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Abstract

Background: In structural biology area, protein residue-residue contacts play a crucial role in protein structure
prediction. Some researchers have found that the predicted residue-residue contacts could effectively constrain the
conformational search space, which is significant for de novo protein structure prediction. In the last few decades,
related researchers have developed various methods to predict residue-residue contacts, especially, significant
performance has been achieved by using fusion methods in recent years. In this work, a novel fusion method
based on rank strategy has been proposed to predict contacts. Unlike the traditional regression or classification
strategies, the contact prediction task is regarded as a ranking task. First, two kinds of features are extracted from
correlated mutations methods and ensemble machine-learning classifiers, and then the proposed method uses the
learning-to-rank algorithm to predict contact probability of each residue pair.

Results: First, we perform two benchmark tests for the proposed fusion method (RRCRank) on CASP11 dataset and
CASP12 dataset respectively. The test results show that the RRCRank method outperforms other well-developed
methods, especially for medium and short range contacts. Second, in order to verify the superiority of ranking
strategy, we predict contacts by using the traditional regression and classification strategies based on the same
features as ranking strategy. Compared with these two traditional strategies, the proposed ranking strategy shows
better performance for three contact types, in particular for long range contacts. Third, the proposed RRCRank has
been compared with several state-of-the-art methods in CASP11 and CASP12. The results show that the RRCRank
could achieve comparable prediction precisions and is better than three methods in most assessment metrics.

Conclusions: The learning-to-rank algorithm is introduced to develop a novel rank-based method for the residue-
residue contact prediction of proteins, which achieves state-of-the-art performance based on the extensive assessment.
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Background
In the research area of structural biology, de novo pro-
tein structure prediction is a long-standing challenge.
The main aim of de novo protein structure prediction is
to predict protein 3-dimensional structures by using
their sequences. In the past, researchers have developed
various methods (such as fragment-based assembly
methods and molecular dynamics simulation methods)
to model structures with lowest free energy for certain
protein sequences. Based on this strategy, those methods

have predicted some small protein structures accurately
[1, 2]. However, due to the search spaces of large protein
structures are very large, de novo protein structure pre-
diction methods perform poorly on those large protein
targets [3, 4]. These years, an alternative method is
adopted to compress the scale of calculation by using
protein contact constraints. This method first predicts
protein residue-residue contacts from residue sequences,
and then predicts protein tertiary structures by using
those predicted contacts as constraints [5]. One study
published in 2015 has shown the importance of contact
that accurate topology-level modeling could be achieved
by using long-range contacts [6]. By adding contact pre-
diction module, some protein structure prediction
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methods have achieved improved performances [7]. In
addition to the de novo protein structure prediction, the
protein contacts are very useful in protein structure align-
ment [8, 9], protein model quality assessment [10–12] and
drug design [13] etc.
In order to predict protein contacts accurately, related

researchers have developed many methods since the
1990s. Generally, these methods could be classified into
five kinds: correlated mutations methods, machine-
learning methods, fusion methods, template-based
methods and 3D model-based methods. Correlated mu-
tations methods have been extensively studied for more
than twenty years. The basic hypothesis of correlated
mutations methods is, the substitutions of amino acid
site should occur in pairs to keep the stability of protein
structures. Researchers have use many mathematic
methods to identify correlated substitution from mul-
tiple sequence alignments (MSAs) and they can be di-
vided into two classes: the local statistical methods and
the global statistical methods. The local statistical
methods are based on statistical independence of residue
pairs, such as mutual information [14, 15], correlation
coefficient [16–20], observed minus expected square ap-
proaches [21–23], etc. In order to eliminate the indirect-
coupling effects and phylogenetic bias from MSAs, some
global statistical methods are employed later, such as
maximum entropy model [24, 25], inverse covariance es-
timation [26], pseudo-likelihood maximization [27–30],
etc. Machine-learning methods formulate the protein
residue-residue contact prediction as a classification task
(contact or non-contact) or a regression task (the contact
probabilities of residue pairs). Many machine-learning al-
gorithms are used to predict contact probabilities by learn-
ing from protein native structures, such as support vector
machines [31–33], neural networks [34–38], random forest
[39, 40] and hidden Markov models [41] etc. The input fea-
tures of machine-learning methods usually include
position-specific scoring matrix (PSSM), predicted solvent
accessibility, predicted secondary structure, amino acid dis-
tributions, sequence length, residue position, etc. Fusion
methods combine machine-learning methods and corre-
lated mutations methods. Some fusion methods [42–44],
which are also seen as machine-learning methods gener-
ally, take the outputs of correlated mutations methods as
part of features and train machine-learning algorithms to
predict contact probability. The other fusion methods [6,
45] score probabilities to be contacts by using correlated
mutations and machine-learning methods separately, and
then make a fusion of those scores by using preassigned
weights. Template-based methods [46, 47] take homolo-
gous proteins those have known structures as templates to
predict protein contacts, which is similar with the strategy
used by template-based protein structure prediction. How-
ever, there are many proteins without homologous protein

