
REVIEW
published: 10 May 2019

doi: 10.3389/fimmu.2019.01000

Frontiers in Immunology | www.frontiersin.org 1 May 2019 | Volume 10 | Article 1000

Edited by:

Alexander G. Haslberger,

University of Vienna, Austria

Reviewed by:

Matteo A. Russo,

San Raffaele Pisana (IRCCS), Italy

Francisco José Pérez-Cano,

University of Barcelona, Spain

*Correspondence:

Dong-Kug Choi

choidk@kku.ac.kr

Specialty section:

This article was submitted to

Nutritional Immunology,

a section of the journal

Frontiers in Immunology

Received: 15 February 2019

Accepted: 18 April 2019

Published: 10 May 2019

Citation:

Azam S, Jakaria M, Kim I-S, Kim J,

Haque ME and Choi D-K (2019)

Regulation of Toll-Like Receptor (TLR)

Signaling Pathway by Polyphenols in

the Treatment of Age-Linked

Neurodegenerative Diseases: Focus

on TLR4 Signaling.

Front. Immunol. 10:1000.

doi: 10.3389/fimmu.2019.01000

Regulation of Toll-Like Receptor
(TLR) Signaling Pathway by
Polyphenols in the Treatment of
Age-Linked Neurodegenerative
Diseases: Focus on TLR4 Signaling

Shofiul Azam 1, Md. Jakaria 1, In-Su Kim 2, Joonsoo Kim 1, Md. Ezazul Haque 1 and

Dong-Kug Choi 1,2*

1Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea,
2Department of Integrated Bioscience & Biotechnology, Research Institute of Inflammatory Disease (RID), College of

Biomedical and Health Science, Konkuk University, Chungju-si, South Korea

Neuronal dysfunction initiates several intracellular signaling cascades to release different

proinflammatory cytokines and chemokines, as well as various reactive oxygen

species. In addition to neurons, microglia, and astrocytes are also affected by this

signaling cascade. This release can either be helpful, neutral or detrimental for cell

survival. Toll-like receptors (TLRs) activate and signal their downstream pathway to

activate NF-κB and pro-IL-1β, both of which are responsible for neuroinflammation

and linked to the pathogenesis of different age-related neurological conditions.

However, herein, recent aspects of polyphenols in the treatment of neurodegenerative

diseases are assessed, with a focus on TLR regulation by polyphenols. Different

polyphenol classes, including flavonoids, phenolic acids, phenolic alcohols, stilbenes,

and lignans can potentially target TLR signaling in a distinct pathway. Further,

some polyphenols can suppress overexpression of inflammatory mediators through

TLR4/NF-κB/STAT signaling intervention, while others can reduce neuronal apoptosis

via modulating the TLR4/MyD88/NF-κB-pathway in microglia/macrophages. Indeed,

neurodegeneration etiology is complex and yet to be completely understood, it may be

that targeting TLRs could reveal a number of molecular and pharmacological aspects

related to neurodegenerative diseases. Thus, activating TLR signaling modulation

via natural resources could provide new therapeutic potentiality in the treatment

of neurodegeneration.
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INTRODUCTION

Polyphenols are secondary metabolites of plants and serve to protect against a variety of pathogens,
as well as ultraviolet damage. This phytochemical class of compounds also has a potential role
in different oxidative stress-induced complications, such as cardiovascular disease, cancer and
neurodegenerative diseases (1). Thus, a regular diet comprising frequent intake of polyphenol
derivatives has been found to lower the risk of deposition of low-density lipoprotein (LDL),
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preventing endothelial coagulation and hindering atherosclerosis
(2–5). Polyphenols are available in different kinds of fruits,
vegetables or herbs and act as micronutrients. Approximately
8,000 or more members of this phytochemical group have
been identified, and they originate from either phenylalanine or
shikimic acid with a common phenolic group in their structural
ring (6). Primarily, their classification includes phenolic acid,
flavonoids, stilbenes and lignans (6).

However, aging and age-linked neurological complications
are frequently observed and reaching epidemic levels due to
day-by-day environmental or lifestyle modifications. At >60
years of age, different regions of the brain progressively
and slowly lose cells due to the overexpression of cytokines,
chemokines and neurotoxicity. This pathologic condition is
featured by neurodegenerative diseases, such as Alzheimer’s
diseases (AD), Parkinson’s disease (PD), multiple sclerosis (MS),
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS) (7, 8). Several etiologies of such neurodegeneration are
commonly associated with oxidative stress, neuroinflammation,
mitochondrial dysfunction, protein aggregations and apoptotic
factor activations (7). As such, researchers have attempted
to understand the associated pathogenesis in this regard and
to develop treatments; however, current approaches are not
particularly promising and only symptomatic because in most
neurodegenerative diseases, symptoms appear later. Thus, early
preventive measures can interfere with disease progression and
decrease suffering. One promising preventive attempt may be the
inclusion of polyphenols in the regular diet, an approach that
can reduce oxidative stress. The phenolic group of polyphenols
interrupt the incessant oxidation in the cell by accepting an
electron and forming a stable phenoxyl structure that breaks the
formation of reactive oxygen species (ROS) (9). Thus, this group
increases plasma antioxidant capacity, consequently reducing
lymphocytic DNA damage, protecting cell components from
degeneration (6, 10) and reducing the risk of oxidative stress-
induced degenerative disorders.Moreover, polyphenols stimulate
the Nrf2/ARE signaling pathway to enhance endogenous
antioxidant component synthesis. This class of compounds also
has the potential to modulate NF-κB-promoted neuroprotective
activity (11).

Microglial cells and astrocytes are the primary sources
of ROS. Microglial activation triggers neurodegeneration by
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SIRT1, silent mating type information regulation 2 homolog 1; SN, substantia

nigra; JTF, c-Jun transcription factors; GPx, glutathione peroxidase; GSK-3β,

glycogen synthase kinase 3β; CREB, cAMP response element binding proteins;

TSG, 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside; Nrf2, nuclear factor-2;

