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Abstract: The blood–brain barrier (BBB) is a highly selective cellular monolayer unique to the
microvasculature of the central nervous system (CNS), and it mediates the communication of the
CNS with the rest of the body by regulating the passage of molecules into the CNS microenvironment.
Limitation of passage of substances through the BBB is mainly due to tight junctions (TJ) and adherens
junctions (AJ) between brain microvascular endothelial cells. The importance of actin filaments and
microtubules in establishing and maintaining TJs and AJs has been indicated; however, recent studies
have shown that intermediate filaments are also important in the formation and function of cell–cell
junctions. The most common intermediate filament protein in endothelial cells is vimentin. Vimentin
plays a role in blood–brain barrier permeability in both cell–cell and cell–matrix interactions by
affecting the actin and microtubule reorganization and by binding directly to VE-cadherin or integrin
proteins. The BBB permeability increases due to the formation of stress fibers and the disruption of
VE–cadherin interactions between two neighboring cells in various diseases, disrupting the fiber
network of intermediate filament vimentin in different ways. Intermediate filaments may be long
ignored key targets in regulation of BBB permeability in health and disease.
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1. Introduction

Specialized endothelial cells covering the inner surfaces of the blood and lymph
capillaries as a monolayer act as barriers, separating the blood or lymph fluid from the tis-
sues [1]. The blood–brain barrier (BBB) is an endothelial cell-based, very specialized barrier
system, which has great importance in providing brain homeostasis, regulating substance
transport from blood to brain, and protecting the brain from pathogens and toxins [2]. The
different cell types in the microenvironment of the endothelial cells, the basal lamina and
the mechanical stimuli that cells are exposed to due to blood flow and vascular movement
affect both the endothelial cell–matrix and the cell–cell interactions [3,4]. Therefore, these
external stimuli cause the rearrangement of cytoskeleton proteins, controlling the structure
of cellular junctions and the regulation of the endothelial barrier function. Although actin
and microtubules are the cytoskeleton proteins whose role in the endothelial barrier func-
tion has been studied the most, the role of the intermediate filaments has been recognized
only recently. The main purpose of this review is to underline that researchers should not
ignore the role of this extensive nanofibrillar network that connects the plasma membrane
with the nucleus, while investigating BBB function in health and disease.
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2. Blood–Brain Barrier (BBB) Structure and Function
2.1. Brain Vascular Architecture

The primary function of the circulatory system is to provide the nutrients and oxygen
required for all tissues and organs of the body, and to remove cellular and metabolic wastes
via the bloodstream. Since the central nervous system (CNS) is a specialized and critical
system, in which vital functions are managed for the body, it requires an extremely stable
microenvironment. For this reason, the structure and the barrier function of the circulatory
system in the CNS also differs from that in the periphery, constructing the blood–brain
barrier (BBB). BBB maintains ion homeostasis in the brain, prevents the brain from toxic and
foreign substances and pathogens in the bloodstream [5–7]. The endothelial cells lining the
peripheral blood vessels can have wide intercellular spaces, and their basement membranes
are not continuous (Figure 1). While mass transport through the peripheral vessels mainly
takes place by diffusion via intercellular space, BBB in brain micro vessels directs mass
transfer to transcellular, paracellular and enzymatic pathways [8–10]. Brain microvascular
endothelial cells (BMECs) reduce paracellular permeability by forming a large number
of tight junctions (TJ), along with some adherens junctions (AJ) with adjacent BMECs. A
continuous basement membrane also reduces transcytosis. Since BMECs have specific
transporters, such as hexose transporters, amino acid transporters and monocarboxylic
acid transporters, only molecules like glucose, glutamate and lactate that are recognized
can pass transcellularly [11,12]. Some special cellular enzymes like acetylcholinesterase,
alkaline phosphatase, γ -glutamyl transpeptidase and monoamine oxidases in BMECs were
shown to inactivate some drugs, and neurotransmitters pass only transcellularly, which
constitutes an enzymatic barrier [13]. Many previous studies on BBB permeability have
focused on cell–cell junctions and paracellular permeability. However, to maintain the low
permeability characteristic of the BBB, it has been shown that transcytosis must also be
at a low rate, and the important effects of this mechanism on the BBB permeability has
been demonstrated [14,15]. Ben-Zvi et al. have shown that the Mfds2a (major facilitator
superfamily domain containing 2a) membrane protein expressed in CNS endothelium
suppresses transcytosis [15]. The essential omega-3 fatty acid docosahexaenoic acid (DHA)
transport is carried out by Mfds2a-mediated transport [16]. DHA prevents the formation of
functional caveolae domains on the membrane. Thus, the formation of caveolae, which are
invaginations of the plasma membrane, is prevented, and caveolae-mediated transcytosis
is suppressed [14].