templates, so the template-based methods are not very use-
ful to predict protein contacts. 3D model-based methods
predict the protein structure and deduce contacts from the
predicted structure. Considering that the protein contacts
are mainly used for protein structure prediction, 3D
model-based methods have limited use in most cases.
In general, protein residue-residue contact prediction

is often seen as a classification task or a regression task.
We present the RRCRank (Residue-Residue Contact pre-
diction by learning-to-Rank) [48], which is a novel fusion
method. In the RRCRank, the contact prediction is
regarded as a ranking task and the contact probabilities
of residue pairs are predicted by using learning-to-rank
strategy. In information retrieval area, the learning-to-
rank problems have been widely studied. In a typical in-
formation retrieval process, the input is a specific query
and some relevant documents, and the output is the
score of every document which represent the relevance
of the document with the query. Among various ma-
chine learning methods, the learning-to-rank method is
very powerful to solve information retrieval problem. It
first learns ranking strategy by using machine learning al-
gorithms from training data, and then ranks every docu-
ment in the test set using the ranking strategy. Taking into
account its good performance in information retrieval
area, many bioinformatics tasks adopt learning-to-rank
methods to deal with rank-related problems, such as bio-
medical document retrieval [49], protein model quality as-
sessment [50],disease name normalization [51], etc. Here,
we regard the contact prediction task as ranking task and
use learning-to-rank method to solve it. The proposed fu-
sion method, RRCRank [52], contains two phases. First, it
uses correlated mutations methods and ensemble
machine-learning classifiers to predict contact probabil-
ities of residue pairs. Then, it makes a fusion of those pre-
dictions by using the learning-to-rank algorithm, which
improves the contact prediction performance.

Methods
Protein contact definition and assessment metrics
The protein residue-residue contacts are specific sub-
structures in protein tertiary structures. In general,
residue-residue contact represents those residue pairs
whose inter-residue distance is less-than a given thresh-
old in tertiary structure. In this work, we adopt the same
definition of contact in CASP (Critical Assessment of
protein Structure Prediction): a residue pair will be
regarded as a contact if the Euclidean distance of their
Cβ atoms (Cα for GLY) is less than 8 Å [53].
Generally, according to the separation of residue pair

along the protein sequence, there are three kinds of con-
tacts: long-range contacts (the separation is greater or
equal to 24), medium-range contacts (the separation is
between 12 and 23) and short-range contacts (the
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separation is between 6 and 11). The contacts usually
belong to the same secondary structure if their separ-
ation is less than 6 residues, so those contacts are usu-
ally not considered in contact prediction [53].
Under a certain contact definition, the goal of protein

contact prediction is to classify residue pairs in the pro-
tein tertiary structure (contact or non-contact). In order
to assessment the contact prediction methods, related
works often use the precision (or accuracy) metric: pre-
cision = TP/(TP + FP), where TP represents the number
of true positive samples and FP represents the number
of false positive samples. In practice, contact prediction
methods will score the probability to every residue pair
or to a subset of possible residue pairs. In this study, we
use the sets of Top 5, L/10 and L/5 scored predicted
pairs to evaluate the proposed method, where L is the
target protein sequence length.

Datasets
In this work, The PDBSELECT dataset [54] is used as
training dataset, which is also used by previous works:
SVMSEQ [31] and R2C [45]. The pair-wise sequence
identity of protein sequences from PDBSELECT dataset
is lower than 25%, which means that protein sequences
are non-homologous in the training dataset. We select
553 protein sequences and the residue numbers of those
sequences range from 50 to 300. Previous study [55] has
found the contacts are extremely sparse (~2–3%) in na-
tive tertiary structures, and it is the same in this training
dataset. The sparse contacts distribution will lead to
overtraining for non-contact samples, so when training
the ensemble machine-learning classifiers, we sample
training samples following the ratio of 4:1 between non-
contact and contact samples.
To evaluate performances of the proposed method,