HMGB1, high mobility group box 1 protein; PAMPs, pathogen-associated

molecular patterns; DAMPs, damage-associated molecular patterns; PRRs, pattern

recognition receptors; MyD88, myeloid differentiation factor 88; IRF3, interferon

regulatory factor 3; TRIF, TIR-domain-containing adaptor-inducing interferon-γ;
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activating and hypersecreting excitotoxic neurotransmitters
that reduce ATP and growth factors in injured neurons (12).
In that case, a potential anti-oxidant, such as polyphenols, may
provide neuroprotection by inhibiting ROS generation and
reducing auto-inflammatory responses. Therefore, polyphenols
can act as both anti- and pro-oxidants, depending on their
highly specific structure and cellular redox context, which may
include either increased oxidant scavenging proteins or reduced
oxidized proteins. For example, EGCG (Epigallocatechin
gallate) improves mitochondrial function via antioxidative
action (13). Besides polyphenols’ ROS-scavenging ability,
metal chelation and enzyme regulation also forms part of
the mechanism of antioxidative action (14). Additionally,
polyphenols can modulate the important pathogenesis of ND
with its pleiotropic activity, including antioxidant properties.
For example, polyphenols can modulate the NF-κB-mediated
pathway to provide neuroprotection. In addition, polyphenols
attenuate cognitive impairment, Aβ-aggregation and pro-
inflammatory cytokines (15). While the actions of cytokines are
well-known, including their inhibition exerting neuroprotection,
in some cases, inhibition may exacerbate neuronal damage
(16–18). Cytokine response in the CNS requires activation
through a specific motion, while TLRs, as a part of the
innate immune system, also regulate cytokine responses in
the CNS. Therefore, this review aims to provide insight into
natural compound-based TLR signaling intervention toward
inflammatory cytokine overexpression, a process that may
impact future neurodegeneration therapy.

Polyphenols: Overview on Bioavailability
and Permeability Through BBB
Naturally occurring polyphenols include four major classes:
flavonoids, phenolic acid, stilbenes and lignans, with each
member being further divided into different subgroups.
Among these compounds, the flavonoids are the most
comprehensive group, with a structural backbone of C6-
C3-C6 and that contain an oxygenated heterocycle (19).
Flavonoids are further sub-divided into 14 groups, including
flavones, dihydroflavones, isoflavones and anthocyanidines (20).
However, the pharmacological activity of different polyphenols
depends on their affinity toward a complex formation with
other groups, such as alcohols, acids or sugar, as well as their
bioavailability (21).

The bioavailability of polyphenols widely differs from person
to person due to the glycosylation pattern and degree of
polymerisation. Because natural polyphenols often exist as esters,
polymers or glycosylated forms, they need to go through
hydrolyzation for absorption. In that case, gut microflora would
help by the deglycosylation, dehydroxylation, and demethylation
of polyphenols (22). For example, flavonoids are the most poorly
absorbed glycosides that require deglycosylation in the small
intestine by β-glucosidases enzymes to convert into aglycones
and then be absorbed. The availability of aglycones in the
circulation also differs due to the Phase I and II metabolism of
oxidized and conjugated flavonoids (22, 23).
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Absorption and bioavailability of polyphenols is also affected
by biotransformation. For example, curcumin, after ingestion by
mice, was detected in plasma within 15min as dihydrocurcumin.
However, at 1 h, it peaks as tetrahydrocurcumin and at 6 h,
curcumin decreases as monoglucuronide (24). Another study
detected trace amounts of curcumin and its metabolites in
the circulation and organs of healthy humans, which showed
a low impact on the modulation of chemotherapy-induced
apoptosis (25). On the other hand, resveratrol transformed into
glucuronoids and sulfates within 15min of oral consumption and
circulated for more than 9 h with a bioavailability of 1% following
metabolism (26). Further, other dietary components, such as
carbohydrate, protein, fats, and alcohols also affect absorption
and the bioavailability of polyphenols. Fats in the diet enhance
polyphenol absorption, while serum albumin potentiates cellular
uptake and delays elimination.

Due to poor absorptivity, rapid metabolism and elimination,
polyphenols have highly selective permeability across the blood-
brain barrier (BBB) that limits their bioavailability in the CNS
as well as their therapeutic efficacy. Although polyphenols can
alter brain function through improving cerebral blood flow
(27), changing multidrug-resistant protein-dependent influx and
efflux mechanisms (28, 29) and direct modification of neuronal
and glial activities, to exert these activities, they must also move
inside the CNS and at an effective concentration. The BBB,
in that case, is the critical regulator, which controls the entry
and retention of nutraceuticals in the brain. There are several
transport systems at the BBB, and some are particularly specific
to allow nutrients, such as amino acids, glucose, vitamins and
iron, for both influx and efflux into the brain. The same principle
also applies for polyphenols to enter into the brain. However,
due to their variability in stereochemistry and interaction affinity
with efflux transporters, such as P-glycoprotein (PGP) at the BBB,
their availability in the brain also differs (30). One flavonoid—
naringin—has been detected at an effective concentration in the
rat brain when co-administered with PGP inhibitors, but on
peripheral administration it was undetected (31).

Permeability through the BBB may also vary due to the
degree of lipophilicity. In that case, less polar polyphenols or
their metabolites have increased permeability into the brain
compared to more polar ones (32). For instance, quercetin-
3-O-glucuronide, a red wine metabolite, was detected at
substantial levels in the Tg2576 AD mice brain after chronic
oral administration. That resulted in a significant decrease in Aβ

generation and toxicity, consequently improving hippocampus-
associated synaptic deficits (33).

The form of administration is also crucial to improve
polyphenol bioavailability. Co-administration of α-tocopherol
with EGCG, quercetin and rutin in the diet synergizes quercetin
transport through the BBB but not the EGCG. Curcumin may
provide a particularly suitable example for understanding the
limitations to achieve therapeutic potential in vivo because
its bioavailability is insufficient; thus, several delivery systems,
such as nanoparticles, liposomes and micelles failed to improve
its bioavailability (34). Hence, co-administration with piperine
increased curcumin concentrations in the brain at 48 h compared
to the kidney (5.87 vs. 1.16mg) (35). On the other hand,

oxyresveratrol improved protection against 6-OHDA better than
resveratrol because it is BBB permeable and water soluble
(36). Similarly, bioavailability of EGCG has been improved
by using it in a pro-drug form [fully acetylated EGCG
(pEGCG)], as well as when tested on 6-OHDA induced SH-SY5Y
neuroblastoma cells. The results demonstrated an improved
protection by pEGCG more than EGCG, most likely due to the
activation of the Akt pathway and reduced caspase-3 activity
(37). As such, improvisation in administration strategy would
improve the pharmacotherapeutic potentiality of polyphenols
for neurodegeneration.

Polyphenols: Signaling Interference
for Neuroprotection
The most common pathological feature of AD progression is Aβ-
aggregation. Several reports suggest that different polyphenols
are involved in the amelioration of AD by reducing Aβ-plaques.
For example, some in vivo studies report that tea polyphenol can
inhibit acetylcholinesterase as well as Aβ-aggregation (38, 39).
Similarly, polyphenols extracted from grape seeds significantly
attenuated oligomerized Aβ-peptide and neutralized tau protein
folding to recover from cognitive dysfunction, both in vitro
and in vivo (40–45). In a transgenic mouse model, tannic
acid reduced Aβ-deposition via lowering β-carboxyl terminal
amyloid precursor protein cleavage and controlling neuronal
inflammation (46), while 7, 8-dihydroxyflavone activates TR-
KB (tyrosine receptor kinase B) and reduces β-secretase enzyme
during Aβ-synthesis (47), thus demonstrating recover memory
in an AD model. However, a study of rutin on SH-SY5Y
neuroblastoma cells revealed a substantial decline in oxidative
stress, glutathione disulfide formation and cytokines, such as
TNF-α and IL-1β (48). Luteolin also showed a similar effect
by attenuating microglial activation in an LPS-induced primary
neuron-glia study (Table 1) (51).