2.2. BBB Structure

BMECs are specialized cells that limit the movement of substances between the blood
and the brain. However, there are also different cell types that support this structure and
enhance the barrier function. These supporting cells are perivascular astrocytes, brain
microvascular pericytes, oligodendrocytes, neurons and microglia. In addition to the
cells, the basal membrane structure is also responsible for supporting the barrier structure
and maintaining its functionality [17,18] (Figure 2). Perivascular astrocytes ensheathe the
microvascular structure and support the integrity of the BBB. Brain microvascular pericytes
directly control the endothelial cell behavior, as well as the vessel shape, by their contractile
properties. Moreover, oligodendrocytes, neurons and microglia are also responsible for the
BBB function; however, their mechanisms of action on BBB are not well-explained yet.



Cells 2021, 10, 1400 3 of 16

Cells 2021, 10, x FOR PEER REVIEW 2 of 16 
 

 

2. Blood–Brain Barrier (BBB) Structure and Function 
2.1. Brain Vascular Architecture 

The primary function of the circulatory system is to provide the nutrients and oxygen 
required for all tissues and organs of the body, and to remove cellular and metabolic 
wastes via the bloodstream. Since the central nervous system (CNS) is a specialized and 
critical system, in which vital functions are managed for the body, it requires an extremely 
stable microenvironment. For this reason, the structure and the barrier function of the 
circulatory system in the CNS also differs from that in the periphery, constructing the 
blood–brain barrier (BBB). BBB maintains ion homeostasis in the brain, prevents the brain 
from toxic and foreign substances and pathogens in the bloodstream [5–7]. The endothe-
lial cells lining the peripheral blood vessels can have wide intercellular spaces, and their 
basement membranes are not continuous (Figure 1). While mass transport through the 
peripheral vessels mainly takes place by diffusion via intercellular space, BBB in brain 
micro vessels directs mass transfer to transcellular, paracellular and enzymatic pathways 
[8–10]. Brain microvascular endothelial cells (BMECs) reduce paracellular permeability by 
forming a large number of tight junctions (TJ), along with some adherens junctions (AJ) 
with adjacent BMECs. A continuous basement membrane also reduces transcytosis. Since 
BMECs have specific transporters, such as hexose transporters, amino acid transporters 
and monocarboxylic acid transporters, only molecules like glucose, glutamate and lactate 
that are recognized can pass transcellularly [11,12]. Some special cellular enzymes like 
acetylcholinesterase, alkaline phosphatase, γ -glutamyl transpeptidase and monoamine 
oxidases in BMECs were shown to inactivate some drugs, and neurotransmitters pass only 
transcellularly, which constitutes an enzymatic barrier [13]. Many previous studies on 
BBB permeability have focused on cell–cell junctions and paracellular permeability. How-
ever, to maintain the low permeability characteristic of the BBB, it has been shown that 
transcytosis must also be at a low rate, and the important effects of this mechanism on the 
BBB permeability has been demonstrated [14,15]. Ben-Zvi et al. have shown that the 
Mfds2a (major facilitator superfamily domain containing 2a) membrane protein ex-
pressed in CNS endothelium suppresses transcytosis [15]. The essential omega-3 fatty acid 
docosahexaenoic acid (DHA) transport is carried out by Mfds2a-mediated transport [16]. 
DHA prevents the formation of functional caveolae domains on the membrane. Thus, the 
formation of caveolae, which are invaginations of the plasma membrane, is prevented, 
and caveolae-mediated transcytosis is suppressed [14]. 

 
Figure 1. Differences between BMECs and peripheral endothelial cells. (A) BMECs line along a con-
tinuous basement membrane in cerebral capillaries. These cells have tight and adherens junctions 
to prevent paracellular transition of the molecules in bloodstream. BMECs have 5–6 times more 
mitochondria than peripheral endothelial cells, due to which transition of the molecules occurs 
mostly transcellularly in cerebral microvascular capillaries, and BMECs need more ATP than other 

Figure 1. Differences between BMECs and peripheral endothelial cells. (A) BMECs line along a
continuous basement membrane in cerebral capillaries. These cells have tight and adherens junctions
to prevent paracellular transition of the molecules in bloodstream. BMECs have 5–6 times more
mitochondria than peripheral endothelial cells, due to which transition of the molecules occurs
mostly transcellularly in cerebral microvascular capillaries, and BMECs need more ATP than other
endothelial cells. They have less pinocytic vesicles than peripheral endothelial cells to reduce
transport of unwanted molecules via pinocytosis. (B) Peripheral endothelial cells, which have
fenestrae, more pinocytic vesicles and less mitochondria, line along a discontinuous basement
membrane in peripheral capillaries. These cells have fewer TJs and AJs, and sometimes have wide
intracellular gaps to allow transition of molecules via diffusion.

