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This paper describes an ensemble method with supervised module detection and further module prior-
itization for reliable network-based biomarker discovery. We design a module detection and ranking
method called mRank to discover reliable network modules as cancer diagnostic biomarkers, with two
procedures: (1) an iterative supervised module detection guided by phenotypic states in a specific net-
work, (2) a block-based module ranking locally and globally via network topological centrality. We val-
idate its effectiveness and efficiency by identifying hepatocellular carcinoma (HCC) network modules on
a comprehensive gene regulatory network with specifying gene interactions by HCC RNA-seq data from
the Cancer Genome Atlas (TCGA). These top-ranked modules by mRank get a mean AUC of 0.995 on TCGA
HCC dataset with 371 tumor samples and 50 controls by cross-validation SVM. Based on the prior knowl-
edge of cancer dysfunctions enriched in top-ranked modules, 69 genes are identified as HCC candidate
biomarkers. They are further validated in independent cohorts with a classifier trained on TCGA HCC
dataset. A mean AUC of 0.846 is achieved in distinguishing 976 disease samples from 827 controls.
Moreover, some known HCC signatures such as AFP and SPP1 are also included in our identified biomark-
ers. mRank enables us to find more reliable network modules for cancer diagnosis. For a proof-of-concept
study, we validate it in identifying HCC network biomarkers and it is generalizable to other cancers or
complex disease. The overall results have demonstrated that mRank can find effective network biomark-
ers for cancer diagnosis which result in less false positives.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is a major health-threatening problem and a leading
cause of death worldwide [1,2]. Until now, although many driver
genes have been found, the pathogenesis of cancer is still difficult
to figure out. Generally speaking, cancer is caused by the interac-
tions of genetic factors and environmental reasons [3]. Thus, it is
of paramount importance to identify diagnostic biomarkers for
its early detection, further for personalized treatment [4]. Cur-
rently, some biomarkers for hepatocellular carcinoma (HCC) have
been found for diagnosis, prognosis and treatment responses [5],
such as Alpha-Fetoprotein (AFP), Des-r-Carboxy Prothrombin
(DCP), osteopontin (OPN), vascular endothelial growth factor
(VEGF), angiopoietin 2 (ANG-2), and Golgi protein 73 (GP73). How-
ever, these single-gene-based biomarkers often result in poor
specificity and accuracy. An alternative way is to discover big-
panel-based biomarkers for achieving better diagnosis. For
instance, MammaPrint [6] is such kind of endeavor for breast can-
cer by using 70 genes as biomarkers. A large gene panel not only
increases the detection rates of pathogenic variants, but also dis-
covers variants with uncertain pathogenicity, multiple variants
and incidental findings [7]. Thus, generating big-panel-based
biomarkers is a pressing solution for cancer diagnosis.

Despite biomarker discovery is full of challenges, the develop-
ment of high-throughput experimental techniques, e.g., gene
expression microarray and next-generation sequencing, have gen-
erated amounts of omics data which potentially lead to unveil
interesting genes and gene products serving as biomarkers [8,9].
The public availability of data from the cooperative cohort projects,
e.g., The Cancer Genome Atlas (TCGA) [10] and International Can-
cer Genome Consortium (ICGC) [11], provide unprecedented
opportunities and requests of developing bioinformatics methods
for discovering effective biomarker genes which can distinguish
phenotypic states and highlight disease mechanisms.

Changes in phenotype typically involve multiple genes acting in
concert. Genes/gene products often work together as a functional
module in the form of a biomolecular interaction network to play
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crucial roles in mediating complex biological processes [12]. Thus,
it is essential to identify these dysregulated gene sets or modules
as biomarkers in cancer research. A typical method is gene set
enrichment analysis (GSEA), which calculates an enrichment score
to decide whether a predefined gene set shows statistically signif-
icant differences between two biological states [13]. However, it
may result in too many gene sets related with biological states.
Then, some derivatives are proposed to improve the enrichment
procedure. For instance, gene set analysis (GSA), which made two
modifications based on GSEA. One is the max-mean statistic for
defining the differential information underlying the gene set. The
other is the re-standardization to achieve more accurate inference
[14]. Additionally, Barry et al. proposed a method called signifi-
cance analysis of function and expression (SAFE) to conduct valid
tests of gene categories. SAFE implements a permutation-based
procedure for accessing the unknown correlations among genes
from their gene expression profiles [15]. These gene-set-based
methods account for identifying the statistical significance of dif-
ferences underlying a gene set across different phenotypes. How-
ever, it needs predefined gene sets and the interactions between
genes underlying the gene sets have not been considered in the
identification process.