the CASP11 (11th Community Wide Experiment on the
Critical Assessment of Techniques for Protein Structure
Prediction) [56] dataset and 40 CASP12 targets (55 do-
mains) are used as test datasets. The sequence lengths of
CASP11 dataset range from 44 to 669. The CASP11
dataset is divided into three categories (TBM, TBM-hard
and FM) based on the official CASP definitions. In gen-
eral, the protein targets of TBM-hard and FM categories
are difficult to detect their homologous structure tem-
plates from known protein structures, so these protein
targets are regarded as hard targets. The 40 CASP12 tar-
gets whose sequence lengths ranging from 75 to 670
were newly released in December 2016, and its targets
and domains list are shown in Additional file 1: Table S1
and Additional file 2: Table S2. The release time of the
training dataset is 2008, and the release time of CASP11
and CASP12 datasets are 2014 and 2016 separately, so
the training dataset could not contain any targets in
CASP11 and CASP12. For the hard targets in the test

datasets, homologous structure template could not be
find in the training dataset. More specifically, the aver-
age sequence similarity of all sequence pair is 12% and
the proportion of sequence pairs those share more than
25% identity is 2.97% between PDBSELECT and CASP11
dataset. The highest sequence pair similarity is 44%, and
there are just 16 sequence pairs’ (56,959 pairs in total)
similarities in the range of 40%–45%. For PDBSELECT
and CASP12 dataset, the average sequence similarity is
12% and the proportion of sequence pairs those share
more than 25% identity is 2.97%. The corresponding
highest sequence pair similarity is 44%, and there are 4
sequence pairs’ (22,120 pairs in total) similarities in the
range of 40%–45%. These data demonstrate that the se-
quence similarity between train and test datasets is at a
low level. In order to make a comprehensive assessment,
we evaluate performances of the proposed method based
CASP11 all targets and hard targets separately. It should
be noted that we evaluate the performance of all
methods based on protein domain (sequence length > 50),
which is the common way adopted by most related stud-
ies. Additional file 3: Figure. S1 shows distributions of
protein domains’ length on the CASP11 dataset and
CASP12 dataset used in our work. Additional file 4:
Figure. S2 shows the distributions of protein sequence
similarity between train and test datasets.

Contact prediction framework based on learning-to-rank
In machine learning research area, learning-to-rank is a
kind algorithm that sorts objects based on their import-
ance or relevance to the target by using a ranking strat-
egy. In the past years, learning-to-rank algorithm has
effectively solved many information retrieval problems,
such as collaborative filtering [57], document retrieval
[58], spam detection [59], etc. There are three categories
of existing learning-to-rank algorithms: pointwise algo-
rithm, pairwise algorithm, and list-wise algorithm. Dif-
ferent algorithms will handle the learning-to-rank
process by using different strategies. Compared with the
list-wise algorithm, the pointwise and pairwise algo-
rithms have an obvious advantage that they could dir-
ectly use the traditional classification or regression
methodologies to the learning task. What’s more, pair-
wise algorithm usually outperforms pointwise algorithm
and has been widely used in information retrieval
applications.
For the pairwise algorithm, the learning-to-rank task is

converted into a classification task. It represents each
document as a feature vector and takes documents pairs
as instances before learning period. The pairwise algo-
rithm first collect document pairs from document lists,
and then assign labels to represent relative importance or
relevance of the two document for each document pair.
Finally, it trains a machine learning model (regression or
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classification) with the labeled data. In test period, the
trained rank model before is used to rank new data [58].
Referencing to the information retrieval strategy, the

RRCRank also converts the contact prediction task to
the ranking task. As shown in Fig. 1, the process can be
divided into two phases: the RRCRank first uses corre-
lated mutations methods and ensemble machine-
learning classifiers to predict contact probability, and
then it uses learning-to-rank method to re-rank each
residue pair.
In first phase, the RRCRank uses three correlated mu-