In a study using SH-SY5Y cells, oxyresveratrol (36) enhanced
the SIRT1 (silent mating type information regulation 2 homolog
1) gene and downregulated caspase-3, JNK and JTF (c-Jun
transcription factors) to reduce neuronal damage. Similar
neuroprotective action was demonstrated using ferulic acid
via JNK pathway downregulation in an ischemia/reperfusion-
induced mice model (62). In contrast, quercetin protects
neurons by stimulating glutathione peroxidase (GPx), superoxide
dismutase (SOD), Na (+), and K (+) -ATPase (62) and
suppresses apoptosis in an in vitro PD model. Furthermore, it
also reduced dopaminergic cell loss in rat striatum (Table 1)
(54). Other polyphenols, such as baicalein, kaempferol, caffeic
acid, and EGCG (52, 63–65) also revealed neuroprotective
action in PD, both in vitro and in an animal model
study. For example, mulberry fruit extracts modulated Bcl-2,
caspase-3 and Bax, and showed an anti-apoptotic effect in an
experiment on SH-SY5Y cells (66). Resveratrol was reported
to have significant therapeutic value to activate SIRT1 in
brown adipose tissue in a study on an N171-82Q transgenic
mouse model for HD (63). Also, using an encephalomyelitis
mouse model, resveratrol was found to inhibit neural loss
without inducing immunosuppression (67). Juglanin, a flavonol
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TABLE 1 | Effect of different polyphenols in various neurodegenerative models (49).

Different type and

dose of polyphenols

Dose and mode of

administration

Model used Results obtained References

Apigenin 10µM and 20 mg/kg; oral

gavage

BV-2 microglial cell and ischemic

mice

Suppressing p38 mitogen-activated protein kinase

(MAPK), c-Jun N-terminal kinase (JNK) phosphorylation

(50)

Luteolin 5µM LPS-induced primary neuron-glia Attenuated microglial activation and overproduction of

TNF-α, NO and superoxide

(51)

Kaemferol 30µM Rotenone-induced SH-SY5Y cell

and primary neuron

Enhanced mitochondrial output by autophagy (52)

Myricetin 10−9 mol/L MPP+-treated MES23.5 cells Attenuate cell loss, intracellular ROS, and

phosphorylation of MAPK kinase 4 and JNK

(53)

Quercetin 25–75 mg/kg; i.p Rotenone-induced rats Reducing dopaminergic cell loss in striatum (54)

Catechin 10–30 mg/kg; i.p 6-OHDA-lesioned rats Improved locomotor activity and rotational behavior, and

increased dopamine content

(55)

Naringenin 80µM and 70 mg/kg; oral

gavage

6-OHDA-induced SH-SY5Y cell

and mice

Increased Nrf2 protein and protect nigrostriatal

dopaminergic neuron in neurodegeneration

(56)

Theaflavin 10 mg/kg; oral gavage MPTP-induced mice Reducing oxidative stress and improving motor function

and dopaminergic expression in striatum and substantia

nigra

(57)

Silymarin 1–10 µg/kg; i.v. CI/Required-induced rat, stroke

model

Ameliorate oxidative and nitrosative stresses and

inflammation-mediated tissue injury impeding activation

of proinflammatory transcription factors NF-κB and

STAT-1

(58)

Juglanin 10–30 mg/kg; i.p. LPS-induced C57B/L6 PD mice Betterment of neuroinflammation-related memory

impairment via interfering with TLR4/NF-κB signaling

(59)

Rutin 2–20µM AD model using SH-SY5Y

neuroblastoma cells

Modulates production of proinflammatory cytokines by

decreasing TNF-α and IL-1β

(48)

7, 8-dihydroxyflavone 5 mg/kg; i.p. 5XFAD mice of AD model TrkB activation and improved AD-associated memory

deficits; reductions in BACE1 expression and

Aβ-aggregation

(47)

Xanthohumol 0.2 and 0.4 mg/kg; i.p. MCAO-induced ischemic rats Inhibits inflammatory responses via HIF-1α, iNOS

expression reduction, and reduced apoptosis through

impeding TNF-α, active caspase-3

(60)

Fisetin 50 mg/kg; i.p. MCAO-induced ischemic mice Protected brain tissue against ischemic reperfusion

injury; inhibited infiltration of macrophages and dendritic

cells into ischemic hemisphere; suppressed TNFα

production

(61)

CI/R, cerebral ischemic/reperfusion; MCAO, middle cerebral artery occlusion.

derivative, in LPS-induced C57B/L6 mice potentially modulated
IL-1β and TNF-α, and ameliorated neuroinflammation-related
memory impairment, and neurodegeneration through impeding
TLR4/NF-κB (59).

Dietary polyphenols modulate the NF-κB inflammatory
pathway and attenuate Aβ-toxicity. Different flavonoids, such
as quercetin, apigenin, and luteolin have been reported to
suppress the NF-κB-pathway and result in inhibition of
Aβ (68). Moreover, the isoflavone extracted from soybean
reduced memory impairment in a neurodegenerative rat model
via blocking NF-κB expression (69), while resveratrol and
baicalin attenuated Aβ-induced neuronal inflammation through
downregulating NF-κB signaling (70, 71). Thus, NF-κB is
important not only in inflammation, but also for cell death events
in cerebral ischemic injury. Silymarin, a flavonoid derivative, has
been shown to protect against cerebral ischemia by inhibitingNF-
κB and STAT-1 (signal transducer and activating transcription-
1) activation in cerebral ischemic/reperfusion-induced rats,

in a dose-dependent manner (1–10 µg/kg, i.v.) (58, 72).
Apigenin also provided a significant neuroprotective effect in an
ischemic mice model via suppressing JNK phosphorylation (50),
whereas 20 mg/kg of apigenin reduced cerebral infarct volume
significantly (Table 1).