In bioinformatics fields, network becomes a powerful tool to
model the functional interactions among genes/gene products, in
which nodes refer to genes and edges refer to their relationships.
It has become ubiquitous in representing gene interactions as
pathways. Given knowledge-based signaling pathways, it is
expected to combine overrepresentation evidence with positions
and interactions of genes to prioritize this pathway in response
to certain phenotypic state, e.g., signal pathway impact analysis
(SPIA) [16]. SPIA measures the actual perturbation on a given path-
way under a specific condition, which only takes the over-
expression of differential genes and the topology of the current
pathway into consideration. However, it scores the pathways indi-
vidually and independently without considering the cross-talking
between pathways. Recently, CRank is proposed to prioritize net-
work communities, which combines multiple community features
to produce a final index to rank communities [17]. It involves the
network topology in the identification process, and focuses less
on the correspondence between gene sets and phenotypic states.

As mentioned, the genes/gene products often perform their
roles in the form of a module/community structure in the network
[18]. Originally, the modularity in a network is defined as the
eigenvectors of a characteristic matrix, i.e., modularity matrix for
the network [19]. For module detection, graph clustering (GC) is
often used to group sets of ‘‘related” vertices in the network [20].
However, the phenotypic information is not included in this kind
of module detection method, especially in the supervision of
detecting modules with interconnected genes.

In this paper, we propose a module detection and ranking
method, called mRank, to discover reliable network modules as
cancer diagnostic biomarkers, including two parts, (1) a
phenotype-driven module detection, (2) a block-based module
ranking. We validate its effectiveness and efficiency by identifying
HCC network biomarkers on a comprehensive gene regulatory net-
work (GRN) with specifying gene interactions by HCC RNA-seq
data from TCGA. We firstly build up a phenotype-guided technique
to detect modules in a genome-wide GRN with specified gene
expression profiling data of HCC. Then, we use a block-based rank-
ing technique to prioritize these identified modules locally and
globally by introducing network topology and cross-talking infor-
mation respectively. These top-ranked modules demonstrate
strong associations with phenotypes. For comparison study, GSEA
[13], GSA [14], SAFE [15], CRank [17], and GC [20] are implemented
with predetermined modules by modularity method [19] for
obtaining the top-ranked modules and their phenotype association
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performances are also calculated at the same way. The comparison
results illustrate the efficiency and advantage of mRank.

For justification, the network ontology enrichment analysis
identifies the functional implications of discovered modules. Based
on the prior knowledge of cancer pathogenesis, 69 genes are iden-
tified as our identified HCC biomarkers. These dysfunctions provide
more validations for these identified network-based biomarkers of
HCC.Moreover, we also compare themwith the knownHCC-related
genes documented in KEGG [21] and MalaCards [22] and further
explore their relationships. For a validation purpose, we test the
classification performances of network biomarkers in many other
independent HCC datasets. Additionally, we also collect the known
HCC dysregulated gene sets from MSigDB [13] and compare their
classification ability of distinguishing HCC samples from controls
with our identified HCC biomarkers. These results further delineate
the efficacy and superiority of our proposed method.

The novelty and advantage of our paper can be summarized as
follows: A new ensemble module prioritization method called
mRank has been proposed to discover module biomarkers on
GRN by integrating interactome and transcriptome. mRank firstly
conducts an iterative supervised module detection technique
guided by phenotypic states to extract the gene community sub-
structure from the global network, then it implements a block-
based module ranking technique to prioritize these detected mod-
ules by introducing a hypergraph topological centrality. The effec-
tiveness and advantage of mRank have been demonstrated and
justified in detecting HCC biomarkers with comparisons to the
other alternatives and methods.
2. Materials and methods

2.1. Datasets

For a-proof-of concept study, we performmRank for prioritizing
network biomarkers of HCC. We compile an integrative GRN from
RegNetwork [23], which contains gene regulations documented in
more than 20 databases. In total, it contains 169,039 regulations
between 18,335 genes. For specifying these gene regulations, we
use the context-specific gene expression profiling data form TCGA
HCC dataset [9], including 371 tumor samples and 50 control sam-
ples. We map the gene expression data to the GRN by differential
mutual information (DMI), which results in a weighted GRN with
12,343 nodes and 120,069 edges. For justifying our identified
biomarkers, we validate the classification performances in other
independent datasets, such as HCC gene expression data from NCBI
GEO database [24], with the entry IDs GSE14520 [25] with 225
tumor and 220 control samples, GSE25097 [26] with 268 tumor
and 243 control samples, GSE45436 [27] with 95 tumor and 39
control samples, GSE64041 [28] with 60 tumor and 60 control
samples, GSE63898 [29] with 228 tumor and 168 control samples,
and GSE22058 [30] with 100 tumor and 97 control samples. Alto-
gether, there are 976 tumor samples and 827 controls in the inde-
pendent validation datasets. The detailed descriptions about gene
expression datasets used in this study are summarized in Supple-
mentary Table S1.1.
2.2. Framework

Fig. 1 summarizes the framework of mRank, which consists of
two components: phenotype-driven module detection (Fig. 1(a))
and block-based module ranking (Fig. 1(b)). The detailed descrip-
tion is as follows:

We firstly preprocess HCC RNA-seq data and identify the differ-
ential expressed genes (DEGs) between disease and control sam-
ples. Then, we employ a comprehensive GRN from RegNetwork