tations methods (CCMpred, PSICOV and GREMLIN)
and ensemble machine-learning classifiers to predict the
contact probability of residue pair. It is important to
note that the ratio of contact samples in native protein
structures is very low (~2–3%), which has also shown in
previous study [55]. The imbalanced contact and non-
contact distribution will lead to an extremely imbalanced
learning problem. So we under-sample the non-contact
residue pairs following the ratio of4:1 between non-
contact and contact samples to deal with the imbalanced
learning problem. Due to the under-sampling will cause
information loss, we use ensemble machine-learning
classifiers to counteract information loss. In this work,
the classifier is random forest algorithm, so it is named
as RF-classifier. For each contact type (long, medium
and short), we under-sample three times and get three
training subsets. The features are extracted from protein
sequences, and a feature vector will represent a residue
for the RF-classifier. In order to make use of local resi-
due information, we adopt 9-residue window to repre-
sent the target residue, so an instance is an 18-residue
window feature vector (a residue pair contains two resi-
dues). Then ensemble RF-classifiers take these instances
as inputs to train the model or to predict unknown pro-
tein contacts. For correlated mutations methods (PSI-
COV, CCMpred and GREMLIN), the inputs of them is
multiple sequence alignments (MSAs). Here we produce

MSAs for each target protein sequence by using HHblits
[60] against the uniprot20 database, then these MSAs
are inputted into correlated mutations methods to make
prediction. These correlated mutations methods will
output decimals from 0 to 1 to represent contact prob-
ability, and a larger value means a greater contact prob-
ability in protein tertiary structure.
In the second phase, contact prediction task is con-

verted to a ranking task by the RRCRank. In short, the
RRCRank sorts residue pairs based on their contact
probabilities in a certain protein structure. Based on the
definition of contact, the Euclidean distance is used to
measure the probabilities. The probability to be a con-
tact of a residue pair would be large if their Euclidean
distance is small. The learning-to-rank algorithm takes
outputs of the first phase to train the ranking strategy,
and then use the trained ranking strategy to score any
target residue pairs for a protein to represent their rela-
tive ranking relation.
Here, the RRCRank adopts the pairwise ranking via-

classification algorithm to predict contacts, and imple-
ment the task by using SVMRank [61]. It uses the linear
kernel as kernel function and optimizes the parameters
by using five-fold cross validation on the training data-
set. Specifically, for a list of residue pairs of a target pro-
tein, we use the feature vector Φ(t, d) to represent the
distance of t and d, where t is the target and d is the
residue pair. We could get a list of ranking functions as:

ðdi; djÞ∈f ω tð Þ⇔ω⋅Φ t; dið Þ > ω⋅Φ t; dj
� �

where f is the ranking function, di and dj denote differ-
ent residue pairs, and ω is the weight vector which is op-
timized in learning period.
Then, referring to SVM classification problem, slack vari-

ables are introduced and we could get the optimization
problem as follow:
minimize:

Fig. 1 The overall flowchart of the proposed contact prediction framework
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V ω; ξð Þ ¼ 1
2
ω⋅ωþ C

X
ξ i;j;k

subject to:

∀ðdi; djÞ∈r1 : ω⋅Φðt1; diÞ≥ω⋅Φðt1; djÞ þ 1−ξ i;j;1

⋯

∀ðdi; djÞ∈rn : ω⋅Φðtn; diÞ≥ω⋅Φðtn; djÞ þ 1−ξ i;j;n

∀i∀j∀k : ξ i;j;k≥0

where V represents the objective function, C is a
trading-off parameter of training error and margin size,
ξ is the slack variable, k is the constraint subscript and r
represents the residue pair set.
Next, a new optimization problem could be got by re-

arranging the constraints, which is an equivalent classifi-
cation problem of SVM.

ω⋅ Φðt1; dið Þ−Φðt1; djÞÞ≥1−ξ i;j;k
According to the solution of SVM classification prob-

lem, we could also use decomposition algorithms to
solve this problem.

Feature extraction
There are two sets of features used in this study. The
first set is various input features of RF-classifiers. We ex-
tract five types of sequence features for every residue:
PSSM (Position Specific Scoring Matrix) and its relevant
two outputs (relative weight of gapless real matches to
pseudo-counts and information per position), predicted
solvent accessibility, predicted secondary structure,
Atchely factors and the residue relative position. The
PSSM and its relevant outputs are obtained by running
PSI-BLAST [62] on non-redundant sequence databases,
here, we use the nr sequence database of NCBI which is
filtered at 90 % sequence similarity as sequence database
of PSI-BLAST, and run three iterations of PSI-BLAST
for each target sequence. We use ACCpro and SSpro
from SCRATCH [63] to predict solvent accessibility and
secondary structure. The Atchely factors are five numer-
ical values which represent volume, codon diversity,
electrostatic charge, secondary structure and polarity
[64], which characterize a residue by scaled representa-
tions. The relative position is calculated as: rPosi-
tion = p/L, where L is the protein sequence length and p
is the target residue index.
The another feature set is the prediction values of