Similarly, 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside
(TSG) of Polygonum multiflorum provides neuroprotection in
cerebral ischemia by inhibiting NF-κB-signaling and activating
SIRT1 (41, 73). Quercetin also inhibits NF-κB to protect the
brain from oxidative stress or hypoxic damage (74), and a
similar effect was demonstrated by catechin hydrate, baicalin,
and fisetin (Table 1). Moreover, these phytochemicals were
also found to inhibit IL-1β and TNF-α proinflammatory
cytokine expression (61, 75, 76). Catechin also improved
locomotion and increased dopamine in a 6-OHDA-lesioned
rat (55). Continual investigation of polyphenols confirms their
role as immunomodulatory agents because they can control
inflammatory stimuli via downregulating NF-κB expression (46).
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However, resveratrol demonstrated increasing Nrf2 (nuclear
factor-2) expression. The Nrf2-pathway is involved in p53
gene expression, which leads to antioxidant protein encoding
(46, 77). Further, resveratrol increases HO-1 (heme oxygenase-
1) expression and downregulates the caspase-3 apoptotic
enzyme (78). Similarly, protective action was also revealed
by epicatechin in stroke and oxidative stress via upregulating
Nrf2 (79). Additionally, a prenylated chalcone, xanthohumol,
inhibits theHIF-1 (hypoxia-inducible factors-1) pathway, leading
to neuroprotection (Table 1) (60). In a 6-OHDA-induced
SH-SY5Y cell study, naringenin increased Nrf2 to protect
dopaminergic neurons, while also providing the same effect in
a neurodegenerative mice model as well (56).

Toll-Like Receptors: Signaling and
Expression in CNS
Toll-like receptors (TLRs) were first identified in the protein
content in Drosophila. Later, their importance in providing
innate immunity against microbial infection was recognized (80),
and within the family, TLR4 is the first identified mammalian
homolog. Unlike adaptive immunity, innate immunity is the first
line of defense against anonymous pathogenic invasion, relying
on molecular determinant sensing of, for example, pathogen-
associated molecular patterns (PAMPs) (81–84). TLRs are a
member of the pattern recognition receptor (PRR) group, a large
group that includes both intracellular and extracellular receptor
families, and sense PAMPs or DAMPs (damage-associated
molecular patterns). TLR members are mostly expressed in
microglia rather than astrocytes and neurons. However, in certain
conditions, some members are expressed in astrocytes and a
few in neurons, such as viral- or LPS-induced N9 microglia
expressing TLR2 and differentiating astrocytes expressing TLR7
(85). Likewise, TLR4, although expressed in microglia often, are
also produced in astrocytes and neurons in response to bacterial
LPS (Table 2) (87, 88).

A recent study suggests that increased TLR expression in the
neuron can be or is probably linked with different physiological
and pathological conditions. Analysis of a teratoma-forming cell
line NT-2 (Human NTera2) found mRNA expression for TLR1,
2, 3, and 4; mRNA expression of TLR1-9 and protein expression

TABLE 2 | Expression of different Toll-like receptors in the nervous system.

Toll-like receptors Microglia Astrocyte Neuron

TLR1 + – –

TLR2 + + –

TLR3 + – +

TLR4 + + +

TLR5 + – –

TLR6 + – –

TLR7 + – +

TLR8 + – +

TLR9 + + +

“+,” expressed; “–,” expression not detected (86).

for 2-4 from rat primary neuronal cells was also evident (89–91).
Additionally, an in vivo study on murine mice showed mRNA
expression of TLR1-8 (92) and the neuronal expression of TLR2
and 6, as well as in pathogenic conditions, such as parasitic
infection, TLR2, 4 and 6–8 were expressed (92). Some researchers
have found that both human and rat inflammatory neurons co-
express TLR4 and CD14, a result which may be due to LPS action
through TLR4/CD14 complex formation (93). However, TLR3
can be expressed in both central and peripheral neurons (94).

TLR signaling is complex and depends on other protein and
co-receptor pathway activation. Most members depend on the
MyD88 (myeloid differentiation factor 88) pathway, except for
TLR3 and TLR4. Both of them are unique in their functionality
to activate IRF3 (interferon regulatory factor 3). For example,
TLR4 activation through the MyD88-independent pathway also
activates and recruits TRIF (TIR-domain-containing adaptor-
inducing interferon-γ) and TRAM (TRIF-related adaptor
molecule). Further, the signal cascade activates NF-κB and IRF3,
and initiates IFN (type-I interferon) production. TLR3 activates
through a TRIF-dependent pathway that recruits IKKs (IκB
kinase), TBK1, and IKKε to begin activation of IRF3, and releases
type-I IFN into vesicles (Figure 1) (91, 95). This pathway also
activates IRF2 via phosphatidylinositol 3-kinase and AKT (91,
96). Other members, such as TLR7, 8 and 9, can also activate
type-I IFN through a MyD88-dependent pathway (Figure 1).

Different descriptions in the above figure indicate that TLR2
and 4 affect neuronal differentiation and both are expressed in
adult neural stem cells (97). Indeed, TLR4’s absence enhances
proliferation and neuronal differentiation, while the lack of
TLR2 damages hippocampal neurogenesis (98). Both TLR2 and
4 modulate the cell fate of neuronal progenitors (91) via MyD88
and NF-κB signaling (Figure 1). However, NF-κB-dependent
TLR signaling in neuronal cells is highly specific and their
signaling in differentiated neurons has yet to be determined.

Furthermore, with respect to TLRs along with NOD-like
receptor (NLRs) signals for inflammasome activation, both are
almost identical in their structure and have similarities in
the component and signaling pathways. However, following
inflammasome activation, caspase-1 signaling cascade also
becomes involved and mature IL-1β is released into extracellular
vesicles. TLR activation by various ligands also leads to the
recruitment of downstream pathway signaling via the MyD88
adaptor and activates NF-κB, which expresses the 31-kDa inactive
precursor pro-IL-1β, in the cytosol. Meanwhile, inflammasome
activates caspase-1 as an inactive 45-kDa zymogen, which is later
catalyzed and activates. Thus, this compound comprises p20 and
p10 subunits, both of which are assembled into a heterotetramer.
The active caspase-1 cleaves pro-IL-1β and transforms into a 17-
kDa biologically active IL-1β. Similarly, caspase-1 also cleaves
pro-IL18, which unlike pro-IL-1β, is constitutively expressed
(99, 100).

