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Abstract: This study aimed to propose an approach for orchard trees segmentation using aerial
images based on a deep learning convolutional neural network variant, namely the U-net network.
The purpose was the automated detection and localization of the canopy of orchard trees under
various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The
implemented dataset was composed of images from three different walnut orchards. The achieved
variability of the dataset resulted in obtaining images that fell under seven different use cases.
The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing,
respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards
based on two methods (oversampling and undersampling) in order to tackle issues with out-of-
the-field boundary transparent pixels from the image. Even though the training dataset did not
contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating
the robustness of the proposed approach.

Keywords: precision agriculture; orchard mapping; deep learning; computer vision; semantic
segmentation; orthomosaic

1. Introduction

The latest advances in sensing technologies dedicated to agricultural systems have led
to the emergence and development of a modern management concept, namely precision
agriculture, which focuses on efficient management of the temporal and spatial variability
of field and crop properties using information and communication technology (ICT) [1]. A
plethora of different sensors and technologies are utilized in relation to this concept to form
a detailed view of fields’ properties, capturing the spatial and temporal variability and
searching for the specific factors responsible for their occurrence, which are to be treated
accordingly. Therefore, mapping the field and crop properties is a fundamental aspect in
the application of such management systems.

Remote sensing is defined as the non-contact measurement of crop properties based
on the radiation reflected from the plants, using ground based or aerial platforms, and
it is widely used for mapping tasks in agricultural systems [2]. Recent technological
advances have made unmanned aerial systems (UASs), i.e., sensing systems mounted on
unmanned aerial vehicles (UAVs), commercially available. These systems provide high
spatial resolution images and, in combination with their ease of use, quick acquisition
times, and low operational cost, they have become particularly popular for monitoring
agricultural fields [3]. Several studies have utilized UASs for crop management purposes,
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such as yield prediction and site-specific fertilization [4] by capturing multispectral images,
irrigation using thermal imaging [5], or for field scouting using RGB (Red-Green-Blue)
orthomosaics [6].

In tandem with the development of remote sensing and image capturing techniques,
machine learning (ML) has leaped forward both in terms of performance as well as in terms
of its applicability in almost all scientific domains. Agriculture in general, and specifically
precision agriculture, has benefited from the rise of machine learning in multiple ways
since complex tasks, hard to deal with using traditional programming, can be tackled
with the help of a plethora of different ML algorithms [7–9]. Particularly with regard to
computer vision, there has been extensive implementation of machine and deep learning
in tasks of classification [10], object detection [11], and semantic segmentation [12].

Classification tasks employ self-learning algorithms for the assignment of a class to
an image according to its content. Examples of classification in agricultural applications
include the identification of diseases on leaves in real-life environment images with the help
of convolutional neural networks (CNNs) [13], the identification of trees from UAV images
with a combination of k-nearest neighbors (kNNs) and GoogLeNet [14], and tree species
assignment from UAV images and multispectral data with random forest algorithms [15].
Object detection algorithms differ because they predict the location of objects and assign
the appropriate class to them [16]. Examples of object detection applications include the
detection of disease-infected leaves at tree level from UGV images [17], the detection of
trees with the use of Faster RCNN (Regions with CNN features) and YOLO (You Only
Look Once) [6], and the mapping of operational environments in orchards with classical
computer vision techniques or Fast RCNN [18]. Image segmentation, on the other hand, is
a pixel-wise operation where a class is appointed to each individual pixel, thus creating
detailed outlines of objects and maintaining their exact shape. U-net [19] is one the most
famous algorithms for image segmentation and has been used for tree segmentation from
satellite images [20], mapping of forests [21], and pomegranate canopy segmentation in
comparison to Mask RCNN [22]. Segmentation algorithms for tree canopy mapping have
also been used in tandem with object detection approaches, like Segnet and YOLO [23],
or classification approaches, like the multi-resolution segmentation algorithm used with
state-of-the-art CNNs and support vector machines (SVMs) [24].

Applications of image segmentation with images acquired by UAS have used sev-
eral machine learning algorithms: point-cloud data with the use of deep neural net-
works (DNNs) for tree canopy segmentation [25], support vector machines and image
pre-processing filters for citrus trees segmentation [26], random forest (RF) super pixel clas-
sification for tree canopy extraction [27], and for the automatic segmentation of canopies
with Deeplab v3+, a type of encoder-decoder network, for automatic segmentation of
canopies [28].

Several approaches, listed in the bibliography, have attempted to find solutions to the
problem of automatic segmentation of trees from aerial images. However, all approaches
had as a prerequisite a full, healthy canopy. All aforementioned studies also tackled
the problem with methods of unsupervised learning or object detection. These methods
present shortcomings, either regarding the identification performance per se or the precise
shape of the canopy excluding surroundings. Subsequent tasks, such as canopy size
estimation and orchard mapping, rely on the results of these methods; therefore, the
respective shortcomings propagate to them as well. According to our knowledge, semantic
segmentation has not been implemented in the task of canopy detection of orchards with
the use of UAS-derived images. Furthermore, a gap has been identified in the proper
identification of tree canopies within orchards, throughout all seasons and in every step of
their growth.