three correlated mutations methods: PSICOV [26],
CCMpred [65] and GREMLIN [29]. PSICOV is a repre-
sentative correlated mutations method that uses the
sparse inverse covariance estimation to predict inter-
residue contacts [26]. The sparse inverse covariance esti-
mation is a simple but powerful graphical inference

technique to discriminate directly coupled mutation cor-
relations from indirectly coupled correlations in the
MSAs. CCMpred is a correlated mutations method by
maximizing the pseudolikelihood of an L2-regularized
Markov random field [65]. GREMLIN learns the direct
couplings from a Markov random field by maximizing
its pseudo-likelihood and incorporats prior information
on pairs to be in contact to improve the robustness of
predictions with fewer sequences [29].

Results and discussion
Performance improvements on CASP11 dataset
The contact prediction task is formulated as a ranking
task by the proposed method, RRCRank. The RRCRank
uses learning-to-rank method to sort each residue pair
according to its contact probability. The inputs of the
learning-to-rank algorithm are the predictions of three
well-developed correlated mutations methods (CCMpred
[65], PSICOV [26] and GREMLIN [29]) and machine-
learning classifiers, and the outputs are floating values
which represent relative ranking relations of residue
pairs to be contacts. The method detail is shown in ‘Ma-
terials and Methods’ section. Each residue pair of a cer-
tain protein is ranked by the RRCRank based on its
Euclidean distances from small to large, so the residue
pair with higher ranking will have larger probability to
be contact.
In order to evaluate the improvements made by the

RRCRank, we performed a benchmark test on the
CASP11 dataset. The assessment results based on
CASP11 all targets are shown in Table 1. As shown in
the table, the RRCRank clearly.
shows a better performance for all three contact types,

especially for short contacts and medium range contacts.
In order to intuitively show the performance of
RRCRank, the scatter plots of the prediction accuracy
are shown on Fig. 2. As shown in the figure, most of tar-
gets are better predicted by the RRCRank, particularly
compared with RF-classifiers.
Based on the design of RRCRank, two factors could

contribute to its success. On the one hand, the learning-
to- rank strategy could rank the residue pairs of a pro-
tein target structure reasonably. A protein structure can
be seen as a micro-environment of its inner residue
pairs, residue pairs from different protein structures could
have different ranking relations even though they have
similar elements. The learning-to-rank framework sorts
residue pairs based on other residue pairs coming from
the same structure, which is a more effective strategy than
just giving global scores. One the other hand, the outputs
of correlated mutations and ensemble machine-learning
classifiers are complementary, the RRCRank achieves an
improved performance by taking full advantage of these
outputs as features. According to some previous
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researches, the performances of correlated mutations and
machine-learning methods are different on different con-
tact types, in Table 1, that phenomenon is also confirmed.
For short-range contacts, the RF-classifiers achieves much
better performance than correlated mutations methods
(CCMpred, PSICOV and GREMLIN). However, for long
and medium range contacts, correlated mutations
methods achieves comparable even better performances,
but the performance of RF-classifiers is not so well. Con-
sidering that the correlated mutations and machine-
learning methods have complementary performances on
different contact types, the integration of these two kinds
of methods are valuable for predicting contact accurately.
Due to learning-to-rank is a kind of machine-learning al-
gorithm, the RRCRank achieves greater improvement for
medium and short range contacts but less improvement
for long range contacts.

Furthermore, we evaluate the improvements made by
the RRCRank on CASP11 hard targets, and the results
are shown in Additional file 5: Table S3. Because these
hard targets are difficult to detect their homologous
structure templates from known protein structures, it is
a challenging task to predict their inter-residue contacts
with high precision. As shown.
In Additional file 5: Table S3, the RRCRank shows bet-

ter performances for medium and short range contacts
when compared with other methods. And the proposed
RRCRank achieves comparative performance for long-
range contacts.