Fig. 1. Framework of mRank. (a) Phenotype-driven module detection. (b) Block-based module ranking.
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[23] and weigh the regulations by DMI of two terminal genes from
each edge for selecting more reliable and disease-specific net-
works. Starting from a given DEG, we check if there exists other
DEGs interacts with the current DEG through a shortest path. If it
exists, we choose those nodes included in this shortest path as
our original base nodes of this module (OBNs) and those DEGs as
our base source nodes (BSNs). Otherwise, we omit the current
DEG. Then, we iteratively select the candidate node sets of this
module (CNM) to join in the current module, which comprises
the first-order neighbors of BSNs. Specifically, we evaluate the dif-
ferent effect of this module in the classification of tumor and nor-
mal samples between before and after adding the neighbor gene.
The gene that maximizes the classification effect is selected to join
in the module. Here, support vector machine algorithm with recur-
sive feature elimination [31] (RFESVM) is employed to fulfill the
classification and realize feature selection simultaneously. The area
under receiver operating characteristics (ROC) curve (AUC) is used
to guide the module amplification, as shown in Fig. 1 (a).
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Then, we build up a block-based ranking algorithm to generate
the order of these modules by introducing the network topology,
which includes ranks in the intra-module and in the inter-
module [32]. In the intra-module ranking, the block-rank proce-
dure employs a weighted PageRank (PR) algorithm [33]. In the
inter-module ranking, a hypergraph network is constructed, in
which each module is represented by a super node. Rank of each
module is obtained by applying PR algorithm [34] in the hyper-
graph (Fig. 1 (b)). Finally, these modules are ranked according to
their PR values and these top-ranked modules are recognized as
the identified biomarkers for further validations.
2.3. Phenotype-driven module detection

We implement data preprocess and DEG analysis by following
the guide of TCGA biolinks package [35]. After filtering, 12,892
genes are left and 2,850 genes among them are identified as DEGs.
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Then, we map these corresponding molecular profiles of HCC RNA-
seq data onto the GRN by calculating DMI for each edge as:

DMI ¼ jMIðXc;YcÞ �MIðXd;YdÞj ð1Þ

where X and Y stands for the expression vector of the two genes.
DMI describes the absolute difference between the two mutual
information (MI) values of control (c) and disease (d) states. Then,
these DMI values are used for selecting reliable edges and further
are normalized by the min–max method. To calculate DMI, a
straightforward method proposed in [36] is employed, which esti-
mates MI by firstly partitioning the variables into finite-size bins
(N), then counts the number of points of X (or Y or X and Y) falling
into these girds, and finally approximates MI as:

MIðX;YÞ ¼
X
i;j

log
pði; jÞ

pxðiÞpyðjÞ
ð2Þ

where pxðiÞ � nxðiÞ
N , pyðjÞ � nyðjÞ

N , pði; jÞ � nði;jÞ
N , nxðiÞ is the number of

points falling into the i-th gird of X , nyðjÞ is the number of points
falling into the j-th gird of Y, nði; jÞ is the number of points in their
intersection. N is dependent on the variable size by drawing grids
on a scatterplot of two variables.

Afterwards, we start our phenotype-driven module detection.
Table 1 lists the detailed algorithm descriptions of supervised
module detection. In this process, when the count of CNMs is great
(e.g., greater than 50), RFESVM is implemented to select the most
important 50 neighbors for the following module amplification,
which calculates model performance by inputting each feature,
then ranks all these models by their AUCs and selects the top-k-
model corresponding features. In this paper, k is set to 50 based
on the number of normal samples in TCGA HCC dataset. In order
to solve data imbalance between normal and tumor samples, no-
playback sampling technique is adapted.

To describe the relationship between detected modules and
phenotypes (disease/normal), we define phenotype association
score (PAS) to qualify it, which is defined as the MI between these
gene nodes inside each module and sample phenotype:

PAS ¼ 1
n

X
i2n

MIðEi; PÞ ð3Þ

where n is the number of genes inside each module, Ei is the expres-
sion vector of gene i, P is the corresponding sign vector where ‘10

representing tumor state, ‘00 representing normal state. The higher
value the PAS is, the more relevant the module is with phenotype.
Table 1
Algorithm of phenotype-driven module detection.

Algorithm: Phenotype-driven module detection

1. Input: DEGs, GRN, HCC RNA-seq data
2. Calculation:

for DEG cur in DEGs
Search shortest paths between DEG cur and other DEGs
if exists shortest path
Get current BNM
Get BSN
Get CNMs
Calculate AUC of current OBN by leave-one out SVM

if count of CNMs > 50
Use RFE-SVM to select top-ranked 50 CNMs

end
Form candidate module list (CM) list by adding CNMs
to BNM one by one
Calculate AUC of members in CNMs by leave-one out SVM one by one
Select those members with maximum AUC
Form current module by selecting all nodes in selected CNM
end

3. Output: Detected modules

209
2.4. Block-based module ranking

After obtaining modules, we rank them from the perspective of
hypergraph. In this paper, inspired by exploiting the block struc-
ture of the web for computing PR in [32], we propose a block-
based module ranking algorithm, which contains weighted PR
[33] inside each module (denoted as wPRM) and PR [34] in a
hypergraph (denoted as PRH).