Endothelial cells are found in all vascular structures in the body and line the luminal
surface of the vessel. Their main function is to regulate the transmission of molecules in the
bloodstream to the surrounding tissues. BMECs are the most important component of the
BBB barrier structure. They have many differences (e.g., fewer pinocytotic vesicles and fen-
estrae, more mitochondria and cell–cell junction proteins) from the peripheral endothelial
cells [19–21]. All these differences ensure that paracellular and transcellular permeability
from BMECs is lower than that of microvascular endothelial cells in the periphery.
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Figure 2. Schematic representation of the blood–brain barrier and the supportive cell types on
the barrier function. BMECs form the lining of the brain microvasculature and they interact with
multiple cells. Brain microvascular pericytes are embedded in the basal membrane and astrocytic
end-feet surround brain micro vessels. Neurons, oligodendrocytes and microglia are also found in
perivascular space. Created with BioRender.com (accessed on 21 May 2021).
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BMECs are in constant communication with astrocytic end-feet and pericytes [22].
Pericytes, characterized by α-smooth muscle actin (α-sma), control the diameter of the
capillaries by contracting and regulate the blood flow [2,23]. The area of pericytes covering
the capillaries is inversely proportional to the capillary permeability [24]. Apart from regu-
lating the capillary diameter and blood flow rate, pericytes also have crucial functions like
controlling endothelial cell proliferation, regulating angiogenesis, secretion of extracellular
matrix proteins and growth factors and regulating tight junction proteins [25,26].

Astrocytes cover almost the entire vascular surface with their cytoplasmic extensions,
called end-foot [24,27]. Growth factors produced from astrocytes have an inducing effect
on the barrier characteristics of BMECs [28]. Astrocytes contribute to the physical (by
helping the formation of TJ’s), transcellular (by expression of specialized carrier proteins,
e.g., P-glycoprotein) and enzymatic (by inducing of specialized enzyme systems, such as γ
-glutamyl transpeptidase) barrier structures [29,30].

The basement membrane secreted by BMECs, astrocytes and pericytes is the extracel-
lular matrix (ECM) that is mainly associated with cell surfaces [31]. It supports the cells
with its layer-like structure of approximately 100 nm thickness [32]. It holds different cell
groups together, regulates the signaling processes between different cells by associating
with its ECM proteins (collagen IV, laminin, nidogen and perlecan) and regulates the barrier
function by taking place between BMECs and astrocytes [17,31,33].

2.3. Tight and Adherens Junctions

BMECs carry out the regulation of permeability through TJs and AJs. TJs located
in the apical end of the lateral side of BMECs can even limit the passage of soluble sub-
stances by tightly connecting two neighboring cells like a zipper [34]. Proteins involved
in the structure of TJs are divided into two, as transmembrane and cytoplasmic proteins.
The transmembrane proteins occludin, claudins and junction adhesion proteins (JAMs)
interact with cytoplasmic scaffolding proteins, which are Zonula Occludens 1–2 and 3
(ZO-1/2/3), members of membrane-associated guanylate kinase (MAGUK) protein family,
actin cytoskeleton and associated proteins (Figure 3) [35–37].
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Figure 3. Major TJ and AJ proteins between adjacent BMECs. Transmembrane TJ proteins (Occludin,
Claudins and JAMs) associate and bind to each other across the intercellular cleft. These proteins link
to the F-actin cytoskeleton via zonula occludens proteins (ZO-1/2/3) and α-catenin. The most impor-
tant component of BMEC AJs, VE-Cadherin, binds to the F-actin via catenins (α-catenin, β-catenin,
γ-catenin, p120-catenin) and vimentin. VE-Cadherin is also the component of complexus adherens
junctions, and links to vimentin by desmosomal plakoglobin/desmoplakin or p0071 linker proteins.
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AJs, which are not as tight as TJs, are adhesive structures; however, they also support
TJs by connecting adjacent cells to each other [38]. Apart from initiating and stabilizing
cell–cell adhesion, AJs have many other functions, such as regulating the actin cytoskeleton,
providing cell signaling and transcriptional regulation [39,40]. If the structure of AJs
that forms the connections between cadherin superfamily and actin bounded catenin
is disrupted, the barrier structure is also disturbed. AJs and TJs have close functional
interdependence [35–37].