This study aimed to propose, develop, and validate an approach for orchard trees seg-
mentation using aerial images based on a custom variant of a deep learning convolutional
neural network, namely the U-net network. The purpose was the automated detection
and localization of the canopy of orchard trees under various conditions (i.e., different
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seasons, different tree ages, different levels of weed coverage). The results of this study
contribute to the farming community by providing a robust tool for instant scouting of
orchard environments by automatically segmenting the tree canopies from aerial images.
This work is a preliminary step in the development of an integrated tool to support farmers
in decision making.

2. Methodology

The proposed approach is structured around data-driven algorithms and computer
vision techniques. An annotated dataset was generated from a large number of UAV
captured images by masking the canopies of the trees in order to create a large dataset for
supervised learning. This annotated dataset was used to train the model with the selected
deep-learning algorithm so that it could properly identify tree canopies and segment them
from the background. A mask image is produced as an output, containing the shapes of
all predicted tree canopies. Following the segmentation, the weighted average of each
mask, i.e., its moment, is used for the calculation of its centroid, so that it can be used as a
reasonable approximation of the location of the tree’s trunk. Provided that the geodetic
coordinates of the photographed location are retained in the orthomosaic images, the tree
trunk locations can be computed with high accuracy.

In order to deal with the complexity of orchard environments, in terms of the presence
of weeds in the image background, and the high variability in the phenomenology of
canopies due to seasonality, a deep learning algorithm, namely U-net, was considered and
tweaked to fit the problem’s requirements.

2.1. U-Net Variant

U-net is an advanced type of convolutional neural network which consists of two
modules, an encoder and a decoder. Such networks aim to encode the input into a latent
space in order to create the desired output based on the said input. U-net’s characteristic
feature, which distinguishes it from the case of simple encoder-decoder networks, is that
it contains direct “skip” connections between the shallow encoder and decoder layers
alongside the sequential structure of the architecture [29]. In this way, certain features from
the encoding/input layers are fed directly to the decoding/output layers. For the approach
presented here, two modifications were made to the standard U-net architecture; the input
layer was tweaked to both 3- and 6-channel images and a dropout layer was added between
the convolutional layers per block, to avoid the tendency towards overfitting that would
occur in such a small dataset with similar representations. A schematic of the U-net used
in this work is shown in Figure 1.

Figure 1. Architecture of the modified U-net network implemented in the approach.
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2.2. Process Flow

The methodology developed for creating segmentation predictions follows a sequen-
tial process which consists of several preprocessing, training, and evaluation steps. The
complete process flow can be summarized as follows:

• Data are imported and split into train and test sets. For the implementation of the
approach, the test set is required to contain at least one image from each use case;

• Each image is reshaped (into a predefined aspect ratio) and, additionally, color en-
hancements such as contrast equalization are applied;

• The training data are fed into the U-net and the model learns to create proper seg-
mentations for each image. An evaluation metric is used across a randomly selected
validation set comprising 10% of the training set, so that the trained model can learn
to create better segmentation masks;

• The trained model produces segmentation masks for the test images and the evaluation
metric is applied;

• The segmentation masks are compared with the real masks created during annotation and
the presence of false positive or false negative segmentations is manually investigated;

• The overall performance of the model is defined by the accuracy of the trained model
on the test dataset, as well as the ratio of false positives and false negatives over the
total amount of trees in the image.

A visual representation is shown in Figure 2.

Figure 2. Process flow of the proposed methodology for creating segmentation predictions. FN: false negative; FP:
false positive.

3. Implementation

Three sites of commercial walnut orchards, located in Thessaly, Central Greece, were
used in the present study. The orchards covered a range of tree ages and soil surface fea-
tures. Correspondingly, the images represented different seasons, with the aim of capturing
the different tree conditions and stages throughout the growing season, namely: defoliated,
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canopy developing, canopy fully developed, and brown canopy before defoliation. Addi-
tionally, the orchards varied in terms of background soil conditions, including: soil surface
free from weeds, soil surface partly covered by weeds, and untreated soil with complete
weeds coverage. A total number of 106 images from the three orchards led to the definition
of seven different use cases which were used for the training and testing of the proposed
methodology. A detailed list of the characteristics’ use cases is presented in Table 1.

Table 1. Orchards’ characteristics and categorization into separate use cases.

Use Case
No.

Yearly
Season

Weeds
Coverage Canopy Size Foliage

Color
Ground

Color

1 Autumn Low - Brown Brown
2 Autumn Low - Mixed Brown
3 Summer Low Small Green Brown
4 Summer Low Medium Green Brown
5 Summer Low Medium Green Mixed
6 Summer Low Large Green Brown
7 Summer High Large Green Green

All use cases were adequately represented by several images in the training set and,
more importantly, the test set was constructed so that it would always contain at least
one image of each use case. This way, the trained models would be tested for all different
combinations of characteristics, ensuring the maximum generalization. Sample images for
each use case are presented in Appendix A.