In wPRM, we construct an adjacent matrix B for each module.
According to network topology, if the i-th node interacts with j-
th node inside each module, we set Bij ¼ 1. Otherwise, we set
Bij ¼ 0. We weigh edges inside each module by their DMIs and
the weighted adjacent matrix BW for each module is constructed.
Then, the transition matrix BT of each module can be obtained:

ðBTÞi;j ¼
ðBWÞji � Bi;j=

P
j
Bi;j; if

P
j
Bij–0

0; otherwise

8<
: ð4Þ

Let S0 be the initial probability vector inside each module, and Ri

be the vector in which the i-th element holds the probability of
finding the randomwalker at node i at the current step t. The prob-
ability vector at t + 1 step is given by:

Rtþ1 ¼ ð1� dÞ � BTT � Rt þ d� S0 ð5Þ
where d (d 2 ð0;1Þ) is the restart probability, and it represents the
chance of random walker going back to the seed nodes.

After iterating some steps, the probability will reach a steady
state, which can be obtained by performing the iterations until
the difference between Rt and Rtþ1 measured by the L1 norm falls
below a threshold, e.g., 10�10. In this study, we set d to be 0.15
by empirical trails. Finally, each node inside each module has its
own PR value.

In PRH, we firstly construct its adjacent matrix M by using all
detected modules and the network topology of GRN, which is
defined as:

MIJ ¼
X
i2I;j2J

AijPi ð6Þ

where I; J are two detected modules, A is the adjacent matrix of
GRN, Pi means the PR value of node i inside module I getting from
wPR part.

Then, we construct the transition matrixMT for the hyper graph
based on M, which is defined as:

ðMTÞI;J ¼
ðMTÞIJ=

P
J
MIJ; if

P
J
MIJ–0

0;othewise

8<
: ð7Þ

Supplementary Table S1.2 shows the detailed description of the
block-based module ranking algorithm, which contains the con-
struction of adjacent matrix, transition matrix and iterative PR pro-
cess respectively.

3. Results and discussion

3.1. Top-ranked modules

Our phenotype-driven module detection totally results in 2,562
modules, with 3,073 genes and among them 2,579 are identified as
DEGs, with AUC values varying from 0.946 to 0.995 and node size
varying from 4 to 16. Here, AUC value is obtained by using SVM
classifier with cross-validations on TCGA HCC RNA-seq data at
the module detection step. After block-based module ranking, each
module obtains its own rank by its PR value. We choose some
modules of top-10 ranked modules for declaration. Fig. 2 gives
some detailed structures of these identified modules with high
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PAS values, i.e., M3, M5, M6, M7, M8 andM10. In Fig. 2, we find that
some members in these modules are differentially expressed
genes, with higher LogFC (logarithm of fold change) values which
mean they are significantly differential expressed. While some
genes are not differentially expressed. Besides, we also document
cancer genes from GeneCards database [37], some important HCC
genes are detected in these modules individually, such as ‘CDK60,
‘AR’, ‘ESR10 in M3, ‘CDKN2C’, ‘CDKN2A’ in M5, ‘JUN’, ‘CDK40 in M6.
3.2. Classification performance and PAS

To verify the ability of the top-10 ranked modules in distin-
guishing disease samples from controls, we use SVM classifier to
validate those top-ranked modules on TCGA HCC dataset, including
371 tumor samples and 50 controls. Fig. 3(a) shows the ROC curves
and AUC values of classifications. We find these modules achieve
high AUCs with a mean AUC of 0.995 in classifying HCC samples
from controls. The detailed classification metrics are listed in
Table 2, we find that in our training dataset, those top-rankedmod-
ules get high classification AUC values.

To check the correspondence between modules and pheno-
types, we calculate the PAS values of those top-ranked modules.
Fig. 3(b) shows the PAS values of top-10 ranked modules individu-
ally. For comparing with the corresponding baselines, the boxplots
of PAS in the random-chosen same-size gene sets are also shown.
These top-ranked modules have much higher PAS values than
those randomly chosen gene sets, which indicate their strong rela-
tionships with phenotypes. Fig. 3(c) gives the regression relation-
ship between AUCs of modules and their corresponding PAS
values, and we find that PAS has a positive relationship with
AUC, which gives further evidence for the indication that a high
PAS means a strong relationship with phenotypic state.