TLRs: Intricate Role in
Neurodegenerative Diseases
A number of studies on inflammatory markers have
demonstrated the involvement of TLRs in aging-related
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FIGURE 1 | Cell surface and endosomal signaling pathway of TLRs. TLR4, TLR5, and heterodimers TLR1/2 and TLR2/6 sense bacterial invasion and initiate

intracellular TLR-signaling pathway. Following the activation, each of them recruits several adaptors in the cytoplasm and activate MyD88-downstream. That means

the activation of IRAK4 and phosphoryl IRAK1 that then bind to TRAF6 (not shown). TRAF6 then recruit MKK4 and IKKα/β pathway, where MKK4 initiate JNK and

activate c-FOS and JUN, and push into the nucleus. While IKKα/β activates NFκB and its pro-inflammatory subunits and moves into the nucleus, similarly, endosomal

TLRs (TLR3, 7–9) triggers the NFκB and MAPK pathways via involving MyD88 and IRAK4. Additionally, TLR3, MyD88 independently, recruit TRIF-pathway leading to

the phosphorylation and dimerization of IRF7. Both, surface and endosomal pathway ultimately result in a production of type I interferon and release of

proinflammatory cytokines. MyD88, myeloid Differentiation primary response 88; IRAK4, interleukin-1 receptor-associated kinase-4; TRAF6, TNF receptor-associated

factor-6; MKK4, mitogen-activated protein kinase kinase-4; IKKα/β, IκK kinase; JNK, c-Jun N-terminal kinase; TIRF, TIR-domain-containing adapter-inducing

interferon-β; IRF3/7, interferon regulatory factor-3/7.

neurodegenerative disorders, such as AD, ischemic strokes
and multiple sclerosis. With age, the brain’s pro-inflammatory
gene transcription upregulates; therefore, TLR transcription
levels change and participate in age-linked neurodegeneration.
Moreover, they are also involved in brain trauma following
injury, where glial cells activate and express different cytokines
and chemokines near the injury area. In a mouse model of
brain injury, TLR2 was found upregulated by microglia in the
hippocampus zone. In contrast, TLR2 deficits reduce microglial
activation, cytokine and chemokine expression (101, 102).

TLR4 is also profoundly involved in the glial cell expression
and activation of NF-κB, as well as initiation of inflammatory
cytokines, such as TNF-α, IL-1β, and IL-6 production in
the brain in different injured animal models (103–106).
Both TLR2 and 4 signaling are involved in the activation
of glial cells and other inflammatory cytokines and are

responsible for inflammation in the injured brain (107).
However, in glioma—a glial cell tumor—TLR9 is expressed
significantly and was found to be beneficial in a clinical study
(Figure 2) (109–111).

TLR Involvement in AD

The most common pathophysiology of AD, an age-related
neurodegenerative disorder, is the deposition of Aβ-plaques in
the hippocampal region of the brain. Several AD model studies
have also discussed the involvement of TLRs. For example,
a survey showed significant TLR4 expression in glial cells
surrounded by Aβ-plaques (112–114), with TLR4 polymorphism
being proposed to have a protective role in AD (113, 115).
Although the effects of TLR4-knockout on behavior or disease
progression are yet to be documented, microglia-mediated TLR4
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FIGURE 2 | TLRs-signaling in microglial cells in different neurodegenerative disease progression. Abnormal amyloid deposition in different neurodegenerative diseases

may activate microglial cells through TLRs. Microglial activation may lead to further neuronal damage through secretion of proinflammatory cytokines (red), such as

IL-6 and TNF-α, or neuroprotection by secretion of anti-inflammatory cytokines (green), such as IL-10, which may prevent further neuronal death. Furthermore, recent

reports suggest TLRs 2, 4, and 9 signaling may modulate the phagocytosis (blue) and clear the neurotoxic amyloid deposition (108). Aβ stimulation, mononuclear cells

of normal subjects up-regulate the transcription of β-1,4-mannosyl-glycoprotein 4-β-Nacetylglucosaminyltransferase (MGAT3).

may be less efficient in a TLR4-knockout model to clear Aβ-
plaques, leading to the overproduction or aggregation of Aβ (116,
117). It is evident that mouse microglia aggregate Aβ via TLR4
and cause neuronal death (115); thus, microglia require TLR4 for
LPS-induced Aβ uptake (112, 117). As well, neurons, with the
help of TLR4, respond to Aβ and AD-linked peroxidation and
result in apoptosis (115).

TLR2 deficiency, however, aggravates cognitive impairments
in an AD mouse model. This effect may be reversed by
TLR2-expressing bone marrow-derived cells that can stimulate
microglial clearance of Aβ from the brain (118, 119). Therefore,
TLR2 may respond as bone-marrow-derived immune cells to
protect from Aβ-aggregation. Furthermore, TLR2, TLR4, or
TLR9 activating ligands have been reported to increase the uptake
of Aβ by a microglial cell line (117). Another in vivo study reports
that TLR2 and 4 are also required to activate microglia-mediated
Aβ-plaques (120). Additionally, exposure of microglia to the
TLR9 ligand, CpG DNA, protects neurons against Aβ toxicity
and reduces Aβ aggregation-mediated memory impairment in
mice (119, 121). Collectively, data on multiple TLRs suggest their
activation in the AD brain cells and the well-known role that
they have. For example, microglial TLR2, 4 and 9 may counteract
the disease process by enhancing Aβ clearance, while activation
of TLR4 in neurons can aggravate the condition with initiating

oxidative stress and Aβ toxicity. Due to increased knowledge
gathered with respect to the role of neuronal TLR4 in AD, it is
important to explore this receptor function further in the AD-
induced animal model or human tissue/cell line. As such, we
can differentiate glial-mediated TLR4 responses from neuronal
responses, as well as its role in the association of disease-specific
protein aggregation and neuroinflammation or apoptosis.

TLR Involvement in PD

The various views regarding etiology of PD suggest that
misfolded α-synuclein activates microglial cells, leading to
inflammation, oxidative stress and finally, neurodegeneration.
The misfolded α-synuclein is released from neural cells or
oligodendrocytes, also known as PAMPs or DAMPs, by
microglial TLR2 that ultimately activates the downstream
pathway of MyD88 and NF-κB, triggers TNF-α, IL-1β and
increases selective TLR expression (122–124). In one study,
TLR4 has been found to interact with α-synuclein along with
its uptake, proinflammatory cytokine release and enhancing
oxidative stress (125). An MPTP-induced PD mouse model
analysis interpreted neuroprotection due to the genetic absence
of TLR4, supporting the significant role of TLR4 in the generation
and progression of PD (126). Interestingly, TLR4 absence
protected from dopamine downregulation with an increase
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in dopamine transport activity and significantly reduced α-
synuclein-positive neurons in an MPTP-induced PD model. In
that study, the absence of TLR4 alsomodulated NF-κB, AP-1, and
NLRP3 inflammasome pathways, thus reducing the development
of PD-associated neuroinflammation (127). However, the role of
TLR2 and 4 during the progress of PD is particularly convincing,
although complicated. Their activation of microglia can trigger
neurotoxicity, while in other cases, they might be necessary to
clearmisfolded α-synuclein and act as a neuroprotector (Figure 2
and Table 3) (115). Therefore, both of them could be a potential
therapeutic target for PD.