3.1. Data Acquisition

From 2018 to 2020, a number of test flights were conducted over the aforementioned or-
chards with two different types of UAV, a quadcopter (Phantom 4, DJI Technology Co., Ltd.,
Shenzhen, China) and a fixed-wing UAV (eBee, senseFly, Cheseaux-sur-Lausanne, Switzer-
land), both equipped with high-accuracy GNSS (real-time kinematic (RTK) positioning)
and high-resolution cameras, i.e., 5472 × 3648, at a 3:2 aspect ratio.

The use of RTK GNSS was a requisite to accurately geotag the acquired images. To
achieve further exploration, the automated flights were maintained with the necessary crite-
ria to produce high-accuracy orthomosaics. The parameters of each automated flight were
fine-tuned (UAV flight height, speed, number of captured images, side overlap and forward
overlap ratio) to produce high-resolution, below-centimeter pixel size, orthomosaics, which
are presented in detail in Table 2.

Table 2. Information concerning the flights performed in each use case for the acquisition of images and the creation of the
orthomosaics used in the study.

Use Case
No. Acquisition Date Number of

Trees
Number of

Images Overlap GSD Air Speed
(m/s)

Cloud
Coverage

(%)

1 1 November 2018 1399 283 75% 1.3 <3 49
2 30 August 2020 569 522 75% 1.3 3 32
3 19 June 2020 358 330 75% 1.3 <3 5
4 3 June 2020 506 244 75% 1.5 <3 35
5 12 August 2020 2118 510 75% 1.5 <3 40
6 7 May 2019 296 193 75% 1.3 <3 12
7 15 May 2020 632 465 75% 1.3 <3 5
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3.2. Data Pre-Processing

Image pre-processing is a fundamental aspect of computer vision tasks, especially
when employing self-learning algorithms. The reason for this is the need to transform the
images into proper sizes/shapes, in order for the numerical computations to take place.
In the present study, each of the raw images captured from the study sites utilized over
30 MB of storage each and had a 5472 × 3648 pixel rectangular shape. Size reduction
was the first step that took place along with the reshaping of all images to dimensions of
512 × 512 pixels.

The effect of image preprocessing in terms of color and colorspaces was another
aspect investigated in this study. Histogram equalization (EQ) [30] and contrast-limited
adaptive histogram equalization (CLAHE) [31] are two methods usually used for contrast
enhancement in RGB images, both of which expand the contrast by adapting the range
of the image’s pixel values either globally or locally. Besides the RGB spectrum, the
HSV colorspace—which represents color with hue, saturation, and value, all assigned to
cylindrical coordinates—was also investigated since it amplifies different features of an
image, which could lead to increased performance.

A novel approach to increasing contrast and extracting features by combining an RGB
contrast-enhanced instance of an image and an HSV instance of an image into a single
6-channel image was attempted. Such images contain “double” information from a regular
3-channel image; however, the addition of more color channels does not necessarily imply
that the added value increases as well [32]. A visual representation of how the 3- and
6-channel images are constructed is shown in Figure 3.

Figure 3. Channel deconstructing of (a) RGB, (b) HSV, and (c) fused images.

Two variants of the fused images were tested, namely the RGB image without any
contrast enhancement and the CLAHE method for adaptive contrast enhancement, along-
side the HSV colorspace image. The visual differences between all methods are presented
in Figure 4.

3.3. Performance Metric

The Sørensen–Dice coefficient [33] was selected as the performance metric for the
segmentation of trees against their background. It was preferred over the intersection
over union (IoU, also known as the Jaccard index [34]) because the IoU penalizes bad
classifications harder [35] and, in the case of tree foliage, the exact details of the foliage
shape is not of high importance. As a loss function, the negative value of the dice coefficient
was used, as is common in image segmentation tasks [36].
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Figure 4. Image color transformations used in the study: (a) RGB image, (b) EQ image, (c) CLAHE
image, (d) HSV colorspace image, (e) 6-channel RGB and HSV fused image, and (f) 6-channel CLAHE
and HSV fused image.

4. Results
4.1. Validation on Dataset

All models were trained on an NVIDIA Titan 1080 Ti GPU with between 40 and
100 epochs, a visualization of which is seen in Figure 5. Early stopping was used for
preventing overfitting of the models. The models were trained and tested on 96 and 10
images respectively, which were randomly selected from the 106 images of the dataset,
including all seven use cases (use cases presented in Table 1). In this way, the generalization
of the model was ensured. The accuracy achieved by the models under the differently
pre-processed datasets is shown in Table 3.

Figure 5. Learning plot with training and validation accuracy.
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Table 3. Accuracy (dice coefficient) for investigated methods of segmentation.