Currently, our proposed method is not built for identifying
biomarkers in the classification of different subclasses (e.g., grades,
genotypes) of complex disease. Discovering the stratification
biomarkers for HCC, i.e., in different stages, types and genotypes,
is another invaluable research topic. For testing purpose, we also
conduct the classification experiments for our identified top-10-
ranked modules in these multi-class classifications. We compile
two datasets with entry IDs of GSE6764 [38] and GSE89377 [39]
from NIH GEO database [24] (as shown in Supplementary Tables
1.3 and 1.4). Specifically, we test the classification performances
of these top-ranked- modules in the two multi-class datasets by
using one-against-the-rest technique. We find few of our identified
modules even have good classification performance in some kinds
of subclass classification. However, most of the modules could not
achieve high classification AUC values. The results indicate the
identification of diagnostic biomarkers for two classes is much
simpler than the identification of stratification biomarkers for
HCC. The classification results are shown in Supplementary Tables
1.5 and 1.6.
3.3. Comparing with other methods

Currently, there are no similar methods with mRank for identi-
fying network-based biomarkers by module detecting and ranking
simultaneously. Some methods, such as GSEA, GSA, SAFE, CRank
and Conductance are important methods for identifying important
gene sets or network modules, and they need input predefined
gene sets. It is clear that mRank requires no predefined gene sets,
which embeds a module detection step. To compare with the exist-
ing methods, we firstly use a fast greedy cluster algorithm [40] to
separate the GRN into small modules. Then, we input these mod-
ules to those aforementioned methods, and rank them based on
their corresponding scores. The flowchart of how we compare
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mRank with other five methods is shown in Supplementary
Fig. S1.1.

Fig. 4 shows the comparing results with other five methods on
TCGA HCC dataset. We find that our method can detect modules
with stronger phenotype relationships than the Modularity
method [19] which only considers network topology as shown in
Fig. 4(a). In mRank, we build up a phenotype-driven module detec-
tion strategy to select nodes with stronger phenotype relationship
than their neighbors as shown in Fig. 4(b), which gives an example
of module M2. Fig. 4(c) presents the mean ROC curves of top-
ranked modules by different methods in classifying HCC samples
and normal samples. Herein, AUC is achieved by using SVM with
cross-validation on TCGA HCC RNA-seq data. We find these top-
10 modules by mRank achieve higher mean AUC values than other
five methods given with modularity-based modules. Besides, we
also find that top-ranked modules obtain higher PAS values than
those ranked by the other methods (Fig. 4(d)). The details about
their comparison results are shown in Table 3.

What’s more, we also analyze those genes of top-10 ranked
modules by different methods, and we find mRank shares some
common genes with other methods. Supplementary Fig. S1.2 lists
the intersections between top-10 ranked modules from different
methods. Furthermore, we validate top-10 ranked modules from
different methods by those independent datasets, and Supplemen-
tary Fig. S1.3 shows the boxplots of AUCs of top-10 ranked mod-
ules identified by different methods in independent validating
datasets. The AUC values are obtained by training on the TCGA
HCC dataset and testing on different independent validation data-
sets. It is consistent that those top-10 ranked modules by mRank
get higher mean AUC values. Supplementary Table S1.7 shows
the classification performances of top-10 ranked modules identi-
fied by different methods in the validation datasets.

3.4. Functional enrichment analysis and justification

To identify the enriched functions of those detected modules,
we implement network ontology analysis (NOA) for these top-10
ranked modules [41]. We find that these GO functions, such as cell
death, cell proliferation, cell differentiation, signal transduction are
enriched. The full list is shown in Supplementary Table S1.8.

Due to the important implications of GO functions listed above
in cancer mechanism [42,43], we select 69 genes annotating the
GO terms of cell communication (GO:0007154), cell death
(GO:0008219), cell proliferation (GO:0008283), cell differentiation
(GO:0030154), signal transduction (GO:0007165), cell surface
receptor signaling pathway (GO:0007166), apoptotic process
(GO:0006915), and programmed cell death (GO:0012501) as our
final identified candidate HCC biomarker genes (shown in Supple-
mentary Table S1.8). Fig. 5(a) gives the GO chard plots of these
identified candidate biomarkers, and Fig. 5(b) shows the network
topology of those selected candidate biomarker genes and the
modules in which they are contained. The enriched functions of
GO analysis on biomarker genes are listed in Supplementary
Table S1.9, the pathways of cell cycle, hepatocellular carcinoma,
p53 signaling pathway, and hepatitis B are significantly enriched
in these identified biomarkers.

Then, we carefully search the identified HCC biomarkers in lit-
eratures and obtain the existing HCC biomarkers, as listed in Sup-
plementary Table S1.10. We find that an important HCC biomarker
is AFP, which is proved by Harry Abelev and his colleagues in 1962
by using blood of mice with experimental liver tumor [44]. And
some biomarkers have also been found by similar time-
consuming and expensive experiments. Currently, more and more
high-throughput data such as transcriptome and interactome
become available. It is an opportunity and also a challenge to dis-
cover new diagnostic HCC biomarkers from these resources. This is



Fig. 2. Detailed structures of six modules with higher PAS values among top-10 ranked modules (M3, M5, M6, M7, M8, and M10). P-values are calculated based on tumor and
normal samples from TCGA HCC dataset.

