larly VirFind (Ho & Tzanetakis, 2014) enable to search for virus
motifs from custom sequence data sets and EST databases. As a ref-
erence for identification, virologists use mostly the RefSeq database
of INSDc (O'Leary et al.,, 2016) and Comprehensive Phytopathogen
Genomics Resource (CPGR) database (Hamilton et al., 2011).

For taxonomic assignments, it is most common to use BLAST-
based similarity search methods for representative sequences of each
OTU (Nilsson et al., 2014; Tedersoo & Nilsson, 2016). The Naive Baye-
sian Classifier (Porras-Alfaro, Liu, Kuske, & Xie, 2014; Wang, Garrity,
Tiedje, & Cole, 2007) is widely used for conservative identification in
prokaryotes, but this method has gained little popularity among mycol-
ogists due to a low proportion of taxa identified to species or genus
level. This has been improved in ProTax-Fungi, which provides statisti-
cal assessment of assignment precision to different taxa from species
to phylum ranks (Abarenkov et al., 2018). In fungal and oomycete ITS
sequences, species, genus, family and order levels can be approxi-
mately approximated at >97%-99%, >90%, >85% and >80% ITS
sequence similarity, respectively, to the closest identified sequence
(Tedersoo et al., 2014; Tedersoo et al., 2017; data in Riit et al., 2016).
In bacterial 16S (full-length), these figures are >98%-99%, >94.5%,
>86.5% and >82%, respectively (Yarza et al., 2014). Due to different
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rates of rRNA gene evolution, there are multiple exceptions, with sor-
dariomycete (Ascomycota) and oomycete species tending to exhibit
greater similarity and early diverging fungal groups lower similarity.
These differences are even greater among animal and protist groups
(Anslan & Tedersoo, 2015; Nassonova, Smirnov, Fahrni, & Pawlowski,
2010; Yang et al., 2011), but remain still poorly understood for most
taxa (Pawlowski et al., 2012).

An optional step is to assign functional traits such as pathogenic-
ity information to OTUs, for which database-related tools exist. For
Bacteria, an automated pipeline SINAPS (Edgar, 2017) enables to
search and predict custom traits using the ProTraits reference data-
base (Brbic et al., 2016). The basic fungal traits can be assigned to
taxonomic profiles using a tool in FunGuild database (Nguyen et al.,
2016). Its main limitation is genus-level operation, although it alerts
that many genera contain both pathogens and saprotrophs or endo-
phytes. As discussed above, the detected “pathogenic” OTUs may be
non-pathogenic on non-hosts, rendering the assignments strongly
context dependent. Therefore, more accurate metadata with host-
and tissue-related traits assigned to species, species hypotheses (see
next paragraph) or isolates/sequences are urgently needed.

HTS studies enable to recover tens of thousands of OTUs, most of
which cannot be usually assigned to described species, which renders
these difficult to communicate across studies. The unITE and BoLD data-
bases use taxon codes (species hypotheses and BINs, respectively)
linked to Digital Object Identifiers (DOls). These machine-readable
DOls enable communication of both named and unnamed taxa across
studies and time (Koljalg et al., 2013; Koljalg, Tedersoo, Nilsson, &
Abarenkov, 2016; Ratnasingham & Hebert, 2013).

6.9 | Post-bioinformatics data quality control

For soil and raw tissue samples with non-optimal storage conditions,
it may be important to estimate sample quality due to potential
overgrowth by moulds (Lindahl, Boer, & Finlay, 2010). This can be
performed by measuring the average size of extracted DNA/RNA
molecules on the gel or calculation of the relative abundance of
moulds (fungal orders Hypocreales, Mucorales, Umbelopsidales and
Mortierellales). Dominance of a single mould OTU, which is usually
associated with reduced taxonomic richness, can be considered
indicative of sample spoilage (Tedersoo et al., 2014).

Similarly, it may be feasible to exclude samples with <5- to 10-fold
less sequences compared with the median. Such poor recovery may be
ascribed to the failure to normalize a sample, poor performance of par-
ticular identifier tags and/or dominance of particular organisms in a
sample, which are disfavoured in the library preparation, sequencing
or quality-filtering steps. In spite of attempts to normalize quantity of
amplicons, the number of retrieved sequences typically vary >3-fold. It
is common to rarefy all samples to the same minimum sequencing
depth, but this loses vast majority of taxonomic information. There-
fore, it is recommended to calculate residuals of richness relative to
square-root or logarithmic function of sequencing depth (whichever
fits better), or use these functions as covariates in uni- and multivariate
statistics (Balint et al., 2016).

