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Pregnancy-associated breast cancer (PABC) is diagnosed during pregnancy or

within 1 year postpartum, but the unique aspects of its etiology and

pathogenesis have not been fully elucidated. This study aimed to ascertain

the molecular mechanisms of PABC to facilitate diagnosis and therapeutic

development. The Limma package was used to characterize the differentially

expressed genes in PABC as compared to non-pregnancy-associated breast

cancer (NPABC) and normal breast tissue. A total of 871 dysregulated genes

were identified in the PABC versus NPABC groups and 917 in the PABC versus

normal groups, with notable differences in the expression of MAGE and CXCL

family genes. The dysregulated genes between the PABC and normal groups

were mainly associated with signal transduction and immune response, while

Kyoto Encyclopedia of Genes and Genomes analysis revealed that the

dysregulated genes were enriched in immune-related pathways, including

the major histocompatibility complex (MHC) class II protein complex, the

type I interferon signaling pathway, regulation of α-β T-cell proliferation, and

the T-cell apoptotic process. Through protein-protein interaction network

construction, CD44 and BRCA1 were identified as prominent hub genes with

differential expression in PABC versus NPABC. Furthermore, a cluster with

eleven hub genes was identified in PABC versus normal adjacent tissues, of

which the expression of EGFR, IGF1, PTGS2, FGF1, CAV1, and PLCB1 were

verified to be differentially expressed in an independent cohort of PABC

patients. Notably, IGF1, PTGS2, and FGF1 were demonstrated to be

significantly related to patient prognosis. Our study reveals a distinctive gene

expression pattern in PABC and suggests that IGF1, PTGS2, and FGF1 might

serve as biomarkers for diagnosis and prognosis of PABC.
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Introduction

Breast cancer is the most common malignancy in women,

with the frequency rising with increasing age (Smith et al., 2003;

Van et al., 2010). An increase in the incidence of breast cancer

over the past several decades is thought to relate to a greater

number of women who delay child-bearing (Andersson et al.,

2009; Raphael, Trudeau and Chan 2015). Conventionally,

pregnancy-associated breast cancer (PABC) is a rare type of

breast cancer that is diagnosed during pregnancy or within the

following year (Lee, Mayer and Partridge 2017). The incidence of

PABC is approximately 15–35 per 100,000 deliveries, with more

cases diagnosed during the first postpartum year (Smith et al.,

2003; Woo, Yu and Hurd 2003). The remodeling of the

mammary gland to its pre-pregnant state after pregnancy

might cause the mammary microenvironment to become

tumor-promoting (Pepper 2006). Furthermore, diagnosis of

PABC is complicated by physiological changes that

accompany pregnancy. PABC generally presents as a painless

palpable mass, skin changes including thickening, or bloody

nipple discharge, which are often mistaken for pregnancy

symptoms. Lack of detection, hesitation to proceed with

medical tests, and limitations of imaging during pregnancy

often result in delays in diagnosis of PABC (O’Neill et al.,

2016). Therefore, it is important to improve detection and

therapy of PABC.

The immune system can prevent tumor progression through

immune surveillance mechanisms; however, immunogenic

phenotypes in breast cancer that promote tumor growth may

arise (Dunn et al., 2002). Besides, CD88−CD1c+CD163+ DCs

(called DC3s) infiltrated luminal breast cancer primary tumors in

vivo and DC3s was regarded to have strong potential to regulate

tumor immunity (Bourdely et al., 2020). Thus, infiltrating

immune cells may be both prognostic and predictive of

response to breast cancer therapy (Cimino-Mathews, Foote

and Emens 2015). Breast cancer can be subdivided into

intrinsic molecular subtypes based on differential gene

expression profiles (Perou et al., 2012; Sorlie et al., 2001;

Sorlie et al., 2003; Nielsen et al., 2004). Furthermore, recent

studies suggest that PABC may have a unique genomic signature

associated with increased hormone levels in pregnancy (Harvell

et al., 2013). Therefore, understanding the regulatory pathways

and pathogenesis of breast cancer may provide a blueprint for

effective immunotherapy. Nevertheless, there have been few

studies that elucidate the role of the immune system in

PABC, making it a challenge to design effective therapeutic

strategies.