H. Shang and Zhi-Ping Liu Computational and Structural Biotechnology Journal 20 (2022) 206–217
our motivation of proposing such a computational method mRank
to discover biomarkers from omics data. Interestingly, we find
some important HCC biomarkers such as AFP and SPP1 are really
included in our identified HCC biomarkers. The overlaps with the
reported HCC biomarkers provide more evidence for the effective-
ness of our proposed method.
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We further search HCC disease genes documented in KEGG [21]
and MalaCards [22]. After double checking these genes individu-
ally, we obtain a list of 37 reliable HCC disease genes. The 37
HCC genes and their gene symbols are shown in Supplementary
Table S1.11. There is only one overlapping gene between these
genes and our identified HCC biomarkers, i.e., CDKN2A. Afterwards,



     

Fig. 3. Classification performance, PAS and the relationship between AUC and PAS on TCGA HCC dataset. (a) The ROC curves of top-10 ranked modules. (b) The PAS values of
top-10 ranked modules and the boxplots of PAS values of randomly-chosen same-size gene sets. (c) Regression between PAS and AUC in these top-ranked modules. The grey
area means 95% confidence interval.

Table 2
Classification results of top-10 ranked modules in TCGA HCC dataset.

Module SE SP ACC F1 AUC

M1 0.980 0.980 0.980 0.980 0.998
M2 0.980 1.000 0.990 0.989 0.998
M3 0.960 0.980 0.970 0.969 0.993
M4 0.980 0.960 0.970 0.970 0.996
M5 0.980 1.000 0.990 0.989 0.999
M6 1.000 0.960 0.980 0.980 0.995
M7 0.980 1.000 0.990 0.980 0.988
M8 0.980 1.000 0.990 0.989 0.993
M9 1.000 0.960 0.980 0.980 0.998
M10 0.980 0.960 0.970 0.970 0.992
Mean ± SD 0.982 ± 0.011 0.980 ± 0.019 0.981 ± 0.009 0.979 ± 0.008 0.995 ± 0.003
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we want to check if there exists some undirected relationship
between the two gene sets. Thus, we build up a GRN of these genes
from the prior human gene regulatory network collected in
RegNetwork [23]. For integrity, we also extract their neighbor
genes. Interestingly, we find that 45 genes in our identified HCC
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biomarkers, such as AFP, AR, JUN, are regulated by some of the
37 known HCC genes, such as STAT3, TP53, CTNNB and RB1. Sup-
plementary Fig. S1.4 demonstrates the regulatory relationships
between the known HCC gene and our identified biomarker genes.
The results demonstrate that our identified biomarker genes are



Table 3
Comparisons of top-10 ranked modules with other methods in TCGA HCC dataset
(Mean ± SD). *M refers to input the modules identified by the modularity-based
method.

Methods AUC PAS

mRank 0.995 ± 0.003 0.117 ± 0.020
*M + GSEA 0.989 ± 0.006 0.069 ± 0.007
*M + SAFE 0.988 ± 0.006 0.077 ± 0.021
*M + Conductance 0.985 ± 0.012 0.060 ± 0.012
*M + GSA 0.976 ± 0.007 0.087 ± 0.023
*M + CRank 0.946 ± 0.045 0.059 ± 0.012

Fig. 4. Comparison results with other methods based TCGA HCC dataset. (a) Boxplots of PAS values between mRank-detected and Modularity-detected modules. (b) Boxplots
of PAS values between nodes inside a module and outside a module (M2 of mRank). (c) Mean ROC curves of top-10 ranked modules ranked by different methods. (d) Boxplots
of PAS values of top-10 ranked modules by different methods. In (b) and (c), *** means P value < 1e � 10, ** means P value < 1e � 2, by two-sided Wilcoxon test.
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closely related with the known HCC disease genes although they
are not these genes.

In addition, we also check our identified HCC biomarkers with
the known HCC biomarkers documented in PubMed. Supplemen-
tary Table S1.12 lists the searching results of our identified 69
HCC biomarkers. 58 genes in the 69 biomarker genes have been
studied in HCC. The 11 new biomarker genes are ACBB4, ARL4A,
CCNO, CD3EAP, GJC1, MRGPRF, NES, PRRT2, PTH1R, RASA4 and
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SH2D3C. The overlaps imply that most of identified biomarkers
have been found with their relationships with HCC. In this paper,
we identify them simultaneously from a gene regulatory network
by proposing a module detection and ranking method.

Here, we mainly aim to propose a computational module-based
biomarker discovery method. For demonstrating the effective of
our proposed pipeline, we perform our study on detecting HCC
biomarkers. Our identified candidate biomarker genes can be used
for targeting genuine biomarkers of HCC used in clinics. The next
steps include many laborious wet experiments and clinical trials,
such the experiments in cell lines, animal experiments and further
multi-stage clinical trials. Due to that mRank is a fully computa-
tional biotechnology, the data-driven candidate biomarker genes
need to combine with prior knowledge for the following step-by-
step experiments in the HCC biomarker development.
3.5. Validations in external independent datasets

For justification, we verify our identified 69 candidate HCC
biomarkers in the other independent datasets, i.e., GSE14520,