TLRs Involved in Cerebral Ischemia/Stroke

The involvement and pathway of innate immunity in the
generation of ischemic tissue has gained significant attention
among neuro-researchers in various fields in recent years.
According to them, microglial activation is the main reason
behind inflammation following cerebral ischemia, and TLR
members control this activation to a significant degree (131).
Furthermore, TLR2 and TLR4 are the most common in
this regard, as they are thought to liberate pro-inflammatory
cytokines with respect to immune response; thus, exacerbate
ischemic injury and subsequent neuronal damage result.

During a stroke, blood flow is eventually reduced and
generates several conditions, such as ionic imbalance, acidosis
and excitotoxicity (132) due to lack of oxygen and glucose.
Sequentially, the damage of cellular constituents and release of
DAMPS that activate specific TLRs occurs (133). In experimental
animals as well as in stroke patients, it has been shown that
HMGB1, a DAMP protein and also a ligand of TLR2 and
TLR4, is increased in serum (134–136). Also, anti-HMGB1
antibody demonstrates a significant reduction in the aggravation
of ischemic damage via attenuating cytoplasmic MCAO (middle
cerebral artery occlusion) (134, 137, 138). However, following
cell death, Prx (peroxiredoxin protein) is released into the
extracellular compartment and acts as a DAMP. Moreover, it

activates TLR2 and TLR4, leading to inflammation through
cytokine overproduction. Likewise, administration of the Prx
antibody just after experimentally induced stroke significantly
reduces infarct volume, indicating that Prx also activates TLR
signaling to intensify cerebral ischemic injury (139, 140). The
majority of TLR-focused research has used either a rat or mouse
model, and most of them target TLR2 and TLR4. One study
demonstrated that TLR2 was markedly upregulated in the mouse
cortex and TLR2 knockoutmice showed increased infarct volume
andmortality compared to wild-typemice (139). In amore recent
study, deficiency of TLR2 was found to reduce ischemic volume
at an early stage; however, the volume later increased significantly
in comparison to wild-type mice, indicating that TLR2 deficiency
in the brain can delay ischemic lesions (141).

Similarly, another study involving TLR4-deficient mice
reported reduced damage compared to controls following
ischemia (142), or permanent occlusion of the middle cerebral
artery (143). Meanwhile, several clinical studies also noted
the critical role of TLRs in a stroke patient, particularly
the involvement of TLR4 polymorphism in terms of stroke
prevalence (130, 144). Some research also found a significant rise
in TLR2 and TLR4 on peripheral monocyte after stroke (145–
147). Together, these studies indicate that TLR2 and TLR4 play a
critical role in cerebral ischemia/reperfusion injury and that their
activation leads to the exacerbation of brain damage. Along with
TLR2 and TLR4, increased TLR7 and TLR8 also has been noticed
in blood samples of deteriorating stroke patients, but no role has
been reported for TLR3 or TLR9 in ischemic injury (148, 149).

TLRs Involved in Multiple Sclerosis (MS)

TLRs are always decisive for their involvement in different
neurological diseases, and several pieces of evidence suggest
their critical role in the pathogenesis of MS. TLRs have been
found to be expressed in the glial cells of CNS of patients
suffering from MS (150, 151). Moreover, TLR2 expression is
upregulated in peripheral blood mononuclear cells (PBMCs)

TABLE 3 | TLR expression in different neurodegenerative disorders and their documented role.

Disease TLRs expression Animal model Human model References

Alzheimer’s disease TLR2 ↑ Both beneficial and deleterious Beneficial (115, 120, 128)

TLR4 ↑ Both beneficial and deleterious N/A

TLR7 ↑ TLR7 knockout improved spatial learning N/A

TLR9 ↑ Reduced Aβ-aggregation N/A

Parkinson’s disease TLR2 ↑ Deleterious Deleterious (115, 128)

TLR4 ↑ Deleterious Deleterious

TLR5 ↓ Cognitive impairment N/A

TLR9 ↑ Dopaminergic neuronal loss N/A

Amyotrophic lateral sclerosis TLR2 ↑ Degeneration of motor neuron N/A (128, 129)

TLR4 ↑ Deficiency improves motor function N/A

TLR9 ↑ Deleterious N/A

Stroke TLR2 ↑ Both beneficial and deleterious N/A (91, 130)

TLR4 ↑ Deleterious Deleterious

“↑,” increased; “↓,” decreased; “N/A,” not available.
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fromMS patients, with PBMCs from RRMS (relapsing-remitting
MS) being hypersensitive to TLR4 activation (152). Furthermore,
different studies using MS knockout models have outlined
the crucial role played by TLRs and their signaling proteins.
For example, TLR2 (153), TLR9 (154), MyD88 (154–156)
and IRF-3 (157) deficiency resulted in protective effects in
neuroinflammatory models, while TLR4 (156), TLR2 (118), and
TRIF (158) deficiency presented aggravating disease, indicating
the complex role of TLRs in inflammatory development in MS.
Recent data from an experiment by Mellanby et al. demonstrate
that TLR4-induced activation of DC (dendritic cells) promotes
the function of pathogenic T cells in EAE (experimental
autoimmune encephalomyelitis) (159), a result that supports the
complicated role of TLRs in EAE development.

TLRs Involved in ALS

Amyotrophic lateral sclerosis (ALS) is a devastating and chronic
neurodegenerative disease, characterized by the selective upper
and lower motor neuron loss, while about 20–25% of ALS cases
are due to different mutations in the SOD1 gene (160). The
aberrant oligomerisation of mutant SOD1 (mSOD1) proteins
in beta-sheet form may be responsible for the pathogenesis
and progression of ALS; it has also been demonstrated that
mice lacking this gene do not develop the disease (160,
161). As well, mSOD1 has also been demonstrated in mice
for an elevation of TLR1, 2, 7, and 9, and mSOD1 in
microglia released more superoxide, nitrate and nitrite, resulting
in severe neuronal death (Figure 2 and Table 3) (128). One
study demonstrated that mSOD1 activates in microglia via a
MyD88-dependent pathway, with some analyses documenting
the significant effect of MyD88 in an ALS model (162). Although
no significant difference is visible in the life-span of MyD88
knockout and normalmice,MyD88 knockoutmice had increased
activated microglia and motor neuron loss, indicative of a
link between MyD88 deficiency and neurotoxicity (162). In
contrast, a recent study demonstrated blocking TLR2 and 4
signaling, inhibiting microglial activation following extracellular
mSOD1 administration (163). However, the chronic systemic
administration of LPS aggravates disease progression and motor
neuron degeneration with the elevation of TLR2 expression,
suggesting a correlation between TLR2 expression and motor
neuron degeneration (164). Thus, targeting TLR may attenuate
neurotoxicity in ALS and potentially impact therapy; however,
there is no clear evidence for a specific TLR that may mediate this
effect. Therefore, the potential link between TLR signaling and
neurotrophic factor secretion increment from glial cells could be
a therapeutic approach in ALS.