Different than epithelial cells, endothelial cells do not have desmosomes that connect
the intermediate filament network of adjacent epithelial cells. Instead, intermediate fila-
ments are linked to AJs in endothelial cells through a complex called complexus adherens
(Figure 3) [41]. These desmosome-like complexes link vimentin to VE-cadherin by desmo-
somal plakoglobin/desmoplakin or p0071 linker proteins [42,43]. Since desmosomes are
known to provide junction stability and maintain tissue integrity in other cell types [44], in
the lack of desmosomal junctions, it is plausible that AJs take over this duty by connecting
intracellular intermediate filament networks through complexus adherens.

3. Endothelial Cytoskeleton

Endothelial cells line the vessel wall that contact with blood and protect the blood ves-
sel and the surrounding tissue against mechanical stimuli originated from blood flow [45].
Besides maintaining the barrier function, these cells have some other roles, such as remain-
ing to attach onto the matrix as a monolayer, maintaining a flat endothelial morphology
to prevent turbulent flow, and covering the damaged area by proliferating and migrating
rapidly when damage occurs in the vascular structure [46,47]. Endothelial cells need cy-
toskeletal proteins to perform all these tasks. Like other mammalian cells, the endothelial
cell cytoskeleton consists of three filamentous proteins: actin microfilaments, microtubules
and intermediate filaments [46,48,49]. These structures are in constant communication
with each other directly or indirectly.

3.1. Actin Filaments

The actin protein is found in the endothelial cells in monomer form as globular actin
(G-actin), or as filamentous actin (F-actin), which is the polymerized form (7 nm diameter)
of G-actin monomers [50]. G- and F-actin are in balance in the cell, and these two types of
actin protein react to cellular stimuli by rapidly polymerizing and depolymerizing with the
help of actin-binding proteins and actin regulating proteins [51,52]. According to the ratio
of G- and F-actin in the cytoskeleton, the cellular functions of actin are regulated. F-actin is
involved in cell shape, polarity, cell–cell and cell–matrix interactions, cell migration and
cellular transport mechanisms [53,54]. F-actins form membrane cytoskeleton, stress fibers
and cortical actin ring (also called cortical actin rim) structures in endothelial cells [48].

Membrane cytoskeleton is a layer approximately 100 nm thick, attached to the cell
membrane and is a separate structure from the cortical actin ring consisting of longer
F-actin bundles [55]. However, these two structures are in communication with each other.
The cortical actin ring structure provides a centrifugal force to the cell, supporting and
stabilizing the cell membrane outward [55,56]. Thus, cell–cell and cell–matrix interactions
are supported. Membrane cytoskeleton and cortical actin ring join TJ and AJ proteins
and structures that form cell–matrix adhesion complexes, providing the formation and
protection of the endothelial barrier (Figure 4). The first interaction between neighboring
endothelial cells occurs with the help of lamellopodia, filopodia and junction-associated
intermittent lamellipodia (JAIL) [53,57]. The space between two neighboring cells is
reduced with the help of these cellular protrusions, and the first adhesion complexes
are formed by the homophilic interaction between the extracellular amino termini of the
VE-cadherins [53,58,59]. The carboxyl termini in the cytosolic part of the VE-cadherins are
connected to the actin cytoskeleton via intracellular anchoring molecules, such as p120-
catenin, α-catenin, β-catenin and γ-catenin, and actin-binding proteins, such as α-actinin
and vinculin, and thus the two cells are interconnected [48,60,61]. There is a reorganization
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between F-actin that makes up the cortical actin ring and stress fibers. For example, during
inflammation, stress fibers increase in endothelial cells with the increase in cytosolic Ca2+,
decrease in cAMP, and activation of RhoA/Rho kinase pathway [48,62]. These stress
fibers increase intracellular tension and with the reorganization of the adhesion complex
structure, gaps occur in the intercellular connections [63]. Cells pull out from each other
and barrier permeability increases. Therefore, the cortical actin ring is required for a linear
and continuous AJ structure, hence a barrier structure with low permeability.
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Figure 4. Schematic representation of the cytoskeleton and the interactions of transmembrane
proteins with cytoskeleton proteins and the nucleus in brain microvascular endothelial cells (BMECs)
in health and disease. In healthy conditions cortical actin ring supports and stabilizes the cell
membrane outward. Cytoskeleton and cortical actin ring join cell–cell and cell–matrix adhesion
complexes. Microtubules interact with actin directly or indirectly through intermediate filament
proteins or signal molecules. Vimentin intermediate filament provides structural support and
mechanical integrity to the cells. Transmembrane tight junction proteins, adherens junction and
complexus adherens proteins associate and bind to each other across the intercellular cleft. These
proteins link to the cell cytoskeleton directly or via cytolinker proteins. In disease conditions vimentin
network is destroyed, the cell loses actin organization, and stress fibers increase in endothelial
cells creating higher contractility. The adhesion complex structure reorganizes, and because of
the loosening of cell–cell and cell–matrix junctions, gaps occur in the intercellular connections.
Cells pull out from each other and barrier permeability increases. Created with BioRender.com
(accessed on 21 May 2021).