Performance improvements on CASP12 dataset
In order to further evaluate the improvements made by
the RRCRank on real data, we make a benchmark test
on 40 CASP12 protein targets which were released in

Table 1 The comparative results of the proposed method with other methods on CASP11 dataset

Methodsa Short-range Medium-range Long-range

Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5

PSICOV 35.12% 24.59% 19.00% 34.47% 26.75% 21.82% 40.98% 33.12% 28.02%

CCMpred 40.00% 30.13% 22.60% 40.33% 31.66% 26.36% 43.90% 38.55% 33.51%

GREMLIN 40.33% 29.71% 22.80% 40.49% 32.19% 26.55% 43.25% 38.19% 33.64%

RF-classifiersb 62.76% 50.11% 42.18% 37.87% 31.69% 28.27% 25.41% 22.74% 19.85%

RRCRank 67.48% 54.97% 46.02% 47.38% 37.87% 31.74% 48.69% 40.78% 34.77%
aThe best results are shown in bold font. bThe average of three independent RF-classifiers for each contact category

Fig. 2 Comparison of the top L/5 prediction performance between the RRCRank and other methods. (a) PSICOV. (b) GREMLIN. (c) CCMpred. (d)
RF-classifiers. (Line x = y is shown for reference)
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December 2016. The 40 CASP12 protein targets include
55 domains, in which 30 domains are hard targets, the
detail is shown in Additional file 1: Table S1 and
Additional file 2: Table S2. The evaluation results are
shown in Table 2. As shown in the table, the overall per-
formance of RRCRank is not better than CASP11 data-
set. There could be two reasons. One is that most
targets in CASP12 dataset are hard targets (~55%), while
the ratio is approximate 41% on the CASP11 dataset.
The other is that the CASP12 dataset contains more do-
mains with long sequence length, which can be found
from the distribution of protein domains’ length on
these two datasets in Additional file 3: Figure. S1. How-
ever, similar to the results on CASP11 dataset, the
RRCRank still has improved performances for three con-
tact types in most metrics.

Performance comparison with the regression-based and
classification-based methods
Generally, most protein residue-residue contact predic-
tion methods take classification or regression strategy to
predict contacts, in this work, we propose a novel rank-
ing strategy. In order to evaluate the superiority of rank-
ing strategy, we implement a regression method (SVR)
and a classification-based method (SVC) by using
SVMlight [66]. The features fed into these two methods
are same with those used in RRCRank. The regression-
based method uses normalized Euclidean distance to
score each residue pair, which is a similar way with that
of RRCRank. The classification-based method takes the
non-contacts as negative samples and contatcs as the
positive samples.
Table 3 shows the assessment results. On the CASP11

all targets dataset, the proposed RRCRank outperforms
the SVR and SVC methods except for the Top5 metric
for short-range contacts. While on the CASP11 hard tar-
gets dataset, the RRCRank consistently outperforms the
SVR and SVC methods on all assessment metrics.
For specific categories, there are significant improve-

ments for long-range contacts made by the RRCRank,
which indicates it has better prospects. Overall, the
learning-to-rank method RRCRank is more competent

for protein inter-residue contact prediction when com-
pared with regression and classification methods.

Performance comparison with four leading methods on
CASP11 and CASP12 dataset
As an acknowledged assessment, the Critical Assessment
of protein Structure Prediction (CASP) receives a great
deal of attention by protein structure researchers.
Groups with leading performance in CASP are recog-
nized as the state-of-the-art methods in the correspond-
ing period. To further assess the behavior of RRCRank,
we select the best four methods (CONSIP2, Shen-
Group, MULTICOM-CLUSTER and UCI-IGB-CMpro)
in CASP11 [67] as references based on their L/5 preci-
sion (the definition is shown in ‘Materials and Methods’
section) for long-range contacts. In a sense, those four
methods can be viewed as the best known methods
these years. Among those four methods, the CONSIP2 is
a fusion method which takes the outputs of correlated
mutations methods as part of features and train a two-
layer neural networks to predict contact probability, the
Shen-Group is also a fusion method which makes a fusion
of machine-learning and correlated mutations methods by
using preassigned weights, the MULTICOM-CLUSTER is
a machine-learning method based on deep networks and
boosting techniques, and the UCI-IGB-Cmpro should be
a machine-learning method based on deep neural net-
works (its category is inferred from the predictor’s article,
which is not shown in CASP11 Abstracts).
Table 4 shows the comparative results of RRCRank and

the reference methods on the CASP11 dataset. Just as as-
sessment results in CASP11 [67], the CONSIP2 is the top
performing method which is superior to all other methods
including the RRCRank. But when compared with other
three leading methods, the RRCRank performs comparably,
and on CASP11 all targets dataset, it outscores other three
methods in most assessment metrics. In order to further
demonstrate the value of RRCRank, we present the scatter
plots of prediction accuracy comparison in Fig. 3. As shown
in Fig. 3, the distribution of points is scattered, which means
the RRCRank is not just a repeat of other methods but
shows its superiority on some protein targets. What’s more,
we select protein target T0817-D2 as an example to