Polyphenol-Based TLR-Signaling Pathway
Targeting: A Neurodegeneration
Therapeutic Approach
Polyphenols are natural resources, potentially contributing to
different therapeutic conditions with their anti-inflammatory
and anti-oxidant properties, as well as interrupting the TLR4-
signaling pathway. For example, green tea polyphenols have
been examined to understand their effect on human periodontal
inflammation induced by LPS at the pathogenic dose, with

reported reduced TLR4 secretion and expression at both the
mRNA and protein levels. That same extract was also reported
to restore (150) standard hydrogen peroxide and hypochlorous
acid, as well as to reduce the mRNA expression of TLR4 and IκK
(165). Thus, polyphenols can decrease inflammation via TLR4
signaling pathway modulation (Figure 3 and Table 4).

Neuroinflammation leads to the progress of
neurodegeneration. In this aspect, TLRs play an essential role in
several CNS disorders, and different studies have reported that
TLR4, among other TLRs, are a frequent contributor to neuronal
death, blood-brain barrier damage, oedema and ischemic brain
injury (143, 176). Thus, the TLR4/NF-κB-signaling pathway
plays a vital role in the activation of a different inflammatory
gene expressing cytokines, chemokines such as COX-2 and
MMP-9, and causes cerebral inflammation, as well as leading to
secondary brain injury following traumatic brain injury (176–
179). This upregulation of different cytokines or chemokines
could also activate microglia; consequently, inflammatory cells
infiltrate into the brain and may cause neuronal loss (180, 181).
Recently, TLR4 was found to play a role in ethanol-induced
inflammatory signaling. The study demonstrated that a TLR4
knockdown model abolished both MAPK and NF-κB-pathways
and inflammatory mediators produced by astrocytes (182, 183).
Also, use of quercetin, loaded into nanoparticles, improved their
passage through the BBB and prevented AD progression via
attenuating the TLR4-involved pathway (184). It also reduced
inflammatory cytokine production by inhibiting TLR2 and 4
expression (168). Therefore, targeting TLR4may be a particularly
useful and novel strategy to treat neurodegenerative disorders.

Resveratrol, as earlier mentioned, is a potential
neuroprotective and anti-inflammatory polyphenol, and
under observation for the treatment of AD, inhibits murine
RAW 264.7 macrophages and microglial BV-2 cells targeted
by TLR4 ligand. Additionally, resveratrol inhibits downstream
phosphorylation of STAT1 and STAT3 stimulated by LPS (71).
Park and Yoon reported that isoliquiritigenin, a flavonoid
derivative, inhibits LPS-induced TLR4 dimerization in RAW
264.7 macrophage lines. Therefore, it inhibits NF-κB and
IRF3 activation, as well as COX-2 and inducible NO synthase
expression (173). Similarly, luteolin suppressed activation of
IRF3 and NF-κB induced by TLR3 and TLR4 agonists via the
TRIF-dependent pathway, resulting in decreased expression of
TNF-α and IL-6 in macrophages (174). These results indicate
that polyphenols have the ability to modulate the TLR-pathway
through TRIF-dependent signaling and result in potential
attenuation of inflammatory cytokines. In a recent study, it
was reported that silymarin pre-treatment significantly reduced
overexpression of TLR4 in SNc induced by 6-OHDA in a PD rat
model (171).

Cur (Curcumin) is a polyphenolic compound that has been
used as a cooking ingredient for centuries. It has been noted
for its potential in terms of anti-viral, antioxidant, antidiabetic
and anti-inflammatory roles (185–187), and also with respect
to its potent suppression of the TLR4-MAPK/NF-κB pathway
(Figure 3). In an in vitro study, Cur was found to suppress
NF-κB-mediated pro-inflammatory stimulation (188) and
also inhibited LPS-induced IRF3 activation via MyD88 and
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FIGURE 3 | Polyphenols modulating upstream (TLR activation) and downstream (different kinase and transcription factors) pathway of surface and endogenous TLR

to reduce or demolish pro-inflammatory cytokines and type I interferon generation.

TRIF-dependent pathways. However, another study with
TLR4 targeted mice showed that 100 mg/kg treatment of Cur
significantly reduced TLR4-positive microglia/macrophages and
other inflammatory mediators’ release, which are responsible
for neuronal apoptosis. These results indicate that post-
injury administration of Cur decreases acute activation of
microglia/macrophages and neuronal apoptosis through
intervening in the TLR4/MyD88/NF-κB-signaling pathway
(Table 4) (170, 187). Cur can cross the BBB and thus, provide
pharmacological activity efficiently, as demonstrated by Yang
et al. (189). A recent study showed that Cur attenuates
homodimerization of TLR4, which is necessary to trigger
downstream cascade pathways (190). Thus, Cur can reduce

inflammatory damage through TLR4 pathway modulation,
which has since been confirmed in experimental models of brain
injury (191–193).

However, uponmicrobial invasion,MAPK signaling pathways
are activated to produce inflammatory mediators via TLR
response, in turn activating down-regulation of p38 and NF-
κB. In a study conducted by Yilma et al. naringenin was
shown to inhibit TLR2 and 4 signaling (169), resulting in
attenuation of pathogen-induced neuroinflammation. Moreover,
EGCG and epicatechin also inhibit MAPK and NF-κB activation
by attenuating TLR4 signaling, whereas catechin TLR2 signaling
downregulates MAPK and NF-κB activation (166, 172, 175).
Therefore, it reduces pro-inflammatory mediator activation
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TABLE 4 | Different active polyphenols and their pharmacological attribution through TLR-signaling intervention.