Image Colorspace RGB EQ CLAHE HSV RGB + HSV CLAHE + HSV

Channels 3 6

Training accuracy 0.91 0.90 0.90 0.92 0.91 0.91
Validation
accuracy 0.90 0.88 0.89 0.90 0.89 0.90

Testing accuracy 0.87 0.77 0.86 0.86 0.85 0.86

As mentioned previously, the dice coefficient is used for benchmarking the perfor-
mance of trained models. However, the ability of a trained model to properly segment
trees is measured by visual inspection. The system was validated by applying the trained
models to never-before-seen images of entirely different use cases and comparing the
results to the identification of a human expert. The false positives (FPs), i.e., incorrectly
identifying trees at locations where there were none, and false negatives (FNs), i.e., failing
to identify trees, could thus be registered. On top of the tree canopy segmentation, the
exact location of a tree’s trunk was computed based on the predicted masks. The method
for computing this location was based on the centroids of the image moments, i.e., the
weighted average of the predicted masks. Therefore, for each mask representing a tree
canopy, and with the condition that it was isolated and in no way connected to an adjacent
mask, a single point was calculated to signify the position of the tree trunk, considering a
fairly symmetrical canopy shape. A visual example of the predicted segmentation (left)
and the real annotation (right), both overlaid on the original images, is given in Figure 6.

Figure 6. Examples of false positive and false negative segmentation predicted by the developed
system (left) as compared to the real segmentation (right).

Since this study aimed to primarily solve the issue of mapping the locations of trees
within orchards, the absolute intersection between all pixels was mostly considered for the
training phase. The rough shape and size of a properly identified tree canopy was what
would lead to a correct computation of the trunk location and the estimation of the tree’s
age. Therefore, in order to choose the best-trained model for the application, the test set
was manually investigated across the predicted segmentations from each approach. In this
way, FPs and FNs were identified and, finally, each model received a score based on the
ratio of FPs, FNs, and their sum over the total amount of trees in each image, as seen in
Table 4.
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Table 4. Overall performance evaluation, expressed as percentages (%), of the models examined in
the test set of the study, in terms of false positives (FPs), false negatives (FNs), and their sum ratios
over the total number of trees in the test set.

Image Colorspace RGB EQ CLAHE HSV RGB + HSV CLAHE + HSV

FPs (%) 7.49 9.41 16.17 7.57 7.49 4.99
FNs (%) 5.81 8.73 15.17 6.48 10.66 16.22

Total misidentifications
(%) 13.30 18.14 31.34 14.05 18.16 21.21

From the overall evaluation of the models’ performance, the RGB model was identified
as the simplest and provided the best results. Therefore, it was selected as the primary
model to be investigated further. In the next step, the performance of the RGB model was
investigated for each use case separately. In this way, the strengths and weaknesses of the
selected approach could be identified and therefore tackled in future work. The results of
the RGB method were further broken down per test image, covering all use cases that were
included in the present study, as shown in Table 5.

Table 5. Performance evaluation of the RGB model (best performing) applied to the separate test images for each use case,
expressed as percentages (%) of false positives, false negatives, and their sum total.

Test
Image 1 2 3 4 5 6 7 8 9 10 Mean

Use Case 2 1 5 4 4 6 6 5 7 3

FPs (%) 7.69 8.33 16.67 9.09 2.08 1.82 2.33 12.64 14.29 0.00 7.49
FNs (%) 0.00 4.17 4.17 18.18 0.00 1.82 0.00 3.45 2.38 23.94 5.81
Total (%) 7.69 12.50 20.83 27.27 2.08 3.64 2.33 16.09 16.67 23.94 13.30

The accuracy achieved for all use cases using the RGB model ranged between 72.7%
and 97.9%, which can be considered as a satisfactory result. Comparing images 6 and 7 with
9, the effect of the presence of weeds’ on the accuracy of the model is evident, since the first
two images, which belong to use case 6 (large trees; few weeds), performed considerably
better compared to image 9, which belongs to use case 7 (large trees; many weeds). In the
latter, the FPs were the primary reason for limiting the system’s performance. This signifies
that the developed weeds within the image frame led to increased FP misclassifications
(weeds classified as trees). Interestingly, when running test images from use cases 1 and 2
(i.e., images captured during autumn when the canopy was turning brown), accuracy was
notably high, albeit with a low level of weeds coverage.

With regard to common characteristics between use cases, three indicative results
from the RGB model are presented in Figure 7. These three categories cover the most
contrasting situations; (a) ideal conditions with medium/large tree canopies and ground
with only a small amount of weeds, (b) intermediate conditions with large tree canopies
but weed-infested ground, and (c) unfavorable conditions with small tree canopies and
some weeds present. The first image belongs to use case 4, containing clear green canopies
and ground covered by only a few weeds. The second image, which represents use case 7,
shows large green canopies; however, the ground is almost entirely covered with weeds
of a similar shade of green. The third image is from an orchard free of weeds (use case 3);
however, the canopies are particularly small in size due to the young age of the trees. Use
cases 4 and 6 are the most ideal, considering canopy and background color contrast due to
the season and the lack of weeds. A noteworthy outcome is that even though use cases
4 and 5 both had medium-sized canopies, the trained model’s accuracy was completely
different due to the presence of weeds. Additionally, use cases 1 and 2 demonstrated
similar behavior as use cases 3 and 4, since all of them were almost free of weeds, with
the only difference being the more brownish color, making it slightly harder to identify
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all canopies. In all images, a mask overlay of 50% transparency was applied in order to
visualize the segmentations; therefore, the real shades of the images were altered.