3.2. Microtubules

Microtubules are 25 nm-diameter fibers consisting of approximately 13 parallel
protofilaments composed of alpha and beta-tubulin subunits [64–66]. Microtubules are
located radially and densely in the center of the cell and their density decreases towards the
cell membrane (Figure 4) [67]. Most of the microtubules are attached to the centrosomes;
however, non-centrosomal microtubules are also found in the cytosol [68]. Microtubules
are involved in many important processes, such as cell migration, spreading, division,
polarization, cytoplasmic transport of signal molecules and vesicles and changing the shape
of the cell [67,69]. Microtubules are in a constant state of reorganization by polymerizing
and depolymerizing rapidly [48]. They interact with actin directly or indirectly through
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intermediate filament proteins or signal molecules. In the initial phase of endothelial
barrier dysfunction, it has recently been observed that microtubules have a higher effect
than actin filaments [70]. Depolymerization of microtubules occurs much faster than the
reorganization of F-actin when a stress factor is applied to the cell. Even with minimal
depolymerization of peripheral microtubules, increased permeability has been shown
without actin reorganization or changes in cell morphology [71]. As a result of the depoly-
merization of microtubules, it has also been shown that the barrier function is impaired by
causing stress fiber formation with RhoA activation [48,72].

3.3. Intermediate Filaments

Intermediate filaments (IFs) are the toughest of all three classes of cytoskeleton ele-
ments. They provide a template between the plasma membrane and the nucleus with an
extensive surface area for cellular organelles and other plasma elements. They are mostly
associated with desmosomes and focal adhesions on the plasma membrane, providing me-
chanical integrity [73]. The role of actin filaments and microtubules on cell–cell interactions
and the permeability of the endothelial barrier has been investigated in detail; for a long
time, only these structures among the cytoskeleton proteins were thought to be effective on
the barrier function. It has been shown that intermediate filaments also have important
functions in providing this regulation [74–76]. However, still, the role of intermediate
filaments has not been studied thoroughly and their effects are not fully elucidated.

Intermediate filaments are tissue-specific, where they show different protein expres-
sions depending on the tissue type or developmental stage. Many IFs were shown to
be upregulated in regenerating tissues, and they were shown to have critical roles in the
embryonic development [77].