In this study, we applied microarray technology and

comprehensive bioinformatics analysis to characterize gene

expression profiles of PABC and compared the results with

non-pregnancy-associated breast cancer (NPABC). The results

characterize a distinctive gene expression pattern in PABC,

which might be used in clarifying the pathogenesis of PABC

and exploring a possible prognostic biomarker for early diagnosis

of PABC.

Materials and methods

Data curation and reprocessing

Microarray data of PABC from the University of Colorado

Cancer Center Tissue Bank was obtained from the Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)

database under the accession number GSE31192 (Harvell et al.,

2013). Transcriptome of 28 pairs of samples, including 12 tumor

epithelial cells and tumor-associated stromal cells in patients

with PABC (PABC group), eight tumor epithelial cells and

tumor-associated stromal cells in patients with NPABC

(NPABC group), and eight normal epithelial cells in patients

with PABC (normal group) were used to analyze the

differentially expressed genes (DEGs) using the Limma

package. Dysregulated genes were screened using fold change

(FC) filtering and were further selected according to the false

discovery rate (FDR)-adjusted p-value threshold.

GO enrichment and KEGG pathway
analysis

The Gene Ontology (GO) project, which incorporates three

ontologies (biological processes, cellular components and

molecular functions), can be used to characterize the

biological functions of sets of genes. Dysregulated genes in

PABC were input into the Database for Annotation,

Visualization and Integrated Discovery (DAVID; http://david.

abcc.ncifcrf.gov/) to identify biological processes, cellular

components, and molecular functions and p < 0.01 was

adopted to determine the significance level. The Kyoto

Encyclopedia of Genes and Genomes (KEGG, http://www.

genome.ad.jp/kegg/) database was also used to analyze the

potential functions of dysregulated genes and genetic

pathways in PABC. Pathways with FDR < 0.05 were

considered significantly enriched.

Protein-protein interaction network
construction and topology attribute
analysis

The Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING, http://string-db.org/) database was used to

retrieve predicted interactions for the identified dysregulated

genes in PABC. The strength of protein interactions was set

at > 0.4 as a threshold for analysis. Protein-protein interactions

were analyzed by Cytoscape 3.6.1 (http://cytoscape.org/), which
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integrates the PPI network into attribute data and implements

topology analysis.

qRT-PCR analysis of tissue specimens
from an independent cohort of PABC
patients

A total of 13 pairs of PABC specimens were collected at the

Affiliated Hospital of Xuzhou Medical University. Informed

consent was obtained from each of the participants prior to

sample collection. TRIzol reagent (Invitrogen) was utilized to

extract total RNA from the tissue specimens according to the

manufacturer instructions. Then, Reverse-transcribed

complementary DNA was synthesized and used for the qRT-

PCR. The primer sequences used for PCR amplification are

shown in Supplementary Table S1.

Statistial analysis and drawing methods

The R package Limma were used to characterize the DEGs

using a threshold of |Log2FC| ≥ 1 (i.e., ≥2-fold difference) and the
FDR-adjusted p-value of 0.05. The ComplexHeatmap package

was used to draw heat maps. Prognostic information analyzed

through the Kmplot database (http://kmplot.com/analysis).

Kaplan-Meier method was used to summarize the cumulative

survival rates and p < 0.01 was adopted to determine the

significance level. Log-rank test was used to determine the

association of high/low expression of hub genes with clinical

characteristics. Fisher exact test was adopted to compare

categorical variables.

Results

Gene expression profiling of a differential
gene expression signature in PABC

To identify genes that are differentially expressed in PABC,

we performed Volcano analysis of microarray data from GEO

database using a threshold of |Log2FC| ≥ 1 and FDR ≤ 0.05. A

total of 871 DEGs were identified in PABC versus NPABC

tissues, including 461 that were upregulated and 410 that were

downregulated (Figure 1A). Furthermore, 917 DEGs were

identified in PABC versus normal adjacent tissue, including

651 that were upregulated and 266 that were downregulated

(Figure 1B). The 40 most highly differentially regulated genes

(including 20 upregulated and 20 downregulated) for each of the

comparisons are presented in Tables 1, 2. Notably, this includes

MAGE family oncogenes (Li et al., 2021) A6/A3, A2B/A2 and A12,

which were more highly expressed in PABC than in NPABC; and

the CXCL family of chemokines (Palacios-Arreola et al., 2014),

which were upregulated (CXCL2) or downregulated (CXCL10,

CXCL11) in PABC versus normal tissues.