Fig. 5. The identified HCC biomarkers. (a) GO chard plot of identified 69 HCC biomarker genes. LogFC are calculated based on TCGA HCC dataset. (b) Network structure of
identified 69 HCC biomarkers. Different colors indicate different modules (M1, M2, . . . , M10). Node filled with single color belongs to one module, node filled with single color
and with edge filled with another color belongs to two different modules, nodes in yellow diamond belong to more than two modules. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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GSE25097, GSE45436, GSE63898, GSE22058 and GSE64041. We
use TCGA HCC dataset as the training set and the other indepen-
dent datasets individually as the testing sets. Fig. 6(a) shows the
ROC curves of identified 69 HCC biomarkers tested in the six vali-
dation datasets respectively. The details of classification results can
be found in Table 4. From Fig. 6(a), we find our biomarkers get high
AUC values in some datasets, i.e., GSE22058 with AUC of 0.935,
GSE45436 with AUC of 0.928, GSE25097 with AUC of 0.887,
GSE14520 with AUC of 0.875, GSE64041 with AUC of 0.745,
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GSE63898 with AUC of 0.705. Altogether, our identified biomarkers
achieve a mean AUC value of 0.846 with low standard deviation of
0.097 in 976 tumor samples and 827 controls. Fig. 6(b) shows the
numbers of biomarker genes which are simultaneously contained
in these independent validation datasets.

Besides, we also compare our identified HCC biomarkers with
known HCC biomarkers and dysregulated gene sets. We firstly test
the classification results of these reported HCC biomarkers, e.g.,
AFP, DCP, GPC3, SPP1, CD44, and DKK1, by using TCGA HCC dataset
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Fig. 6. Validations of identified 69 HCC biomarkers in independent datasets. (a) ROC curves of classification in numerous independent datasets. (b) Numbers of HCC
biomarkers contained in the independent validation datasets.

Table 4
Classification results of identified 69 HCC biomarkers in the independent datasets.

Datasets SE SP ACC F1 AUC

GSE22058 0.980 0.887 0.933 0.936 0.935
GSE45436 0.768 0.974 0.871 0.857 0.923
GSE25097 0.787 0.864 0.826 0.819 0.887
GSE14520 0.827 0.809 0.818 0.820 0.875
GSE64041 0.850 0.583 0.717 0.750 0.745
GSE63898 0.658 0.673 0.665 0.663 0.705
Mean ± SD 0.812 ± 0.106 0.798 ± 0.145 0.805 ± 0.099 0.807 ± 0.093 0.846 ± 0.097

Table 5
Classification comparisons between our identified 69 candidate HCC biomarkers and known HCC biomarkers as well as 8 dysregulated gene sets from MSigDB in the independent
validation datasets.

Type SE SP ACC F1 AUC

Ours 0.812 ± 0.106 0.798 ± 0.145 0.805 ± 0.099 0.807 ± 0.093 0.846 ± 0.097
Known 0.569 ± 0.148 0.825 ± 0.142 0.697 ± 0.122 0.650 ± 0.136 0.666 ± 0.137
Gene list 3 0.717 ± 0.197 0.842 ± 0.111 0.779 ± 0.108 0.754 ± 0.143 0.805 ± 0.114
Gene list 1 0.563 ± 0.145 0.885 ± 0.047 0.724 ± 0.087 0.665 ± 0.123 0.715 ± 0.123
Gene list 5 0.856 ± 0.213 0.344 ± 0.399 0.600 ± 0.110 0.679 ± 0.057 0.609 ± 0.132
Gene list 6 0.447 ± 0.115 0.774 ± 0.137 0.610 ± 0.048 0.527 ± 0.083 0.603 ± 0.093
Gene list 8 0.897 ± 0.253 0.150 ± 0.367 0.524 ± 0.058 0.642 ± 0.062 0.533 ± 0.082
Gene list 7 0.993 ± 0.016 0.053 ± 0.132 0.523 ± 0.057 0.677 ± 0.024 0.522 ± 0.053
Gene list 2 1.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000 0.667 ± 0.000 0.500 ± 0.000
Gene list 4 1.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000 0.667 ± 0.000 0.500 ± 0.000
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for training and other HCC datasets from GEO database for testing,
the results are as shown in Table 5 (See further details in Supple-
mentary Table 1.13). From Table 5, we find that our identified 69
candidate HCC biomarkers achieve better classification perfor-
mance than those known HCC biomarkers.

Then, we document known HCC dysregulated gene sets from
MSigDB [13], and 8 HCC dysregulated gene sets are compiled
(See details in Supplementary Table S1.14). Similarly, we use TCGA
HCC dataset for training and the other datasets for testing datasets,
the results are as shown in Table 5. (See further details in Supple-
mentary Tables S1.15–S1.22). From Table 5, we find that our iden-
215
tified 69 candidate HCC biomarkers obtain better results than
those 8 dysregulated HCC gene sets, which further illustrates the
advantage of mRank.