The most abundant intermediate filament protein in microvascular endothelial cells is
vimentin [78,79]. Vimentin is a type III intermediate filament protein and is expressed in
cells of mesenchymal origin. The vimentin protein can be found in non-filamentous form in
the cytoplasm, on the membrane and extracellular site of the cell [79–81]. Non-filamentous
vimentin is involved in cell–cell interactions, immune activation, homeostasis, tissue repair
and relationship with pathogens [79]. Filamentous vimentin is approximately 10 nm in
diameter and provides structural support and mechanical integrity to the cells [82,83].
In addition to being responsible for maintaining the shape of the cell, it plays a major
role in protecting the vascular cells and tissue against various mechanical factors, such as
shear stress or contractile forces [84–86]. Lack of vimentin was shown to lead to decreased
contractile properties and inhibits the differentiation of embryonic stem cells (ESCs) into
endothelial phenotype in vitro. VIM −/− ESCs also showed altered cell–cell interactions
and failed to form embryoid bodies [82,83]. Therefore, filamentous vimentin indirectly
plays an important role in the formation and regulation of the actin fibers. Vimentins are
stable structures that are bound to focal adhesions in cell–matrix interactions by cytoskele-
ton linker proteins (Figure 4). They increase the resistance of the cells against shear stress
by reinforcing the attachment of cells to the matrix [76,87,88]. As vimentin filaments are
stretched more, they become more resistant to further deformation due to hierarchical
interactions of their coiled-coil subunits. This property is called “strain stiffening” or
“strain hardening” [89]. The ability of filamentous vimentin to stretch beyond its original
length also prompts its role as an important mechanosensor anchored to focal adhesions,
activating the major mechanosensory molecule, focal adhesion kinase (FAK), deforming
the nucleus, and transferring the outside mechanical stimuli to the nuclear lamins that are
the main form of intermediate filaments within the nucleus [90]. Lamins re-organize the
chromatin structure within the nucleus, therefore direct the intracellular transcriptional
machinery according to the mechanical stimuli, which is also a phenomenon termed as
“mechanoepigenetics” [91]. α-Catenin acts as the main mechanosensor protein in AJs that
regulate the cadherin-specific mechanotransduction transmitting the external mechanical
information to the nucleus through vimentin network [42,92].
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An interesting study by Reinitz et al. has shown that while human umbilical vein
endothelial cells (HUVECs) change their morphology and elongate in the direction of
physiological shear stress, human brain microvascular endothelial cells (HBMECs) do not
show any change in cell morphology or orientation under the same flow conditions [93].
The same group has also shown that HBMECS also resist elongation in response to cur-
vature, as opposed to HUVECs [94]. Their observations suggest that brain microvascular
endothelial cells show a unique property of the BBB, where these cells are resistant to
actin modeling and elongation under shear and strain to minimize total length of cell–cell
junctions. Unfortunately, they did not investigate the vimentin modelling characteristics.
Another recent in vitro study that used traction force microscopy to evaluate structural
changes in human brain endothelial cells on geometrically defined surfaces has shown
that increased cellular traction levels (due to stress fiber generation) are accompanied
by increased permeability, whereas when the cortical actin is stabilized, the permeability
drops [95]. Since it is well documented that the cytoskeletal organization and cellular shape,
as well as the cortical actin structure is particularly maintained by intermediate filaments
and their linker proteins that bind to microtubules and microfilaments [77], the unique
role of vimentin network for the integrity of BBB becomes more pronounced. Particularly
the linker protein plectin has binding domains that can cross-link with all three types
of cytoskeleton elements. The non-polar nature of intermediate filaments as opposed to
polar microfilaments and microtubules gives them the ability to de-polymerize and re-
polymerize allowing routine reassembly of their network [73]. It has been shown that actin
filaments re-orient first in response to mechanical strain, followed by microtubules [96]. The
slowest response of intermediate filaments might also be pointing out to the stabilization
of the whole cytoskeletal adaptation mechanism by intermediate filaments.

Quinlan et al. propose the existence of a separate desmosome–intermediate filament
network in epithelial cells that is circumferential and that explains the mechanosensor
role of intermediate filaments transducing external stimuli to nucleus through linker
of nucleoskeleton and cytoskeleton (LINC) complex [97]. Since endothelial cells lack
desmosomes, AJs replace the main mechanosensor role in endothelial cells. Interaction
of cadherins with actin through α-catenin is the main actor for sensing of the external
mechanical force, while presence of vimentin improves stability and transduction [42].

4. Potential Roles of Intermediate Filaments on BBB Permeability in Disease

It has been shown that, as a result of many pathological conditions (e.g., genetic
factors, trauma, infection, neurodegenerative diseases, brain tumor, ischemic/hemorrhagic
shock, environmental toxins) junctions between adjacent endothelial cells are affected,
and BBB dysfunction develops [98,99]. Specific stressors, such as cytokines (e.g., TNF-α,
IL-6) and chemokines (e.g., CCL3, CXCL12) released from damaged cells, free radicals
and hypoxic conditions that may occur as a result of ischemia, anemia or brain tumors
cause the formation of stress fibers by actin reorganization in endothelial cells [100–104].
With the increased acto-myosin activity in the cell, the cytoskeleton tension increases, and
the cells are pulled away from each other as a result of contraction; thus hyperpermeabil-
ity increases [98]. Many studies have shown that BBB permeability changes as a result
of actin reorganization [105–110]. It is now known that actin reorganization can occur
from disturbances in the organization of the intermediate filament network, as well as
directly from structural changes of F-actins and microtubules [111]. In order to create
internal tension in the cell, an acto-myosin system and intermediate filament network
are required [76]. Besides, in a cell that lacks a healthy intermediate filament network,
stress fibers begin to deform with F-actin reorganization because intracellular tension is
not sufficiently provided, and a discontinuous AJ structure and BBB dysfunction emerge
because cortical actin structure is disrupted [112].