To visualize the differences in expression between PABC and

either NPABC or normal tissues in greater detail, we performed

heat mapping. The patterns of expression for the 20 top

FIGURE 1
Differentially expressed genes in PABC. (A). Volcano plot of the p values as a function of weighted fold-change for genes in PABC (n = 12) versus
NPABC (n = 8) samples. Dark dots represent genes that are not significantly differentially expressed (fold change < 2, p < 0.05), red dots represent
significantly upregulated genes (fold change ≥ 2, p < 0.05), and green dots represent significantly downregulated genes (fold change ≤ 1/2, p < 0.05).
(B). Volcano plot of the p values as a function of weighted fold change for genes in PABC (n = 12) versus normal (n = 8) samples. Dark dots
represent genes that are not significantly differentially expressed (fold change < 2, p < 0.05), red dots represent significantly upregulated genes (fold
change ≥ 2, p < 0.05), and green dots represent significantly downregulated genes (fold change ≤ 1/2, p < 0.05). Data were obtained from GEO
database accession number GSE31192.
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dysregulated genes for each comparison, including

10 upregulated and 10 downregulated genes, are shown in

Figures 2A,B. The clustering patterns for the PABC samples

(first 12 columns) as compared to either the NPABC samples

(Figure 2A, last eight columns) or the normal group (Figure 2B,

last eight columns) were clearly partitioned, with relatively

discreet expression patterns between the groups. However, the

samples within the NPABC group (Figure 2A, last eight columns)

had a more variable pattern that reflected at least two different

subtypes. A similar result was observed for heatmap that

included all genes with a more stringent threshold of |

Log2FC| ≥ 1 and FDR ≤ 0.01 (Supplementary Figure S1).

These results support previous findings (Harvell et al., 2013)

suggesting that PABC may represent a discreet type of breast

cancer with a gene expression signature that is distinct from that

of NPABC.

GO enrichment and KEGG pathway
analyses to identify unique processes that
underlie PABC

To further explore the functions of DEGs in PABC, we

performed GO enrichment analysis and KEGG pathway

analysis. Through GO analysis, we identified 157 pathways

that were significantly enriched. The dysregulated genes were

associated with “signal transduction” and “the immune

response” (ontology: biological process), “integral component

of membrane”, “membrane and integral component of plasma

membrane” (ontology: cellular component), and “protein

binding” (ontology: molecular function) in the PABC group

versus the NPABC group. However, the genes were most

highly associated with “positive regulation of transcription

from the RNA polymerase II promoter” (ontology: biological

process), “nucleus” and “cytoplasm” (ontology: cellular

component) and “ATP binding” (ontology: molecular

function) in the PABC group versus the normal group.

Through KEGG pathway analysis, the dysregulated genes in

the PABC group versus the NPABC group were mainly involved

in the following pathways: 1) Tuberculosis; 2) cytokine-cytokine

receptor interaction; 3) Herpes simplex infection; 4) cell adhesion

molecules (CAMs); 5) Influenza A; 6) Rheumatoid arthritis and

7) the phagosome signaling pathway. The genes in the PABC

group versus the normal group were mainly enriched in the

following pathways: 1) pathways in cancer; 2) the PI3K-Akt

signaling pathway; 3) focal adhesion; 4) the Rap1 signaling

pathway; 5) the Ras signaling pathway; 6) proteoglycans in

cancer; 7) regulation of actin cytoskeleton; and 8) microRNAs

TABLE 1 List of genes with the most prominent difference in expression between the PABC and the NPABC groups.