Active

polyphenols

Polyphenols

class

TLR intervention Downstream signaling

intervention

Response References

EGCG Catechin type;

belongs to the

flavanols

TLR4 expression

through 67LR

Inhibits MAPK and NF-κB Inhibits LPS induced activation of

downstream signaling and

consequent inflammatory responses

(166)

Resveratrol Stilbenes TLR4 ligand Inhibit downstream phosphorylation

of STAT1 and 3

Reduced macrophages and microglial

activation

(71)

Kaempferol-3-O-

sophoroside

Flavonoids Cell surface TLR2

and 4

Inhibit HMGB1 induced

proinflammatory responses

Inhibits HMGB1-mediated

proinflammatory cytokine production

(167)

Quercetin Flavonols

(Flavonoids)

TLR/NF-κB

signaling pathway

Reduced IL-6 production and

NF-κBp65 nuclear translocation

Downregulates inflammatory enzyme

production

(168)

Naringenin Flavanones

(Flavonoids)

TLR2 and 4 MAPK pathway Downregulation of TNF-α, IL-1β, IL-6

and other co-related inflammatory

cytokines

(169)

Curcumin Curcuminoids TLR4 MyD88 and NF-κB downstream

signaling

Reduce activation of

microglia/macrophages and neuronal

apoptosis

(170)

Silymarin Flavonoids TLR4 Inhibit TNF-α, IL-6 and IL-1β

production

Attenuate deterioration of the nigral

degeneration during PD

(171)

Epicatechine Flavanols TLR4 Inhibits MAPK and NF-κB Reduce neuronal apoptosis (172)

Isoliquiritigenin Isoflavonoids

(Flavonoids)

TLR4 Inhibits IRF3 activation Decrease inflammatory gene

expression

(173)

Soybean

Isoflavones

Isoflavones TLR4 Inhibits NF-κB p65 expression in the

brain tissue

Reduced Aβ (1–42), as well as

cytokine cascade and inflammatory

response and improved learning and

memory

(69)

Luteolin Flavones

(Flavonoids)

TLR3 and 4 TBK1 kinase and IRF3

phosphorylation

Modulated TRIF-dependent

inflammatory responses

(174)

Catechin Flavanols

(Flavonoids)

TLR2 Downregulates p38MAPK and NF-κB

p65

Reduced pro-inflammatory mediators

and phosphorylation of their signal

transduction

(175)

Fisetin Flavonoids TLR4 Suppress NF-κB activation and

JNK/JUN phosphorylation

Neuroprotection in cerebral ischemia (61)

Baicalin Flavonoids TLR2 and 4 Reduce the expression of NF-κB and

serum content of TNF-α and IL-1β

Neuroprotection in cerebral ischemia (75)

and phosphorylation, as well as consequent neurodegeneration.
A recent study reports that epigallocatechin gallate (EGCG)
treatment prevents neurological pain via suppressing TLR4
cascades in a neuropathic rat model (194). Moreover, EGCG
is one of the potent flavonoids found in green tea and is
reputed for its ability to provide neuroprotection (195, 196). In
an LPS-induced neuroinflammation mouse model, neurogenesis
significantly decreased neuronal stem cell differentiation and
proliferation. Additionally, microglial cells accumulated to
initiate the LR4/NF-κB-signaling pathway in the hippocampus of
mice. EGCG treatment showed an overall beneficial effect in this
study with neurogenesis by inhibiting the TLR4/NF-κB-signaling
pathway (197).

TLRs are critical elements of the innate immune system,
and recent studies demonstrated their involvement in different
brain injury-derived neurodegeneration processes. However,
neuroinflammation plays an important role and leads to
the development of neurodegenerative diseases, such as AD,
PD, or MS. Indeed, several inflammatory markers, such as
chemokines, cytokines or proteins in acute phase are upregulated
and lead to inflammation, and these markers also prevail

in neurodegenerative diseases, including AD (198–200).
Additionally, TLR4 signaling pathways are involved and control
these markers’ upregulation. Thus, targeting TLR4may represent
an important therapeutic strategy to prevent neurodegenerative
disorders mediated by different inflammatory markers
(18, 182).

CONCLUDING REMARKS AND FUTURE
ASPECTS

Neurodegeneration is a pathological condition that includes
the activation of different neuronal inflammatory cytokines and
chemokines cascade, release of endotoxin and autoimmune
disturbances and the overproduction of mitochondrial ROS.
Here, a separate context was discussed to correlate the
significance of NF-κB in the CNS and its regulation through
TLR members. Further, recent approaches using polyphenols in
the treatment of neurodegeneration were also discussed. Several
polyphenolic compounds have been found to show promise
for attenuating neurodegenerative disorders via involving
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interrelatedmechanisms. However, theymore likely target TLR4-
linked pathway modulation to reduce inflammatory progression.
There is growing evidence for the involvement of TLR4 in
the etiology of different neuropsychiatric diseases; however,
the source of TLR4 activation is yet to be determined. There
appears to be two major pathways involved in TLR4 activation:
either Gram-negative gut Enterobacter translocation or excessive
production and release of ROS due to anonymous infection. In
contrast, there are insufficient data regarding TLR4 dependent
or independent cytokine effects and polyphenols’ role on them
in the progression of neurodegenerative diseases, while abundant
investigation has beenmade regarding the role of cytokines in the
pathogenesis of the same disorders.

Although neurodegeneration is a growing threat, there are
only a few clinically relevant therapeutics for ND available, and
they are for symptomatic treatment only. In this position with
pathological concern and limited treatments, alternative and
preventive therapeutics are rational to control the occurrence
and progression of NDs. Some of them are under clinical
investigation for therapeutic efficacy in neuropathological
conditions; however, many more are expected to be tested
in clinical trials for their in vitro and in vivo roles. Indeed,
neurodegenerative diseases are complicated cases and involve
several signaling cascades, but the role of Aβ-plaque aggregation
and production of inflammatory cytokines and chemokines is
also essential. In this case, several polyphenols have been shown
to significantly attenuate Aβ-plaques and inflammatory cytokine
and chemokine production via intervening different signaling

pathways, explicitly targeting the TLR4/NF-κB-signaling
pathway in AD, PD, MS, or stroke. Engagement of TLR along
with another innate immune member, the NLR family, is also an
important factor to release cytokines and to form a multiprotein
inflammatory complex, the inflammasome. This emerging view
is also important with respect to host response to pathogenic
stimuli, and mature IL-1β release is a suitable example of this
process, which aggravates the neurodegeneration. Therefore,
future work should also focus on this area to determine precise

signaling pathways and mechanisms, leading to comprehension
of disease phenotypes and searches for effective therapeutics.

Based on a number of recent investigations, it is clear
that polyphenols are promising, and their approaches
involve TLR4 modulation to control NDs. Polyphenols
have been found to reduce mRNA expression of TLR4 and
IκK, while enhancing the MyD88-dependent TLR4/NF-
κB-signaling pathway. However, this article attempted to
describe the involvement of TLR4 in neurodegeneration
and the role played by polyphenols via intervening in this
pathway. Indeed, while polyphenols’ action against innate
immunity may be beneficial, the innate immune response
is necessary under different CNS pathological conditions,
where TLR4 activation can be neuroprotective. Although
TLR4 removes Aβ-plaques by microglia via controlling
phagocytes, TLR4 cytotoxicity has also been found to be
significant in several studies. Therefore, it is necessary to
elucidate TLR4s’ complex signaling in the brain to gain control
over inflammation-induced NDs. Targeting TLR4 would
provide a highly suitable treatment approach, with significant
implications in the designing of novel therapeutics for these
particular diseases.
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