Figure 7. Results of indicative RGB images covering a range of different conditions.

4.2. Validation on Orthomosaics

The system as presented above showed its ability to recognize tree canopies with
high accuracy when applied to high resolution images of certain dimensions. However,
investigating the performance of the system with orthomosaics covering the entirety or a
large part of the orchard area was also considered to be of great interest. Therefore, in a
further analysis, the trained models were applied to orthomosaics captured from orchards
with pixel resolution considerably lower than the original training dataset. The aim of
this test was to examine the extent of the trained models’ capabilities considering the
pixel resolution range of all canopies. Applying the models directly to the orthomosaics
produced errors due to the presence of “transparent” pixels that denote areas outside the
bounds of the appointed orchard. Two methods were used to overcome this inconvenience:
“oversampling”, i.e., filling the transparent pixels with the dominant ground color; or
“undersampling”, i.e., cropping the largest area possible that did not contain “out-of-
borders” areas.

The test included (a) analysis of orthomosaics treated as a whole (i.e., as one image)
and (b) analysis of sub-images clipped from the orthomosaic. It is important to note
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that these were never-before-seen images that had not been a part of the original dataset.
Similarly to the training phase, orthomosaics of three different use cases were selected.

Case A. The first case displayed an orchard with large- to medium-sized canopies. As
mentioned above, the pixel resolution was smaller than that of the training dataset. The
accuracy reached 99%, with only a small FP segmentation on the right section of the middle
of the image detected (Figure 8).

Figure 8. Undersampled orthomosaic of an orchard with large- to medium-sized canopies (left) and the segmentation
predicted by the model (right).

Case B. The second use case was an undersampled orthomosaic of an orchard with
young trees (Figure 9). It was observed that even though the canopies were significantly
small, the trained model was able to achieve a high accuracy of 90.5% with only 5.3% FNs
and 4.3% FPs.

Figure 9. Undersampled orthomosaic of an orchard with young trees featuring small-sized canopies (left) and the
segmentation predicted by the model (right).
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Case C. Finally, an orthomosaic with a higher resolution compared to the previous
case of an orchard with small-sized canopies was undersampled and tested. However, the
presence of developed weeds dispersed throughout the orchard produced many FPs in the
segmentation, as seen in Figure 10.

Figure 10. Undersampled orthomosaic of an orchard with small canopies, not treated for weeds (left), and the segmentation
predicted by the model (right).

Even though a rule-based condition could eliminate such small segmentations, this
could be counterproductive for cases with young-aged trees with small canopies. However,
the original orthomosaic, as seen in Figure 11, produced significantly fewer FPs compared
to the undersampled one above.

Figure 11. Complete orthomosaic of a study orchard with trees with small-sized canopies, not treated for weeds (left), and
the segmentation predicted by the model (right).

The accuracy achieved for the orthomosaic was notably high, reaching 82%, and the
segmentation prediction showed 16.4% FPs and only 1.6% FNs. It is worth mentioning that
all the FPs were recognized as trees due to the presence of large surfaces covered by weeds,
simulating the size and the shape of the top view of the tree canopy. This indicates that
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the model can be expected to demonstrate excellent performance with weed-free orchards.
Furthermore, the FNs were located at the edges of the orthomosaic where part of the
canopy of the respective trees was missing.

4.3. Ablation Study

The aim of this section is to demonstrate the effectiveness of the additional compo-
nents (layers) and modifications that were added to the U-net architecture. The scope
of evaluation in this paragraph is the effectiveness of the dropout layer that was placed
between the two convolutional layers in each step. Even though a dropout layer makes
intuitive sense since it improves generalization by mitigating overfitting, its actual effect
should be investigated. A baseline (vanilla) U-net with no dropout layer included and
a variant with the dropout layer placed before the max-pooling and the up-convolution
layers were tested in comparison to the proposed variant. All models were trained with
the RGB images dataset, since it was selected as the best method, and the results of the
three trained models, including the proposed one, are presented in Table 6.

Table 6. Results of the ablation study for the baseline (vanilla) U-net, a variant with a dropout layer
placed after the convolutional layers, and the proposed variant.

Vanilla Variant No. 1 Proposed Variant

Training accuracy 0.89 0.86 0.91
Validation accuracy 0.78 0.85 0.90

Testing accuracy 0.74 0.81 0.87
FPs (%) 13.56 9.93 7.49
FNs (%) 12.48 8.74 5.81

Total misidentifications (%) 26.04 18.67 13.30

An approach without dropout overfitted the model and this was evident because the
training accuracy was high while the validation and testing accuracies were low. This
poor performance was also reflected in the number of epochs required for the model to
achieve proper training, which was significantly lower (approximately 10–20 epochs) than
the other approaches. Adding a dropout layer allows the model to train for a longer
time (<40 epochs); however, the position of the dropout layer affects the performance
of the model [37]. The variant where the dropout layer preceded the max-pooling layer
performed measurably worse since, in a general sense, both dropout and pooling layers
reduce learned information. The ideal combination arises when the dropout layer is placed
between the two convolutional layers, since the network maintains a balance between
learning and forgetting information from the input images.