Upregulated genes Downregulated genes

ID Gene Log2FC ID Gene Log2FC

209942_x_at MAGEA6///MAGEA3 4.19 205242_at CXCL13 −4.52

214612_x_at MAGEA6 4.04 209728_at HLA-DRB4 −3.40

223687_s_at LY6K 3.76 226147_s_at PIGR −2.75

213492_at COL2A1 3.64 1559186_at PRKXP1 −2.75

205509_at CPB1 3.55 202018_s_at LTF −2.70

214603_at MAGEA2B///MAGEA2 3.31 205890_s_at UBD///GABBR1 −2.68

230910_s_at LOC100288181 3.21 206378_at SCGB2A2 −2.67

1553830_s_at MAGEA2B///MAGEA2 3.2 228010_at PPP2R2C −2.62

217404_s_at COL2A1 3.06 233030_at PNPLA3 −2.47

210467_x_at MAGEA12 2.97 1559188_x_at PRKXP1 −2.46

205440_s_at NPY1R 2.77 214087_s_at MYBPC1 −2.45

239153_at HOTAIR 2.61 210356_x_at MS4A1 −2.43

210297_s_at MSMB 2.56 206799_at SCGB1D2 −2.37

203425_s_at IGFBP5 2.55 217418_x_at MS4A1 −2.25

218824_at PNMAL1 2.52 1569788_at ST8SIA1 −2.25

1562821_a_at DSCAM-AS1 2.49 215217_at IGKC −2.21

207430_s_at MSMB 2.45 216191_s_at TRDV3 −2.15

209173_at AGR2 2.45 206622_at TRH −2.13

220445_s_at CSAG2///CSAG3 2.38 239237_at TRG-AS1 −2.13

204942_s_at ALDH3B2 2.36 209498_at CEACAM1 −2.13

*Abbreviation: FC, fold change; MAGE, genes are highlighted in bold font.
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in cancer. Among these, pathways in cancer (hsa05200), the

PI3K-Akt signaling pathway (hsa04151) and focal adhesion

(hsa04510) were the top three significantly enriched networks

with FDR < 0.05. Collectively, these results support unique

pathways and processes that may underlie the development

of PABC.

Construction of the protein-protein
interaction network for PABC

Given the above evidence for a unique transcriptomic

signature for PABC, we sought to use current bioinformatics

knowledge to further characterize the roles for genes and their

protein products. Among the 871 dysregulated proteins in the

PABC group versus the NPABC group, 580 were identified in the

STRING database and entered into Cytoscape 3.7.1 to construct a

PPI network. The topological parameters were calculated using

the R package. The main connected component included

460 nodes and 1,092 edges (Figure 3A). The top 10% of the

nodes ranked by degree value (containing 46 proteins) were

selected as hub nodes, and the distribution of degree,

betweenness and closeness was determined (Figures 3B,C).

These hub nodes and their characteristic properties are

tabulated (Supplementary Table S2). Notable findings were

that the cancer progression-associated genes CD44 (Ghotra

et al., 2015), as well as BRCA1 (Semmler et al., 2019), a

classic breast cancer gene, were highly represented in the PPI

network for PABC versus NPABC. Furthermore, PTPRC/CD45

(Al Barashdi et al., 2021) and IL1B (Gelfo et al., 2020), which are

associated with immune and inflammatory activity, were

represented among the proteins with the highest degree value.

To further identify patterns within the PPI network for

PABC versus NPABC, we performed additional clustering

analysis. Six clusters had at least 10 nodes, among which

Cluster 2 (Figure 4A) contained the largest number of

proteins. Twenty-three proteins within this cluster were

associated with the MHC class II protein complex (36.36%),

type I interferon signaling pathway (36.36%), regulation of α-β
T cell proliferation (18.18%), and the T cell apoptotic process

(9.09%). Furthermore, 13 common key proteins between hub

nodes and Cluster two included LCK, PTPRC, CD44, HLA-

DPB1, CD274, MX1, BCL2L11, STAT5A, FAS, FASLG, CD55,

IFIT1, and ISG15.

We also performed a similar analysis of the PABC versus

normal groups and identified 921 dysregulated proteins. A total

of 558 proteins were identified in the STRING database and used

to construct a PPI network for PABC versus normal samples. The

TABLE 2 List of genes with the most prominent difference in expression between the PABC and the normal groups.