Due to high sensitivity, HTS data commonly suffer from traces
of environmental contamination or tag-switching (see above). Infor-
mation about the OTUs in control and experimental samples enables
evaluation of these technical biases and need for extra quality filter-
ing (Nguyen et al., 2015; Palmer et al., 2017). In case of extensive
tag-switching, sequences can be removed according to statistical for-
mulae (Larsson, Stanley, Sinha, Weissman, & Sandberg, 2018).
Although the tag-switching artefacts usually account for 0.1%-3% of
all sequences (Palmer et al., 2017; Schnell et al.,, 2015; Tedersoo
et al., 2017), these may blur qualitative diversity analyses and partic-
ularly network analyses that are sensitive to adding low-abundance
OTUs. More importantly, tag-switching may generate false-positive
implications of low-level presence of a pathogen or biocontrol organ-

ism, especially when these dominate some samples in the library.

6.10 | HTS data analysis

HTS platforms generate enormous OTU-by-sample data matrices, which
cannot be sometimes fully loaded into common spreadsheet programs.
Therefore, experts use python or perl scripts to navigate and transform
the data in text format. These large community matrices also test the
limits of statistical software and processors. Many commonly used
methods for community phylogenetics, bootstrap resampling and net-
work analysis become computationally prohibitive. Thus, use of compu-
tation-efficient algorithms is warranted. To reduce the computation
requirements, the data can be compressed by removal of rare species,
which typically reduces unexplained variance and promotes statistical
power (Pélme et al., 2018), but its effect on potential type | and type Il
error is not known in multivariate or network analyses.

For multivariate analyses, we recommend downweighing abundant
OTUs by Hellinger (square-root) transformation to account for the
semiquantitative nature of HTS. Use of qualitative binary data (pres-
ence/absence) is not recommended, because of lower fit due to loss of
the (semi)quantitative information and artificial equalization of poten-
tially artefactual low-abundance (including tag-switch artefacts) and
real high-abundance OTUs (Balint et al., 2016). We recommend use of
PERMANOVA for explicit statistical testing of shifts in community
composition, because it allows including interactions, random factors
and nested designs. ANCOM and Random Forest machine-learning
algorithm provide statistical information about the performance of
each OTU in the community matrix. General information about multi-
variate analysis methods suitable for HTS data is given in Buttigieg
and Ramette (2014). Notably, the same multivariate techniques are
commonly used to analyse standardized microarray and metagenomic
and metatranscriptomic data (Thomas, Gilbert, & Meyer, 2012).

In univariate analyses, OTU richness, diversity, colonization, dam-
age and relative abundance of certain taxonomic or functional
groups are used as dependent variables. Apart from considering
sequencing depth and treatment of rare OTUs, the analyses should
follow best statistical practices including appropriate transformations,
testing assumptions, etc. Balint et al. (2016) provide an overview
about general recommendations to statistical analysis of HTS data,
computation-efficient programs and potential pitfalls.
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6.11 | HTS data storage and reporting

HTS data sets are stored both as raw data files and elaborated data
sets. The raw.fastq files, metadata files and files with identifier tag
and primer information are kept in the Short Read Archive (SRA).
These files enable users to perform all steps of bioinformatics analy-
ses including generation of OTU table and identification. This is
important from several aspects such as confirming earlier findings
with updated filtering procedures, addressing additional questions
and performing metastudies using standardized filtering procedures.
It is, however, discouraged to submit representative sequences of
HTS-derived OTUs to public databases because of their short length,
potentially artefactual nature and unreliable taxonomic annotation.
These environmental sequences would increase the proportion of
poorly annotated and erroneous data and complicate identification in
subsequent studies.

Curated OTU-by-sample matrices including technical and envi-
ronmental metadata, representative sequences as well as taxonomic
and functional annotations should be deposited in machine-readable
FAIR data format in specific data repositories such as Dryad Digital
Repository (www.datadryad.org) and DataOne (www.dataone.org).
Darwin Core (https://rs.tdwg.org/dwc/) is the main standard for bio-
diversity data, which is linked to MIXS (https://gensc.org/mixs/) and
MIMARKS (https://wiki.gensc.org/index.php?title=MIMARKS) stan-
dards by the Genomics Standards Consortium that are relevant to all
gene sequence data and marker gene sequence data, respectively.
Metagenomic data should follow MIxS and MIMS (https://wiki.ge
nsc.org/index.php?title=MIGS/MIMS) standards (ten Hoopen et al.,
2017). The machine-readable FAIR data format allows researchers to
understand and rapidly incorporate the data into meta-analyses. Such
standardized data sets in digital repositories enable separate DOI-
based citations.

In publications, it is important to refer to any additional data in
the supplement or data repositories. It is also important to record
and describe precisely all analytical steps including specific options in
data filtering, because this information provides important details
about the data quality and stringency of filtering to the readers. Nils-
son et al. (2011) provide thorough recommendations about the
required details for molecular and bioinformatics analyses.