4.4. Comparison with Baselines and Other Methods

A comparison of the proposed approach with other traditional computer vision
techniques, unsupervised machine learning methods, object detection approaches, and
other image segmentation deep learning techniques is presented in this section. For all
methods, baseline versions were used with minor tuning of parameters. For the traditional
computer vision techniques, blob, feature, and color detection were implemented with the
assistance of OpenCV Python library [38]. Specifically, for the feature detection, oriented
FAST and rotated BRIEF (ORB) was used as a baseline. With regard to the unsupervised
machine learning approach, a K-means algorithm [39] was implemented from Python’s
SciKit-Learn library [40]. For the object detection approach, the single shot detection (SSD)
algorithm [41] with a ResNet50 [42] backbone was used, and for the segmentation approach,
the Mask R-CNN algorithm with a ResNet101 [42] backbone, both implemented with the
Keras library [43] with the Tensorflow backend [44]. Since all methods have different ways
to extract information from images, the characterization of FPs and FNs was conducted by
a domain expert agronomist. The total percentage of both FP and FN instances was used
as a metric of comparison, and all methods were tested on the same test images from the
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study. The supervised learning algorithms were trained with the default parameters and
with early stopping on the same training dataset. The results for all methods are presented
in Table 7.

Table 7. Comparison of the proposed approach (in bold) with other computer vision baselines and machine learning
methods using total percentage of misidentifications as a metric (sum of false positives and false negatives).

Test Image 1 2 3 4 5 6 7 8 9 10 Mean

Use Case 2 1 5 4 4 6 6 5 7 3

Blob detection 63.65 56.81 34.35 34.57 31.73 28.00 25.75 28.54 65.39 39.57 40.84
Feature detection (ORB) 65.68 59.56 49.72 46.85 48.38 50.24 47.90 48.81 63.40 43.74 52.43

Color detection 53.88 52.96 35.32 32.27 31.12 29.62 29.03 27.51 55.88 27.45 37.50
Clustering (K-means) 52.25 54.17 40.19 39.12 38.69 36.47 36.16 36.20 53.55 42.97 42.98
Object detection (SSD) 12.34 15.28 21.68 29.16 5.92 7.03 7.05 19.39 21.01 27.10 16.60

Mask R-CNN 8.31 13.01 19.80 27.21 3.45 3.98 2.80 16.59 17.98 23.00 13.61
Proposed U-net 7.69 12.50 20.83 27.27 2.08 3.64 2.33 16.09 16.67 23.94 13.30

Blob detection performed poorly on use cases 1 and 2 due to the canopies being
brown or leafless, on 4 and 5 due to the canopies’ shadows, and on 7 due to the matching
green color on the weed-rich ground. On use case 3, no significant drawbacks were noted.
Feature detection resulted in too many FP identifications in all cases because of the leaf-like
appearances of most objects present in the aerial orchard photos. Color detection achieved
better performance on use cases 3–6 compared to the previous two methods, but with
manual tweaking of the color values for each image separately; however, when foliage and
ground color bore a resemblance, there were almost no identifications. When K-means was
tuned to create two clusters, for trees and backgrounds, it took into account all pixels that
belonged to weeds or similar fauna. The algorithm trained with SSD was able to find most
trees; however, the locations of the tree trunks, which were computed as the center of the
bounding box, had noticeable deviations from the ground truth. Finally, Mask R-CNN
is a two-stage approach but, even though it performed similarly to the proposed U-net
approach, the generated model was five to ten times larger (the size of the proposed U-net-
based model was ~22 Mb), thus rendering the lightweight implementation prerequisite
as null. All methods offer benefits and drawbacks; however, it is evident that, to meet all
requirements needed to tackle the problem at hand, the proposed U-net approach appears
to be the optimal one.

5. Discussion

The present study is an initial attempt to address the problem of accurately mapping
orchards via UAS. The primary focus was to construct a methodology of tree segmentation
and mapping of orchards. During the testing phase of the models, useful insights were
produced, along with some outcomes that showed both FP and FN misidentifications. In
general, the FPs in the presented system referred to:

• Identification of shrubs and weeds as tree canopies; and
• Segmentation splits of a single instance into multiple high-density instances.

On the other hand, the FNs referred to:

• Circumstantial inadequacy in identifying small canopies; and
• Limitations in identifying trees with leafless canopies.