Upregulated genes Downregulated genes

ID Gene Log2FC ID Gene Log2FC

223623_at C2orf40 5.94 211122_s_at CXCL11 −3.76

209560_s_at DLK1 5.36 211080_s_at NEK2 −3.59

1552509_a_at CD300LG 5.01 217428_s_at COL10A1 −3.42

204213_at PIGR 4.87 206134_at ADAMDEC1 −3.17

206742_at PIR-FIGF///FIGF 4.64 204926_at INHBA −3.11

203980_at FABP4 4.41 204533_at CXCL10 −3.03

230101_at CXCL2 4.29 229538_s_at IQGAP3 −3.00

202037_s_at SFRP1 4.28 210163_at CXCL11 −2.97

206552_s_at TAC1 4.22 1555758_a_at CDKN3 −2.93

202274_at ACTG2 4.12 222608_s_at ANLN −2.85

228766_at CD36 4.10 200832_s_at SCD −2.83

226147_s_at PIGR 4.06 218542_at CEP55 −2.82

209774_x_at CXCL2 4.05 223278_at GJB2 −2.77

209292_at ID4 3.99 218404_at SNX10 −2.69

242626_at SAMD5 3.98 203936_s_at MMP9 −2.65

228653_at SAMD5 3.95 209773_s_at RRM2 −2.60

202036_s_at SFRP1 3.91 236313_at CDKN2B −2.58

202350_s_at LOC100506558///MATN2 3.91 239002_at ASPM −2.58

228399_at OSR1 3.90 237753_at IL21R −2.56

202965_s_at CAPN6 3.86 204962_s_at SLC35F6///CENPA −2.55

*Abbreviation: FC, fold change; CXCL, genes are highlighted in bold font.
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main network consisted of 290 nodes and 858 edges, and the top

10% of the node degree (containing 29 proteins) were chosen as

hub nodes (Supplementary Table S3). This includes many classic

oncogenic proteins, with EGFR (Sigismund et al., 2018), Myc

(Dhanasekaran et al., 2022) and Jun (Vleugel et al., 2006) having

the highest node degrees. Only one statistically validated cluster

was identified by the presence of at least 10 nodes. The cluster

was made up of 17 proteins, which were associated with

regulation of vasoconstriction (39.47%), phospholipase C

activity (21.05%), positive regulation of nuclear division

(18.42%), positive regulation of smooth muscle cell

proliferation (15.79%), and positive regulation of acute

inflammatory response (5.26%) (Figure 4B). Eleven common

key proteins including EGFR, IGF1, NGFR, EDN1, PTGS2/

COX-2, EGR1, NTRK2, NTF3, CAV1, SOX10, and

PLCB1 were identified between hub nodes within the cluster.

qRT-PCR validation and survival analysis

To further validate the identification of key proteins that are

dysregulated in PABC, we collected samples from an

independent cohort of PABC patients, including paired PABC

and normal breast tissues. Next, we performed qRT-PCR to

evaluate the mRNA expression of the 11 hub proteins identified

by PPI network analysis of PABC versus normal tissues

(Figure 4B). The results demonstrate that the expression of

EGFR, IGF1, PTGS2, FGF1, CAV1, and PLCB1 were

significantly different (p < 0.01) in PABC tissues as compared

to non-tumor tissues, with a similar pattern to that observed in

the microarray analysis. GO and KEGG pathway analyses

showed that these six genes are involved in pathways in

multiple cancers, the PI3K-Akt signaling pathway, focal

adhesion, Rap1 signaling pathway, and Ras signaling pathway,

suggesting that they may play an important role in the

carcinogenesis of PABC. The prognostic information of the

six hub genes was analyzed through the Kmplot database

(http://kmplot.com/analysis). Statistical difference (p < 0.01)

in OS (Overall Survival) was observed in three of the six hub

genes, including IGF1, PTGS2, and FGF1, thus further

highlighting their potential relevance in PABC.

Discussion

Numerous studies have attempted to characterize the

expression profile in breast cancer to identify biomarkers for

diagnosis, prognosis or personalized therapy (Liu et al., 2017;