It has been shown that a continuous AJ structure is provided by the binding of the
actin-bound VE-cadherins to the network structure of mechanically stable cage-like vi-
mentins via plectins [76]. Gregor et al. indicated that in fibroblasts that do not have
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plectin cytoskeleton linker protein that binds intermediate filaments to actin, microtubules,
organelles and focal adhesions, the intermediate filament network was disrupted and there-
fore the mechanosensory mechanism in the cell was attenuated [112]. Plectin deficiency
was also linked to disruption of AJs and TJs, as well as increased contractility [76]. These
studies show that linker proteins are essential for many functions of intermediate filaments
that allow the cells respond and adapt to stress. When the intermediate filament network
is destroyed, the cell loses tensegrity or actin organization, which will have significant
effects on tumor formation, hypertension or delayed wound healing, as well as reduction
of BBB integrity. Vimentin is also often related with motility in several cell types, because
of its control over cellular contractility. Recently, vimentin was associated with epithelial–
mesenchymal transition (EMT), and metastasis in cancer [113,114]. Since cellular motility
is not expected in preservation of BBB integrity, stabilization of the vimentin and the whole
cytoskeletal network by the linker proteins is necessary in order to avoid barrier disruption.

Changes in cell–cell adhesion are associated with the phosphorylation of adhesion
complex members [115]. Vimentin filaments reorganize by phosphorylation, which is a
transient posttranslational modification [116,117]. Polymerization and depolymerization
of vimentin are essential processes for cell cycle, cell migration, cell spreading and cell
signaling. For example, the phosphorylation of vimentin is required to separate cells
from each other during the cytokinesis [118]. However, as a result of the disassembly of
vimentin, the junctions between cells related to VE-cadherin are weakened (Figure 4) [119].
Due to activation of various protein kinases, such as Protein Kinase A (PKA), Protein
Kinase C (PKC), RhoA Kinase (ROCK), the head domain of vimentin is phosphorylated
and depolymerization is triggered [120–122]. PKC is activated by inflammation mediators,
such as bradykinin platelet-activating factor and thrombin, and phorbol esters, leading to
disruption in the BBB [119,123,124].

Shear stress induced by fluid flow causes vimentin network to redistribute around the
nucleus and the periphery near cell junctions. Tensegrity model explains the distribution
of contractile forces and dissipation of energy by intermediate filament structure and the
related cross-linking proteins, such as plectins, that connect intermediate filaments with
microtubules and microfilaments [125]. Low levels of shear stress have been shown to have
protective effects on BBB. It was shown that cerebral endothelial cells form tight junctions
and improved barrier function in vitro under shear stress [126], whereas disturbed fluid
flow causes BBB breakdown [127]. Our lab’s own experience also has shown that brain
vascular endothelial cells show higher levels of TJ (ZO-1 and Claudin-5) and AJ (VE-
Cadherin) mRNA expressions under physiological levels of flow induced shear, while
there is significant decrease in expression levels of these mRNAs when the flow conditions
simulate hypertension (Data not published). Besides hypertension, disturbed fluid flow can
be associated to many different pathological conditions including dementia, Alzheimer’s,
epilepsy and ischemia [127].

Besides flow induced shear, other forms of mechanical stress also alter BBB permeabil-
ity. Exposure to repeated low-level blast overpressure, that is commonly experienced in
athletes and military personnel was shown to disrupt BBB in a mouse model [128].

In a study showing the role of intermediate filaments in endothelial permeability, it
was determined that the organization of the intermediate filaments was disrupted by a
drug called Withaferin A (WFA) that is known to cause phosphorylation of vimentin; there
was no noticeable change in actin distribution [75]. However, the fact that there was an
increase in BBB permeability shows that the phosphorylation of vimentin directly affects
the barrier function. In the same study, it was shown that the junctions between endothelial
cells were not loosened by the inhibition of phosphorylation of vimentin [75]. Although
the cell–cell junctions are not damaged, the increase in BBB permeability may indicate that
vimentin influences transcellular permeability as well as paracellular permeability. Apart
from that, vimentin affects the expression and organization of surface molecules that are
critical for adhesion [129].
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In addition to being involved in cell–cell junctions, vimentin is also a component of
focal adhesion complexes that provide cell–matrix interactions (Figure 4) [130,131]. In the
absence of vimentin, spatial organization of focal adhesions are altered, the resistance of
endothelial cells to shear stress decreases and cell–matrix adhesion deteriorates [76,87,88].