Considering the preprocessing method that was used, more outcomes can be dis-
cussed. For example, the simple EQ, according to the original image brightness and the
size of the trees, either produced FPs next to canopies, most of them being weeds, or failed
to find the trees entirely, especially if their canopy was small in size. The CLAHE method-
ology, a valuable tool performing well under different brightness conditions, slimmed
down the canopies to a higher degree than desirable, leading to different shapes and sizes
compared to the actual canopy. In many cases, this slimming splits canopies in two, which
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meant that the size of the tree and the location of its trunk could be incorrectly calculated.
When the images were transformed into the HSV colorspace, the trained model performed
well in identifying rough shapes, yet missed some obvious canopies which were not missed
by other methods, leading to a high number of FNs. The fused approach demonstrated that
the shortcomings of each method affected the predicted segmentations, therefore leading
to models with worse performance than their best-performing counterparts. Nevertheless,
the RGB model achieved the highest training and validation accuracy, the best testing
accuracy, and the best performance considering FPs and FNs. This approach demonstrated
robustness with all types of orchards and all seasons and for all different sizes, proving
that it was the best approach for the problem at hand. Another factor that mostly affected
the presence of FNs was the reshaping that images underwent in order to be fed into the
training algorithm and consequently to the trained model. Resizing can compress infor-
mation and in some cases this compression made small canopies “disappear”. However,
even though some vital information could have been lost due to resizing, the FN errors
remained at a low ratio.

The present study also demonstrated that the majority of FP segmentations were
either (a) trees or bushes that were outside of the orchard, (b) developed weeds dispersed
throughout the field area, or (c) split canopies resulting in two separate masks. The first
category is easy to handle since the coordinates of the orchard are known and therefore any
masks outside of it can be disregarded. Since the tree trunks can be calculated based on
the shape of the canopy, their distances can be measured and a set of rules applied to the
orchard’s structure could identify such misidentifications. The latter could serve as a good
solution to address the misidentification problems caused by weeds. The third category
can also be addressed by applying methods that identify the lines on which each tree is
planted, therefore deducting whether the calculated coordinates of a trunk fall within an
acceptable limit. All the above indicate future research directions for the continuation of
this work.

The second misidentification factor can also be addressed by changing the resolution
of the processed images. According to the results of the model performance evaluation
on orthomosaics, in orchards with young trees featuring small canopies and filled with
developed weeds, the performance was rather poor. This was attributed to the fact that
the top view of the weeds was similarly colored, shaped, and sized as the very small trees
within the image. This led to the identification of a large number of FPs. The resolution
of the images used in the procedure played an important role in the accuracy. Running
the same model on the complete orthomosaic, the results were remarkably improved,
reaching 82% accuracy. This was attributed to the fact that the lower pixel resolution
resulted in smoothing of the image, merging the pixels that included small weeds with the
surroundings, thus making the trees stand out in the image.

Higher accuracy with regard to the overlapping area of pixels may be desired as
this is a confident performance metric for model training. However, since the annotation
was conducted with high detail on the canopy while the prediction was not required to
outline fine details, the metric based on FP and FN predictions was additionally used
to identify which method achieved the best results. Regarding the accuracy metric, the
best model achieved 91% for training, 90% for validation, and 87% for testing accuracy.
Considering the false predictions ratio, 13.3% was achieved for both positive and negative
misidentifications of segmented canopies.

In general, image segmentation has been used in many areas; however, this is the first
time, based on the authors’ knowledge, that it has been applied to UAV images of orchards.
Image segmentation was selected over object detection due to a number of benefits, some
of which can be summarized in the following bullet points:

• The trees’ canopy size can be distinguished;
• The trees’ canopy shape can be identified;
• Gaps in the planting scheme due to missing or defoliated and diseased trees can

be identified;
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• The 2D surface of the imaged canopies can be computed;
• The 3D surface and volume of the trees’ canopy can be computed;
• The trees’ ages can be approximated;
• The amount of pesticide/water needed for individual trees can be reduced by assign-

ing proportionate amounts;
• The orchard’s yield potential can be calculated based on UAV imagery.

There are diverse possibilities for applying image segmentation to orchards and it can
cover multiple aspects of operational activities in agriculture. This can be achieved with
the use of deep learning, as it has proven its use in multiple occasions [45]. Additionally,
semantic segmentation is an active domain with novel approaches being proposed sys-
tematically [46], some of which have direct associations with the specific shortcomings of
remote sensing [47].

For the present study, U-net was utilized and tweaked to match the addressed problem
and the available dataset. U-net might be considered as a relatively basic neural network
considering the existence of autoencoders; however, several benefits of its use are apparent
from this study:

• It achieved consistent performance >85% with all image datasets even if they had not
been enhanced;

• High performance could be obtained even with a small number (~100) of images and
even without image augmentation;

• The trained model could produce masks instantaneously.

These outcomes render the selection of U-net as optimal for free field deployment
on UAV images. The lightness of the architecture leads to trained models which can run
with on-board devices using low-power processors. This ease of application, combined
with the high performance for the selected RGB model and the fact that this performance
was achieved with a small dataset, leads to the conclusion that the proposed methodology
is a promising start in the development of a highly sophisticated system that can iden-
tify trees in orchards and extrapolate a multitude of information useful for a variety of
related operations.