7 | PERSPECTIVES

Only a fraction of available high-throughput identification potential
has been currently used in plant pathology. This is related to the
practical surveillance-oriented work of plant pathologists and ento-
mologists but focus on human and animal subjects by molecular
pathologists. Governmental plant health surveillance organizations
need to follow certified protocols for diagnosis, which develop
slowly due to time-consuming tests. Limited budgets also hinder the
possibility of purchasing high-throughput analysis equipment by gov-
ernmental institutions. Considering analysis costs and time, practicing
pathologists would certainly take advantage of gPCR/ddPCR for real-

time quantification of specific pathogens and custom microarrays for
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simultaneous detection and quantification of multiple selected
pathogens. In the nearest future, it may be possible to detect multi-
ple organisms including pathogens using high-throughput sequencing
on portable pocket-size sequencers as demonstrated for viruses
using the Oxford Nanopore MinlON platform (Loman et al., 2015).
For a simplified procedure, a single working day is essentially
required for sample collection, analysis and interpretation of results.
Detection of organisms may occur much faster using nanotechnolog-
ical biosensors that recognize multiple specific volatile molecules in
parallel using antibody receptor-based optical or electrochemical
detection (Kashyap, Kumar, & Srivastava, 2017a; Khater, Escosura-
Muiiz, & Merkoci, 2017; Sutarlie, Ow, & Su, 2017). Throughput of
these biosensors can be greatly increased by using a microchip for-
mat for signal detection (Wang, Long, Liu, Wu, & Hu, 2017).

Other high-throughput identification methods are more time-con-
suming but also more sensitive and thus better suited for research
purposes. Metagenomic and metatranscriptomic methods offer great
potential when targeting viruses (Zhang et al, 2005) or these
together with prokaryote and eukaryote pathogens and pests simul-
taneously (Chandler, Liu, & Bennett, 2015). Alternatively, nematodes,
insect pests, oomycetes and fungi can all be assessed by using a mix-
ture of degenerate primers targeting the same marker or multiplex
primers targeting different markers via metabarcoding (de Barba
et al., 2014; Tedersoo, Bahram, et al., 2016; Tedersoo, Liiv, et al.,
2016). Targeted template capture by use of specific hybridization
probes and immunochemical methods allows concentrate marker
genes and pathogenesis-related genes of antagonists (Dowle,
Pochon, Banks, Shearer, & Wood, 2016) that can be further identi-
fied using PCR-free methods.

Because of great intraspecific resolution, high-throughput finger-
printing and population genomics approaches offer enormous poten-
tial for diagnosis of aggressive strains or pathotypes and uncover
their patterns of dispersal (O'Hanlon et al, 2018) and potential
hybridization (Qiu, Cai, Luo, Bhattacharya, & Zhang, 2016). Given
appropriate quality filtering, these methods are sensitive enough to
distinguish rare alleles and SNPs from noise (Isola et al., 2005) in
hundreds of samples in parallel. Whole-genome sequencing and tran-
scriptome analyses complement HTS-based identification methods
by shedding light into pathogenesis mechanisms and facilitating gen-
eration of vaccines and biocides and selection of biocontrol agents
(Griinwald et al., 2016).

For correct identification, community-curated and taxonomically
annotated reference databases are urgently needed. Such databases
are maintained only for a few most important pathogen groups and
cover the main barcoding marker genes (Park et al., 2008, 2011).
Sequence databases should share third-party metadata and taxonomic
annotations, whenever these are updated in one of these (Nilsson
et al., 2014). In spite of a large proportion of erroneous data, INSDc
will certainly continue to play a central role in bridging more specific
databases encompassing genes from all domains of life. So, let's con-
tribute well-annotated and high-quality sequence data to INSDc to
benefit the pathologists research community! This also applies to HTS
data sets and data matrices, the great practical and scientific value of
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which can be recognized perhaps after several decades. Alongside
storing sequence data, it is important to maintain tissue and soil sam-
ples that can be resource efficiently kept dried at room temperature.
In spite of small size, accumulating DNA samples tend to rapidly fill
refrigerators in entire rooms and are vulnerable to technical failure and
power cuts. Besides the possibility of morphology-based re-identifica-
tion and description of new species, both botanical and pathological
herbaria provide excellent sources to trace back the evolution and dis-
persal of pathogens and pests (Drenkhan et al., 2017; Drenkhan, Riit,
Adamson, & Hanso, 2016; Yoshida et al., 2014).

Taken together, high-throughput identification techniques offer
great promise for detection and rapid identification of new pathogens
and diseases in humans as well as tree and crop plantations and early
warning systems such as the sentinel nurseries and botanical gardens.
HTS has already demonstrated its usefulness in studies of soil- and
plant-associated microbial communities for detection of new potential
pathogens and potentially invasive species before their introduction to
the new environment and contact with new hosts. We predict that
rapid monitoring methods such as nanopore sequencing, microarrays
and nanotechnological biosensors will become particularly useful for
early disease diagnostics and smart application of countermeasures
such as biocides and biocontrol agents.
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