Table 2 The comparative results of the proposed method with other methods on CASP12 dataset

Methodsa Short-range Medium-range Long-range

Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5

PSICOV 33.09% 25.99% 19.44% 38.55% 31.54% 23.86% 37.09% 33.65% 28.01%

CCMpred 40.00% 31.56% 24.10% 46.91% 36.52% 30.22% 41.82% 38.54% 34.44%

GREMLIN 40.00% 30.75% 24.08% 46.18% 35.84% 30.25% 44.00% 37.59% 34.31%

RF-classifiers 55.27% 45.78% 37.81% 31.64% 29.11% 23.67% 29.45% 23.04% 20.16%

RRCRank 62.55% 51.59% 41.90% 42.18% 37.40% 29.93% 48.36% 39.34% 34.37%
aThe best results are shown in bold font
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highlight the performance difference between the proposed
RRCRank and four leading methods in Additional file 6:
Figure. S3. In Fig. S3, real contacts are shown as grey dots,
the contacts predicted by RRCRank are shown as black
upper triangular in the upper left part of every subfi-
gure, and the contacts predicted by four leading
methods are shown as black down triangular in the
lower right part of every subfigure. As shown in the fig-
ure, the contacts distribution predicted by RRCRank are
different from those predicted by other leading
methods. In general, those comparison results indicate
that the RRCRank could achieve the state-of-the-art and
unique performance for protein residue-residue contact
prediction.
Three of the four methods also participated in the

CASP12, which are CONSIP2 (with the name MetaP-
SICOV in CASP12), Shen-Group and MULTICOM-
CLUSTER. The comparison results of the RRCRank
with these methods on 40 CASP12 targets are shown
in Additional file 7: Table S4. As shown in table, the
CONSIP2 (MetaPSICOV) performs best among these
methods, but the RRCRank still has comparable per-
formance compared with other methods.

Statistical significance of difference between different
methods
To estimate the degree of performance differences between
RRCRank and other leading methods in CASP11, we use
the p-values in Student’s t-test on prediction precision of
different methods as the assessment metric. The results are
presented in Table 5. We can find from the table, the p-
values between RRCRank and other methods are very
small, which means that differences are statistically signifi-
cant. What’s more, we also calculate the p-values in Stu-
dent’s t-test on prediction precision between the RRCRank
and other methods used in the first phase on CASP11 and
CASP12 datasets. The results are shown in Additional file 8:
Table S5 and Additional file 9: Table S6. The differences are
still statistically significant on CASP11 dataset. Though the
CASP12 dataset is a small dataset, and the difference did
not show in Additional file 9: Table S6 very significantly, it
still reflects the approximate situation. Because correlated
mutations methods are based on similar principle, p-values
between PSICOV, CCMpred and GREMLIN are large. Em-
pirically, in order to further improve the performance of
the RRCRank, complementary correlated mutations
methods could be more valuable. In summary, the head-to-

Table 3 The comparative results of the proposed method with traditional strategies

Methodsa Short-range Medium-range Long-range

Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5

All targets SVR 68.13% 53.57% 44.98% 43.44% 36.20% 30.44% 38.37% 32.84% 27.96%

SVC 62.60% 49.68% 42.26% 38.20% 32.05% 27.56% 36.89% 29.75% 26.51%

RRCRank 67.48% 54.97% 46.02% 47.38% 37.87% 31.74% 48.69% 40.78% 34.77%

Hard targets SVR 56.80% 45.83% 39.53% 35.20% 31.06% 26.07% 19.60% 16.40% 14.18%

SVC 54.00% 44.77% 38.52% 35.60% 30.24% 26.09% 20.00% 15.62% 14.77%

RRCRank 57.20% 46.06% 39.72% 40.00% 31.39% 26.29% 30.40% 23.31% 18.57%
aThe best results are show with bold font for each category

Table 4 The comparative results of the proposed method with the state-of-the-art methods on CASP11 dataset

Methodsa Short-range Medium-range Long-range

Top 5 L/10 L/5 Top 5 L/10 L/5 Top 5 L/10 L/5

All targets CONSIP2 75.77% 64.17% 55.18% 70.89% 59.91% 51.32% 58.37% 51.61% 46.65%