Additionally, we find some of the known HCC biomarkers, e.g.,
AFP, FGF13, SPP1 and CDKN2A, are included in our discovered
biomarkers, so we use them to construct a reliable biomarker gene
set. And JUN is regulated by STAT3, MYC, RB1, TCF7, and NFE2L2, so
we also include it to the reliable biomarker gene set. Then, we clar-
ify their classification results in several HCC datasets from GEO
database by using TCGA HCC data for training. As shown in Table 6,
we find that they perform better classification results in four



Table 6
Classification results of 5 more reliable HCC biomarkers in the independent datasets.

Datasets #of genes SP SE ACC F1 AUC

GSE25097 5 0.836 0.930 0.883 0.877 0.945
GSE14520 5 0.813 0.955 0.884 0.875 0.927
GSE45436 5 0.832 0.923 0.877 0.871 0.926
GSE64041 5 0.798 0.875 0.837 0.830 0.907
GSE63898 5 0.733 0.767 0.750 0.746 0.769
GSE22058 5 0.620 0.464 0.542 0.575 0.476
Mean ± SD 5 0.772 ± 0.083 0.819 ± 0.186 0.795 ± 0.134 0.796 ± 0.119 0.808 ± 0.199
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datasets, such as they reach the AUC of 0.945 in GSE25097, 0.927 in
GSE14520, 0.926 in GSE45436, and 0.907 in GSE64041, but in two
datasets GSE63898 and GSE22058, they obtain the AUC of 0.769 in
GSE63898 and even worse in GSE22058 with AUC of 0.476.

Moreover, we also test if our selected biomarker genes are sig-
nificantly differential expressed in all these datasets. After calculat-
ing significance between normal and tumor samples of each
dataset, we find that not all biomarker genes are significant in
those datasets. Some genes are significant in TCGA HCC dataset,
while they are not significant in the other validation datasets.
The details about the significance differences of biomarker genes
among all datasets are available in Supplementary Table S1.23.

Furthermore, we integrate HCC data from CCLE database [45]
with 25 liver cancer samples and GTEx database [46] with 177 nor-
mal samples. We compare normal and liver cancer samples of the
two datasets and get the significance of each gene. We find 55
genes of our selected 69 biomarkers are significantly differentially
expressed with P-value < 0.05 (as shown in Supplementary
Fig. S1.5 and S1.6). Then, we use hypergeometric test to check if
our selection is significant. The P-value is 6:69e�3, which demon-
strates the significance of our identified biomarkers in the inde-
pendent experiments. Supplementary Fig. S1.7 shows the
heatmap of Pearson’s correlation coefficient (PCC) of identified 69
HCC biomarkers from dataset GTEx and CCLE dataset. It is obvious
that the correlations among these genes are totally different
between samples in normal (GTEx) and disease (CCLE) datasets,
which further indicates the differential information of our identi-
fied 69 HCC biomarkers in disease and control samples.
4. Conclusions

In this paper, a phenotype-driven module detection and block-
based module ranking method, called mRank, has been proposed
for discovering cancer biomarkers from transcriptome and interac-
tome. In module detection, we considered the phenotype informa-
tion and network topology simultaneously, which can provide
guidance for searching more effective modules in classification.
In module ranking, we proposed a ranking method based on Block-
Rank algorithm to gain prioritization value from both the intra-
module and inter-module, which can provide more comprehensive
network topology and cross-talking information for precision rank-
ing. Compared to randomly-chosen gene sets, the PAS values of
top-ranked modules illustrate their stronger relationships with
phenotypes. The comparisons with the other existing gene-set-
based methods with additional module inputs also delineate the
advantages of our proposed mRank. The enriched functions of
top-ranked modules and relations between our identified candi-
date HCC biomarkers with known HCC related genes indicate the
effectiveness of mRank, which can provide more evidence for the
efficacy of identified HCC biomarkers. Furthermore, the validations
of selected biomarkers and comparisons with other known HCC
biomarkers/dysregulated gene sets in the other independent data-
sets imply the general effectiveness of our findings.
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In current version of mRank, we have not directly considered
the mutations in the biomarker identification. We weighed the
context-specific gene regulatory network only by RNA-seq data.
However in the gene regulatory network, we included the known
mutated genes documented in the disease gene database Malac-
ards. They are detected mainly by genome-wide association study
(GWAS), and most of the mutations are used to identify HCC dis-
ease genes, as well as copy number variants (CNV) and DNA
methylation data. In the module detection procedure of mRank,
we set up the differentially expressed genes according to RNA-
seq data as the source nodes. We found some of them are the
known HCC disease genes. Thus, our method has partially included
the mutation information in the proposed biomarker discovery
strategy.

For fully consideration of mutation in the biomarker discovery,
we think we need to modify the weight strategy beyond the RNA-
seq gene expression profiles. When there are significant mutations,
we can treat these mutated genes as the source nodes in mRank. It
is also expected to construct a more reasonable weighted network
in prioritizing module biomarkers by integrating more available
information for HCC, such as mutation, DNA methylation, and
other important genetic and epigenetic cancer-causing measure-
ments in biomarker discovery.
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