FIGURE 2
Heatmap of expression profiles for the 20 most highly dysregulated (10 upregulated and 10 downregulated genes) in PABC. The red through
green color indicates high to low expression levels. The PABC samples are indicated by blue font. (A). Heatmap for the top 20 DEGs in the PABC
versus NPABC samples. The left 12 columns are PABC samples and the right eight columns are NPABC samples. (B). Heatmap for the top
20 dysregulated genes in PABC versus normal tissues. The left 12 columns are PABC samples and the right eight columns are normal samples.
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FIGURE 3
Topology parameters for the PABC differential expression PPI network. PPI network analysis was performed using 580 proteins that were
differentially regulated in PABC versus NPABC as identified by STRING. (A) Distribution of the Nodes versus Degree. (B) Betweenness Centrality
versus Number of Neighbors for the Nodes. (C) Closeness Centrality versus Number of Neighbors for the Nodes. Best fit curves are drawn in red.
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Zhang et al., 2018). Furthermore, PABC has been recognizes as a

distinct form of breast cancer with unique properties (Pepper,

2006; Andersson et al., 2009; Lee et al., 2017). A 2013 study

evaluated PABC transcriptomic signatures from the

GSE31192 dataset (Harvell et al., 2013), and a more recent

study integrated two microarray profile datasets

(GSE31192 and GSE53031) to identify core genes and clinical

roles in PABC through integrated bioinformatic analysis (Zhang

et al., 2019). The GSE31192 and GSE53031 datasets were from

different sample sources, including cancer epithelial tissues,

cancer stroma tissues, normal epithelial tissues, and normal

stroma tissues. Therefore, data were grouped according to the

sample sources. However, in this study, we compared PABC with

both NPABC samples and normal samples regardless of the

tissue source, which may give us a more holistic assessment of

signature features that are specific to PABC regardless of the

epithelial versus stromal sample source.

We identified 871 DEGs for the PABC versus NPABC group

comparison and 917 DEGs for the PABC versus normal group

comparison. Among the most highly dysregulated genes, the

MAGE family oncogenes, including MAGE A6/A3, A2B/A2 and

A12, were found to be expressed at elevated levels in PABC.

Given the association of MAGE proteins with extremely

aggressive tumor types (Li et al., 2021), these findings may

underscore the aggressive PABC phenotype. We also

determined that CXCL2 is upregulated and CXCL10 and

11 are downregulated in PABC versus adjacent normal tissues.

These proteins belong to a family of chemokines that are

associated with proliferation and angiogenesis in breast cancer

and have been explored as potential therapeutic targets (Palacios-

Arreola et al., 2014).

To further understand the patterns of differential

expression, we generated heatmaps of the most highly

dysregulated genes, which demonstrated that samples of the

PABC group were clearly separated from those of the NPABC

and normal groups. Gene ontology and enrichment analyses

further indicated that the DEGs in PABC versus NPABC were

mainly enriched in pathways in cancer, the PI3K-Akt signaling

pathway, focal adhesion, the Rap1 signaling pathway,

proteoglycans in cancer, microRNAs in cancer, prostate

cancer, the p53 signaling pathway, small cell lung cancer,

and melanoma and glioma pathways. Many studies have

demonstrated dysregulation in the PI3K-AKT pathway in

cervical cancer, breast cancer, malignant glioma, and other

cancers (Lee et al., 2015; Guerrero-Zotano, 2016; Mayer and

Arteaga; Li et al., 2016), thus suggesting that the PI3K-AKT

pathway may be an important contributor to the oncogenic

PABC phenotype.

For more in-depth analysis of functional pathways associated

with DEGs in PABC, we also performed PPI network analysis

and clustering (Berkhin 2006). Interestingly, the classic breast

cancer marker genes, BRCA1 (Semmler et al., 2019) and CD44

(Chen et al., 2018) were overexpressed in the PABC PPI network,

suggesting that PABC may be characterized by higher activity of

proteins that contribute to NPABC. Our results also emphasize

the role for immune and inflammatory pathways in PABC.

Notably, the well-established immune pathway activators

PTPRC/CD45 and IL1B (Sigismund et al., 2018; Al Barashdi

et al., 2021) were among the proteins with the highest node

degree value in the corresponding PPI network. According to the

clustering analysis, six clusters of proteins were dysregulated, and

the largest cluster was associated with the MHC class II protein

FIGURE 4
Candidate biomarker panel related to PABC including proteins and their interaction. The size of the nodes represents the degree value, with
bigger sizes corresponding to higher degree values. (A). Candidate biomarker panel between PABC and NPABC groups. (B). Candidate biomarker
panel between PABC and normal groups.
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complex (36.36%), type I interferon signaling pathway (36.36%),