Shen-Group 58.31% 50.01% 43.11% 47.61% 41.10% 36.07% 34.37% 33.30% 28.94%

MULTICOM-CLUSTER 68.13% 55.47% 46.17% 49.27% 41.12% 37.52% 35.12% 30.27% 26.32%

UCI-IGB-CMpro 52.20% 42.79% 36.09% 48.94% 41.68% 36.09% 36.75% 30.38% 28.10%

RRCRank 67.48% 54.97% 46.02% 47.38% 37.87% 31.74% 48.69% 40.78% 34.77%

Hard targets CONSIP2 68.40% 57.60% 50.48% 60.40% 50.22% 43.14% 41.60% 35.21% 30.36%

Shen-Group 60.89% 50.74% 43.72% 48.89% 41.62% 35.25% 29.33% 27.29% 22.94%

MULTICOM-CLUSTER 62.40% 52.91% 43.81% 50.00% 40.31% 35.74% 24.40% 22.09% 17.89%

UCI-IGB-CMpro 51.20% 42.58% 36.64% 49.20% 41.23% 34.94% 24.80% 19.93% 18.42%

RRCRank 57.20% 46.06% 39.72% 40.00% 31.39% 26.29% 30.40% 23.31% 18.57%
aThe best results are show with bold font for each category
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head comparisons shows the proposed RRCRank has su-
periority compared with other methods.

Conclusions
In structural biology area, protein residue-residue con-
tacts are widely used. Especially in de novo protein
structure prediction, conformational search space could
be effectively constrained by residue-residue contacts. In
this work, we present a contact prediction method
RRCRank based on learning-to-rank, which solves the
contact prediction task by using ranking strategy rather

than traditional classification or regression strategy.
First, the proposed method RRCRank uses correlated
mutations methods and ensemble machine-learning
classifiers to predict contact probabilities of residue
pairs. Then, the RRCRank combines the complementary
predictions of correlated mutations and machine-
learning methods and uses the learning-to-rank method
to make a fusion of those outputs, which improves the
contact prediction performance. Benchmarked on
CASP11 dataset and 40 CASP12 targets, improved per-
formances on all three categories of contacts have been

Fig. 3 Comparison of the top L/5 prediction performance between the RRCRank and four leading methods in CASP11. (a) CONSIP2. (b) Shen-Group.
(c) MULTICOM-CLUSTER. (d) UCI-IGB-CMpro. (Line x = y is shown for reference)

Table 5 The p-values in Student’s t-test for the difference on prediction precision between different methods on CASP11 dataset

Methods CONSIP2 Shen-Group MULTICOM-CLUSTER UCI-IGB-CMpro RRCRank

CONSIP2 1.00E + 00 1.28E-145 9.44E-36 1.15E-54 1.02E-27

Shen-Group 1.28E-145 1.00E + 00 1.53E-51 6.28E-34 1.37E-61

MULTICOM-CLUSTER 9.44E-36 1.53E-51 1.00E + 00 1.00E-03 1.00E-01

UCI-IGB-CMpro 1.15E-54 6.28E-34 1.00E-03 1.00E + 00 8.34E-07

RRCRank 1.02E-27 1.37E-61 1.00E-01 8.34E-07 1.00E + 00
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achieved by the proposed RRCRank, especially for
medium and short range contacts. Compared with the
classification and regression methods which use same
features and processes, the proposed RRCRank shows a
noteworthy superiority, especially for long-range con-
tacts. Further, in order to make a more rigorous com-
parison, we select the best four methods in CASP11 as
references and evaluation results indicate that the pro-
posed RRCRank could achieve the state-of-the-art per-
formance for protein residue-residue contact prediction.
The success of the RRCRank are contributed by two

factors: the ranking strategy and the reasonable combin-
ation of complementary outputs of correlated mutations
and machine-learning methods. A protein structure can
be seen as a micro-environment of its inner residue
pairs, therefore the ranking relations of residue pairs are
affected by residue pairs from target protein. The pro-
posed RRCRank scores a certain residue pairs by com-
paring it with other residue pairs from the target protein
instead of just giving a global score, which is more ap-
propriate for contact prediction task. Previous studies
show that performances of correlated mutations and
machine-learning methods are complementary for differ-
ent contacts, which is also confirmed in this study. The
proposed RRCRank could take advantage of those com-
plementary predictions, which is another factor contrib-
uted to its success. To sum up, the RRCRank based on
rank strategy could achieve the state-of-the-art perfor-
mances. The RRCRank could be further improve its per-
formance by introducing more complementary contact
prediction methods.
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