It is known that hypoxic conditions, such as in injury, amyotrophic lateral sclerosis
(ALS), carbon monoxide poisoning, respiratory arrest, low blood pressure or stroke, change
the actin cytoskeleton structure by activation of mitogen-activated protein kinase (MAPK)
and Rho Kinase signaling pathways in endothelial cells [74]. Vimentin phosphorylation
occurs in rat pulmonary microvascular endothelial cells (RPMECs) exposed to hypoxic
conditions, and endothelial cell permeability increases if the intermediate filament network
is disrupted [74]. It has been shown in RPMECs that intermediate filaments collapse around
the nucleus, redistribute and polymerize in the cell periphery and create a stabilized contin-
uous network in response to hypoxia. Hypoxia also increases the ratio of insoluble/soluble
vimentin; vimentin de-phosphorylates, and hypoxia-induced heat shock protein (HSP27)
stabilizes the intermediate filament network [74]. Similar vimentin re-organization in brain
capillary endothelial cells was also reported [132]. This organization is comparable to the
response of vimentin network against shear stress, where the cell–cell junctions are pro-
tected against the environmental stressor through establishment of a strong morphological
belt in the cellular periphery.

Histamine is a neurotransmitter produced by histaminergic neurons, mast cells and
microglia in the brain [133]. It has been shown that histamine is increased during CNS
diseases, such as Parkinson’s Disease, schizophrenia, trauma, ischemia and sleep-wake
disorders, and is accumulated in different amounts in various parts of the brain [134].
In the study of Shasby et al., histamine increased the phosphorylation of vimentin with
the adhesion complexes of AJ, VE-cadherin, β- and γ-catenin; additionally, histamine
disrupted the VE-cadherin-vimentin interaction, and therefore obstructed the AJ structure
on human umbilical vein endothelial cells (HUVECs) [115]. Consequently, it is thought
that cell–cell interactions that are disrupted as a result of the increased phosphorylation
of vimentin and AJ complexes during diseases that cause histamine increase may cause
BBB dysfunction.

Most of the studies investigating the effects of intermediate filaments on endothe-
lial permeability have been done on intracellular filamentous vimentin. However, it is
known that besides the filamentous vimentin in the brain microvascular endothelium,
there is also non-filamentous vimentin on the cell surface [135]. Surface vimentin can
facilitate internalization of virus and bacteria and infection of cells [81,136,137]. It was
shown that the surface vimentin binds to the invasion protein (IbeA) of Escherichia coli K1
and internalin family of surface protein (InlF) of Listeria monocytogenes, both bacteria that
are associated with meningitis, indicating the important role of vimentin on invasion of
pathogens to the CNS through BBB [137]. Huang et al., indicated that bacterial meningitis
has three characteristic properties, NF-κB activation, pathogen invasion and polymor-
phonuclear neutrophil transmigration (PMNT) across the BBB. In their study, it is shown
that vimentin, which is an NF-κB regulator, IbeA induced NF-κB activation, pathogen
invasion and PMNT across the BBB, is reduced in vimentin −/− mice [138]. Vimentin
deficient mice also showed resistance to Streptococcus agalactiae induced meningitis [139].
Paradoxically, depolymerization of the filamentous vimentin in the case of inflammation
can loosen the intercellular junctions and increase BBB permeability, while the surface
vimentin may also help infection. Enterovirus A71, which is the cause of foot and mouth
disease and encephalitis, was also shown to increase BBB permeability, as well as vimentin
expression [140]. It has been shown that in case of an inflammation, vimentins of both
brain vascular endothelial cells and lymphocytes reorganize and adhere strongly, and they
facilitate the trans-endothelial migration of lymphocytes through BBB [141].
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5. Concluding Remarks

Although researchers do not regard the effects of intermediate filaments on cell–
cell interactions as much as F-actin and microtubules, studies in this field actually show
how effective intermediate filaments are in regulation and integrity of BBB. Intermediate
filaments constitute a scaffolding within the cytoskeleton that determines the cellular
organization and stabilizes the cell–cell junctions for maintaining the integrity of BBB. As
many neurodegenerative diseases, as well as traumatic injuries and infections are associated
with disturbed homeostasis and altered hemodynamics within the central nervous system,
role of intermediate filament network and the linker proteins to maintain the cell and
junction stability is highly pronounced. Particularly, the contribution of intermediate
filaments as mechanosensors, and their role in the orchestrated organization of actin cortex
and microtubules in reaction to blood flow induced shear must be studied in more detail
in vitro and in vivo in order to shed light on their role in BBB functions in health and
disease. Use of novel imaging techniques like electron cryotomography, traction force
microscopy or Förster resonance energy transfer (FRET) might provide an opportunity to
examine the signal transduction pathways in molecular level in the crosstalk of intermediate
filaments with the cell–cell junctions and other cytoskeleton/nucleoskeleton molecules.
Vimentin-targeted therapeutic strategies might play an important role for controlling and
even ameliorating the central nervous system pathologies.
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