The current study could be further advanced by investigating the use of other sensing
tools with different capabilities and functions. These sensors might include hyperspectral
or multispectral cameras, stereo/depth cameras, or thermal cameras. Each of these sensing
tools has different pros and cons:

• Hyper/multispectral and thermal cameras. These cameras have multiple applications
in agriculture, especially for crop monitoring. The main advantage is the high-value
data related to crop and soil status. The disadvantages of this type of camera are the
high computational cost that is required to transform the raw data, the high purchase
cost, and the operational constraints due to various calibrations that have to take place
before each flight and their dependence on weather conditions since cloud coverage
greatly affects their measurements.

• Stereo/depth cameras. These are a type of camera commonly used in UGV applica-
tions due to their accurate depth perception in tandem with RGB depiction. There
are two major disadvantages that constrain the use of these sensors; their low range
of operational distance (most cameras have a 20 m range) and increased onboard
computational requirements.

• Thermal cameras. These cameras provide high-value data, similar to the hyper- and
multispectral cameras. However, they have high computational and operational costs.

However, using one of these sensors, or a combination of them, would increase the
complexity of the system, adding computational costs. Since our goal was to develop a
widely acceptable rapid system for on-the-go applications, we based the methodology on
using RGB camera, thus making it accessible to the majority of UAS users. In this study, an
initial approach for developing a simple tree segmentation system that provides instant
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and accurate results was proposed. Evaluating the use of the abovementioned sensors is
part of our future plans for further development.

The proposed system can serve as a tool for identifying the locations of trees and
obstacles within orchards and can be used as part of situation awareness and path planning
for agricultural robots and autonomous vehicles. In future work, this model could serve
as a UAV-based scouting tool in a UAV–UGV synergetic scheme for autonomous UGV
operations within orchards. Additionally, this system can identify gaps within tree rows,
thus serving as a subsystem of a farm management information system (FMIS).

6. Conclusions

This study addressed the problem of accurately identifying and segmenting tree
canopies in a variety of orchards from UAS-captured images. The potential uses of tree
segmentation cover a variety of applications, such as, for example, mapping orchard
environments in order to identify the coordinates of tree trunks for autonomous ground
vehicle navigation. Additionally, the system can serve as a tool to properly calculate the
volume of tree canopies within orchards and consequently estimate the trees’ ages and
yield potential. These operations are crucial for the next age of precision agriculture, in
which on-field visual inspection by experts will be less frequent, or extensive and less
time-consuming. Agricultural environments are highly complex; therefore, the ability to
accurately segment tree canopies, regardless of the growth stage and the season, provides
added value to any subsequent operations that take place within orchards.

The proposed approach employed a deep learning architecture, namely U-net, to
create a model able to segment tree canopies from UAS-captured images. The implemented
dataset was composed of images from three different orchards at different seasons through-
out the year, growing trees of different ages and with different canopy sizes. The achieved
variability of the dataset resulted in obtaining images that fell under seven different use
cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, valida-
tion, and testing, respectively. The results of the test dataset were also hand-examined by
experts in order to identify false positive and false negative instances of the produced seg-
mentation. The mean of all false positive instances throughout the whole test dataset was
7.49% and for all false negative instances it was 5.81%. The trained model was also tested
on never-before-seen orthomosaic images or orchards based on two methods in order to
tackle issues with out-of-the-field boundary transparent pixels in the image. Even though
the trained model did not contain orthomosaic images, it achieved performance levels that
reached up to 99%, demonstrating the robustness of the proposed approach. Additionally,
this study revealed issues that are present in computer vision tasks in highly complex
environments, such as in agricultural production. These issues have been documented and
will be the focus of upcoming studies. Other future plans include the verification of the
present study’s results by testing and evaluating the performance of the trained models on
different types of trees and orchard structures. Additionally, auxiliary methodologies will
be developed to address the problem of densely located or merged false positives.
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Appendix A

Table A1. Sample images of the seven use cases included in the study.

Use Case No. Conditions Sample Image

1

Yearly season: Autumn
Weeds coverage: Low

Canopy size: -
Foliage color: Brown
Ground color: Brown

2

Yearly season: Autumn
Weeds coverage: Low

Canopy size: -
Foliage color: Mixed
Ground color: Brown

3

Yearly season: Summer
Weeds coverage: Low

Canopy size: Small
Foliage color: Green

Ground color: Brown

4

Yearly season: Summer
Weeds coverage: Low
Canopy size: Medium
Foliage color: Green

Ground color: Brown

5

Yearly season: Summer
Weeds coverage: Low
Canopy size: Medium
Foliage color: Green
Ground color: Mixed

6

Yearly season: Summer
Weeds coverage: Low

Canopy size: Large
Foliage color: Green

Ground color: Brown

7

Yearly season: Summer
Weeds coverage: High

Canopy size: Large
Foliage color: Green
Ground color: Green
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