regulation of α-β T-cell proliferation (18.18%) and T-cell

apoptotic process (9.09%). MHC class II is known to be

downregulated in many metastatic tumors, including human

breast cancer cells (Shi et al., 2006). On the other hand,

expression of MHC-II in melanoma is associated with an

intensified response to PD-1-targeted immunotherapy

(Johnson et al., 2016), which has been subsequently validated

in classic Hodgkin lymphoma (Roemer et al., 2018) and with

combination immunotherapy (Rodig et al., 2018). MHC-II

expression can characterize T-cell-inflamed or immune-

responsive subset of tumors (Balko et al. 2018). The

association of type I interferon within the PPI may be

indicative of a complex relationship between stress and

immune function that has been reported in breast cancer

(Mundy-Bosse et al., 2011). Type I interferon is the prototype

member of a class of antiviral immunomodulatory cytokines

involved in tumor initiation and progression and can act on

tumor cells directly by inhibiting cell growth or indirectly by

activating immune cells to mount antitumor responses (Zitvogel

et al., 2015). Metastatic progression is the major cause of breast

cancer-related mortality, and in multiple models of breast cancer,

dysregulated immunity due to the loss of host type-I IFN

signaling may drive metastasis (Rautela et al., 2015). A role

for T-cells in the PABC phenotype, as indicated by our

clustering analysis, is also consistent with mechanisms that are

known to impact breast cancer progression. Higher levels of

T cells at early stages of differentiation have been detected in

breast cancer patients (p < 0.05) (Speigl et al., 2017), and CD14+

myeloid cells from breast cancer patients have been shown to

have enhanced ability to suppress autologous T-cell proliferation

(Speigl et al., 2017). Furthermore, interleukin 10 and interleukin

two synergistically function to promote cytotoxicity of CD8+

T-cell, which is inhibited by regulatory T cells in breast cancer

(Li et al., 2017). Thus, increased understanding of functional

pathways and molecular mechanisms will provide a blueprint for

effective immunotherapy for breast cancer, and for PABC in

particular.

Our PPI network analysis of PABC versus normal breast tissue

samples also identified a single cluster for which EGFR, IGF1,

PTGS2, FGF1, CAV1 and PLCB1 were verified to be differentially

expressed in an additional independent cohort of patients’ PABC

tissue compared with normal tissue. EGFR has been demonstrated

to regulate epithelial tissue development and homeostasis in a

variety of types of cancer, including breast cancer (Sigismund

et al., 2018), with approximately half of triple-negative breast

cancer and inflammatory breast cancer cases overexpressing

EGFR (Masuda et al., 2012). Furthermore, the IGF1 signaling

pathway has previously been shown to be critical for normal cell

division and to be modulated in PABC (Loddo et al., 2014).

Targeted therapies have been developed for suppressing the

post-partum pro-tumorigenic extracellular matrix via inhibition

of PTGS2 (O’Brien et al., 2011), and the potential benefit of

targeting the FGF1 pathway in breast cancer has been

considered (Francavilla and O’Brien, 2022). On the other hand,

CAV1 expression, which is down-regulated during tumorigenesis,

has been shown to be suppressed during lactation (Park et al., 2001).

Therefore, the identification of these proteins within a PPI cluster is

consistent with known mechanisms in breast cancer that may be

modulated during the pregnancy and postpartum periods. Notably,

three of these genes, including IGF1, PTGS2, and FGF1, were

significantly related to breast cancer patient outcomes, thus further

verifying their potential roles as prognostic biomarkers.

Conclusion

In this study, we screened differentially expressed genes from

microarray datasets of PABC by using an integrated

bioinformatics analysis approach. A distinctive pattern of

cancer and immune-related gene expression revealed a

landscape of PABC-associated genes and an interaction

network of their protein products, suggesting that these genes

may have a distinct biological nature in PABC. Furthermore,

EGFR, IGF1, PTGS2, FGF1, CAV1, and PLCB1, were verified to

be expressed differentially in PABC compared with normal

tissues, and IGF1, PTGS2, and FGF1 were demonstrated to be

significantly related to breast cancer patient prognosis, suggesting

that the three genes might serve as biomarkers for precision

diagnosis and treatment of PABC.
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